1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
|
// run-pass
#![allow(unconditional_recursion)]
#![allow(dead_code)]
#![allow(unused_variables)]
#![allow(unused_imports)]
// Test sized-ness checking in substitution.
use std::marker;
// Unbounded.
fn f1<X: ?Sized>(x: &X) {
f1::<X>(x);
}
fn f2<X>(x: &X) {
f1::<X>(x);
f2::<X>(x);
}
// Bounded.
trait T { fn dummy(&self) { } }
fn f3<X: T+?Sized>(x: &X) {
f3::<X>(x);
}
fn f4<X: T>(x: &X) {
f3::<X>(x);
f4::<X>(x);
}
// Self type.
trait T2 {
fn f() -> Box<Self>;
}
struct S;
impl T2 for S {
fn f() -> Box<S> {
Box::new(S)
}
}
fn f5<X: ?Sized+T2>(x: &X) {
let _: Box<X> = T2::f();
}
fn f6<X: T2>(x: &X) {
let _: Box<X> = T2::f();
}
trait T3 {
fn f() -> Box<Self>;
}
impl T3 for S {
fn f() -> Box<S> {
Box::new(S)
}
}
fn f7<X: ?Sized+T3>(x: &X) {
// This is valid, but the unsized bound on X is irrelevant because any type
// which implements T3 must have statically known size.
let _: Box<X> = T3::f();
}
trait T4<X> {
fn dummy(&self) { }
fn m1(&self, x: &dyn T4<X>, y: X);
fn m2(&self, x: &dyn T5<X>, y: X);
}
trait T5<X: ?Sized> {
fn dummy(&self) { }
// not an error (for now)
fn m1(&self, x: &dyn T4<X>);
fn m2(&self, x: &dyn T5<X>);
}
trait T6<X: T> {
fn dummy(&self) { }
fn m1(&self, x: &dyn T4<X>);
fn m2(&self, x: &dyn T5<X>);
}
trait T7<X: ?Sized+T> {
fn dummy(&self) { }
// not an error (for now)
fn m1(&self, x: &dyn T4<X>);
fn m2(&self, x: &dyn T5<X>);
}
// The last field in a struct may be unsized
struct S2<X: ?Sized> {
f: X,
}
struct S3<X: ?Sized> {
f1: isize,
f2: X,
}
pub fn main() {
}
|