1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
|
use super::var::*;
use super::*;
use crate::debug_span;
use chalk_ir::cast::Cast;
use chalk_ir::fold::{FallibleTypeFolder, TypeFoldable};
use chalk_ir::interner::{HasInterner, Interner};
use chalk_ir::zip::{Zip, Zipper};
use chalk_ir::UnificationDatabase;
use std::fmt::Debug;
use tracing::{debug, instrument};
impl<I: Interner> InferenceTable<I> {
pub fn relate<T>(
&mut self,
interner: I,
db: &dyn UnificationDatabase<I>,
environment: &Environment<I>,
variance: Variance,
a: &T,
b: &T,
) -> Fallible<RelationResult<I>>
where
T: ?Sized + Zip<I>,
{
let snapshot = self.snapshot();
match Unifier::new(interner, db, self, environment).relate(variance, a, b) {
Ok(r) => {
self.commit(snapshot);
Ok(r)
}
Err(e) => {
self.rollback_to(snapshot);
Err(e)
}
}
}
}
struct Unifier<'t, I: Interner> {
table: &'t mut InferenceTable<I>,
environment: &'t Environment<I>,
goals: Vec<InEnvironment<Goal<I>>>,
interner: I,
db: &'t dyn UnificationDatabase<I>,
}
#[derive(Debug)]
pub struct RelationResult<I: Interner> {
pub goals: Vec<InEnvironment<Goal<I>>>,
}
impl<'t, I: Interner> Unifier<'t, I> {
fn new(
interner: I,
db: &'t dyn UnificationDatabase<I>,
table: &'t mut InferenceTable<I>,
environment: &'t Environment<I>,
) -> Self {
Unifier {
environment,
table,
goals: vec![],
interner,
db,
}
}
/// The main entry point for the `Unifier` type and really the
/// only type meant to be called externally. Performs a
/// relation of `a` and `b` and returns the Unification Result.
#[instrument(level = "debug", skip(self))]
fn relate<T>(mut self, variance: Variance, a: &T, b: &T) -> Fallible<RelationResult<I>>
where
T: ?Sized + Zip<I>,
{
Zip::zip_with(&mut self, variance, a, b)?;
let interner = self.interner();
let mut goals = self.goals;
let table = self.table;
// Sometimes we'll produce a lifetime outlives goal which we later solve by unification
// Technically, these *will* get canonicalized to the same bound var and so that will end up
// as a goal like `^0.0 <: ^0.0`, which is trivially true. But, we remove those *here*, which
// might help caching.
goals.retain(|g| match g.goal.data(interner) {
GoalData::SubtypeGoal(SubtypeGoal { a, b }) => {
let n_a = table.ty_root(interner, a);
let n_b = table.ty_root(interner, b);
let a = n_a.as_ref().unwrap_or(a);
let b = n_b.as_ref().unwrap_or(b);
a != b
}
_ => true,
});
Ok(RelationResult { goals })
}
/// Relate `a`, `b` with the variance such that if `variance = Covariant`, `a` is
/// a subtype of `b`.
fn relate_ty_ty(&mut self, variance: Variance, a: &Ty<I>, b: &Ty<I>) -> Fallible<()> {
let interner = self.interner;
let n_a = self.table.normalize_ty_shallow(interner, a);
let n_b = self.table.normalize_ty_shallow(interner, b);
let a = n_a.as_ref().unwrap_or(a);
let b = n_b.as_ref().unwrap_or(b);
debug_span!("relate_ty_ty", ?variance, ?a, ?b);
if a.kind(interner) == b.kind(interner) {
return Ok(());
}
match (a.kind(interner), b.kind(interner)) {
// Relating two inference variables:
// First, if either variable is a float or int kind, then we always
// unify if they match. This is because float and ints don't have
// subtype relationships.
// If both kinds are general then:
// If `Invariant`, unify them in the underlying ena table.
// If `Covariant` or `Contravariant`, push `SubtypeGoal`
(&TyKind::InferenceVar(var1, kind1), &TyKind::InferenceVar(var2, kind2)) => {
if matches!(kind1, TyVariableKind::General)
&& matches!(kind2, TyVariableKind::General)
{
// Both variable kinds are general; so unify if invariant, otherwise push subtype goal
match variance {
Variance::Invariant => self.unify_var_var(var1, var2),
Variance::Covariant => {
self.push_subtype_goal(a.clone(), b.clone());
Ok(())
}
Variance::Contravariant => {
self.push_subtype_goal(b.clone(), a.clone());
Ok(())
}
}
} else if kind1 == kind2 {
// At least one kind is not general, but they match, so unify
self.unify_var_var(var1, var2)
} else if kind1 == TyVariableKind::General {
// First kind is general, second isn't, unify
self.unify_general_var_specific_ty(var1, b.clone())
} else if kind2 == TyVariableKind::General {
// Second kind is general, first isn't, unify
self.unify_general_var_specific_ty(var2, a.clone())
} else {
debug!(
"Tried to unify mis-matching inference variables: {:?} and {:?}",
kind1, kind2
);
Err(NoSolution)
}
}
// Unifying `forall<X> { T }` with some other forall type `forall<X> { U }`
(&TyKind::Function(ref fn1), &TyKind::Function(ref fn2)) => {
if fn1.sig == fn2.sig {
Zip::zip_with(
self,
variance,
&fn1.clone().into_binders(interner),
&fn2.clone().into_binders(interner),
)
} else {
Err(NoSolution)
}
}
(&TyKind::Placeholder(ref p1), &TyKind::Placeholder(ref p2)) => {
Zip::zip_with(self, variance, p1, p2)
}
// Unifying two dyn is possible if they have the same bounds.
