summaryrefslogtreecommitdiffstats
path: root/vendor/chalk-solve-0.80.0/src/split.rs
blob: bea24044db8d14c8eaa7dab26ffbc5207f7a8ccb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
use crate::rust_ir::*;
use crate::RustIrDatabase;
use chalk_ir::interner::Interner;
use chalk_ir::*;
use std::sync::Arc;
use tracing::{debug, instrument};

/// Methods for splitting up the projections for associated types from
/// the surrounding context.
pub trait Split<I: Interner>: RustIrDatabase<I> {
    /// Given a projection of an associated type, split the type
    /// parameters into those that come from the *trait* and those
    /// that come from the *associated type itself*. So e.g. if you
    /// have `(Iterator::Item)<F>`, this would return `([F], [])`,
    /// since `Iterator::Item` is not generic and hence doesn't have
    /// any type parameters itself.
    fn split_projection<'p>(
        &self,
        projection: &'p ProjectionTy<I>,
    ) -> (
        Arc<AssociatedTyDatum<I>>,
        &'p [GenericArg<I>],
        &'p [GenericArg<I>],
    ) {
        let interner = self.interner();
        let ProjectionTy {
            associated_ty_id,
            ref substitution,
        } = *projection;
        let parameters = substitution.as_slice(interner);
        let associated_ty_data = &self.associated_ty_data(associated_ty_id);
        let (trait_params, other_params) =
            self.split_associated_ty_parameters(parameters, &**associated_ty_data);
        (associated_ty_data.clone(), trait_params, other_params)
    }

    /// Given a projection `<P0 as Trait<P1..Pn>>::Item<Pn..Pm>`,
    /// returns the trait parameters `[P0..Pn]` (see
    /// `split_projection`).
    fn trait_parameters_from_projection<'p>(
        &self,
        projection: &'p ProjectionTy<I>,
    ) -> &'p [GenericArg<I>] {
        let (_, trait_params, _) = self.split_projection(projection);
        trait_params
    }

    /// Given a projection `<P0 as Trait<P1..Pn>>::Item<Pn..Pm>`,
    /// returns the trait parameters `[P0..Pn]` (see
    /// `split_projection`).
    fn trait_ref_from_projection(&self, projection: &ProjectionTy<I>) -> TraitRef<I> {
        let interner = self.interner();
        let (associated_ty_data, trait_params, _) = self.split_projection(projection);
        TraitRef {
            trait_id: associated_ty_data.trait_id,
            substitution: Substitution::from_iter(interner, trait_params),
        }
    }

    /// Given the full set of parameters (or binders) for an
    /// associated type *value* (which appears in an impl), splits
    /// them into the substitutions for the *impl* and those for the
    /// *associated type*.
    ///
    /// # Example
    ///
    /// ```ignore (example)
    /// impl<T> Iterable for Vec<T> {
    ///     type Iter<'a>;
    /// }
    /// ```
    ///
    /// in this example, the full set of parameters would be `['x,
    /// Y]`, where `'x` is the value for `'a` and `Y` is the value for
    /// `T`.
    ///
    /// # Returns
    ///
    /// Returns the pair of:
    ///
    /// * the parameters for the impl (`[Y]`, in our example)
    /// * the parameters for the associated type value (`['a]`, in our example)
    fn split_associated_ty_value_parameters<'p, P>(
        &self,
        parameters: &'p [P],
        associated_ty_value: &AssociatedTyValue<I>,
    ) -> (&'p [P], &'p [P]) {
        let interner = self.interner();
        let impl_datum = self.impl_datum(associated_ty_value.impl_id);
        let impl_params_len = impl_datum.binders.len(interner);
        assert!(parameters.len() >= impl_params_len);

        // the impl parameters are a suffix
        //
        // [ P0..Pn, Pn...Pm ]
        //           ^^^^^^^ impl parameters
        let split_point = parameters.len() - impl_params_len;
        let (other_params, impl_params) = parameters.split_at(split_point);
        (impl_params, other_params)
    }

    /// Given the full set of parameters for an associated type *value*
    /// (which appears in an impl), returns the trait reference
    /// and projection that are being satisfied by that value.
    ///
    /// # Example
    ///
    /// ```ignore (example)
    /// impl<T> Iterable for Vec<T> {
    ///     type Iter<'a>;
    /// }
    /// ```
    ///
    /// Here we expect the full set of parameters for `Iter`, which
    /// would be `['x, Y]`, where `'x` is the value for `'a` and `Y`
    /// is the value for `T`.
    ///
    /// Returns the pair of:
    ///
    /// * the parameters that apply to the impl (`Y`, in our example)
    /// * the projection `<Vec<Y> as Iterable>::Iter<'x>`
    #[instrument(level = "debug", skip(self, associated_ty_value))]
    fn impl_parameters_and_projection_from_associated_ty_value<'p>(
        &self,
        parameters: &'p [GenericArg<I>],
        associated_ty_value: &AssociatedTyValue<I>,
    ) -> (&'p [GenericArg<I>], ProjectionTy<I>) {
        let interner = self.interner();

        let impl_datum = self.impl_datum(associated_ty_value.impl_id);

        // Get the trait ref from the impl -- so in our example above
        // this would be `Box<!T>: Foo`.
        let (impl_parameters, atv_parameters) =
            self.split_associated_ty_value_parameters(parameters, associated_ty_value);
        let trait_ref = {
            let opaque_ty_ref = impl_datum.binders.map_ref(|b| &b.trait_ref).cloned();
            debug!(?opaque_ty_ref);
            opaque_ty_ref.substitute(interner, impl_parameters)
        };

        // Create the parameters for the projection -- in our example
        // above, this would be `['!a, Box<!T>]`, corresponding to
        // `<Box<!T> as Foo>::Item<'!a>`
        let projection_substitution = Substitution::from_iter(
            interner,
            atv_parameters
                .iter()
                .chain(trait_ref.substitution.iter(interner))
                .cloned(),
        );

        let projection = ProjectionTy {
            associated_ty_id: associated_ty_value.associated_ty_id,
            substitution: projection_substitution,
        };

        debug!(?impl_parameters, ?trait_ref, ?projection);

        (impl_parameters, projection)
    }

    /// Given the full set of parameters (or binders) for an
    /// associated type datum (the one appearing in a trait), splits
    /// them into the parameters for the *trait* and those for the
    /// *associated type*.
    ///
    /// # Example
    ///
    /// ```ignore (example)
    /// trait Foo<T> {
    ///     type Assoc<'a>;
    /// }
    /// ```
    ///
    /// in this example, the full set of parameters would be `['x,
    /// Y]`, where `'x` is the value for `'a` and `Y` is the value for
    /// `T`.
    ///
    /// # Returns
    ///
    /// Returns the tuple of:
    ///
    /// * the parameters for the impl (`[Y]`, in our example)
    /// * the parameters for the associated type value (`['a]`, in our example)
    fn split_associated_ty_parameters<'p, P>(
        &self,
        parameters: &'p [P],
        associated_ty_datum: &AssociatedTyDatum<I>,
    ) -> (&'p [P], &'p [P]) {
        let trait_datum = &self.trait_datum(associated_ty_datum.trait_id);
        let trait_num_params = trait_datum.binders.len(self.interner());
        let split_point = parameters.len() - trait_num_params;
        let (other_params, trait_params) = parameters.split_at(split_point);
        (trait_params, other_params)
    }
}

impl<DB: RustIrDatabase<I> + ?Sized, I: Interner> Split<I> for DB {}