(&TyKind::Dyn(ref qwc1), &TyKind::Dyn(ref qwc2)) => {
Zip::zip_with(self, variance, qwc1, qwc2)
}
(TyKind::BoundVar(_), _) | (_, TyKind::BoundVar(_)) => panic!(
"unification encountered bound variable: a={:?} b={:?}",
a, b
),
// Unifying an alias type with some other type `U`.
(_, &TyKind::Alias(ref alias)) => self.relate_alias_ty(variance.invert(), alias, a),
(&TyKind::Alias(ref alias), _) => self.relate_alias_ty(variance, alias, b),
(&TyKind::InferenceVar(var, kind), ty_data) => {
let ty = ty_data.clone().intern(interner);
self.relate_var_ty(variance, var, kind, &ty)
}
(ty_data, &TyKind::InferenceVar(var, kind)) => {
// We need to invert the variance if inference var is `b` because we pass it in
// as `a` to relate_var_ty
let ty = ty_data.clone().intern(interner);
self.relate_var_ty(variance.invert(), var, kind, &ty)
}
// This would correspond to unifying a `fn` type with a non-fn
// type in Rust; error.
(&TyKind::Function(_), _) | (_, &TyKind::Function(_)) => Err(NoSolution),
// Cannot unify (e.g.) some struct type `Foo` and a placeholder like `T`
(_, &TyKind::Placeholder(_)) | (&TyKind::Placeholder(_), _) => Err(NoSolution),
// Cannot unify `dyn Trait` with things like structs or placeholders
(_, &TyKind::Dyn(_)) | (&TyKind::Dyn(_), _) => Err(NoSolution),
(TyKind::Adt(id_a, substitution_a), TyKind::Adt(id_b, substitution_b)) => {
if id_a != id_b {
return Err(NoSolution);
}
self.zip_substs(
variance,
Some(self.unification_database().adt_variance(*id_a)),
substitution_a.as_slice(interner),
substitution_b.as_slice(interner),
)
}
(
TyKind::AssociatedType(id_a, substitution_a),
TyKind::AssociatedType(id_b, substitution_b),
) => {
if id_a != id_b {
return Err(NoSolution);
}
self.zip_substs(
variance,
None, // TODO: AssociatedType variances?
substitution_a.as_slice(interner),
substitution_b.as_slice(interner),
)
}
(TyKind::Scalar(scalar_a), TyKind::Scalar(scalar_b)) => {
Zip::zip_with(self, variance, scalar_a, scalar_b)
}
(TyKind::Str, TyKind::Str) => Ok(()),
(TyKind::Tuple(arity_a, substitution_a), TyKind::Tuple(arity_b, substitution_b)) => {
if arity_a != arity_b {
return Err(NoSolution);
}
self.zip_substs(
variance,
Some(Variances::from_iter(
self.interner,
std::iter::repeat(Variance::Covariant).take(*arity_a),
)),
substitution_a.as_slice(interner),
substitution_b.as_slice(interner),
)
}
(
TyKind::OpaqueType(id_a, substitution_a),
TyKind::OpaqueType(id_b, substitution_b),
) => {
if id_a != id_b {
return Err(NoSolution);
}
self.zip_substs(
variance,
None,
substitution_a.as_slice(interner),
substitution_b.as_slice(interner),
)
}
(TyKind::Slice(ty_a), TyKind::Slice(ty_b)) => Zip::zip_with(self, variance, ty_a, ty_b),
(TyKind::FnDef(id_a, substitution_a), TyKind::FnDef(id_b, substitution_b)) => {
if id_a != id_b {
return Err(NoSolution);
}
self.zip_substs(
variance,
Some(self.unification_database().fn_def_variance(*id_a)),
substitution_a.as_slice(interner),
substitution_b.as_slice(interner),
)
}
(
TyKind::Ref(mutability_a, lifetime_a, ty_a),
TyKind::Ref(mutability_b, lifetime_b, ty_b),
) => {
if mutability_a != mutability_b {
return Err(NoSolution);
}
// The lifetime is `Contravariant`
Zip::zip_with(
self,
variance.xform(Variance::Contravariant),
lifetime_a,
lifetime_b,
)?;
// The type is `Covariant` when not mut, `Invariant` otherwise
let output_variance = match mutability_a {
Mutability::Not => Variance::Covariant,
Mutability::Mut => Variance::Invariant,
};
Zip::zip_with(self, variance.xform(output_variance), ty_a, ty_b)
}
(TyKind::Raw(mutability_a, ty_a), TyKind::Raw(mutability_b, ty_b)) => {
if mutability_a != mutability_b {
return Err(NoSolution);
}
let ty_variance = match mutability_a {
Mutability::Not => Variance::Covariant,
Mutability::Mut => Variance::Invariant,
};
Zip::zip_with(self, variance.xform(ty_variance), ty_a, ty_b)
}
(TyKind::Never, TyKind::Never) => Ok(()),
(TyKind::Array(ty_a, const_a), TyKind::Array(ty_b, const_b)) => {
Zip::zip_with(self, variance, ty_a, ty_b)?;
Zip::zip_with(self, variance, const_a, const_b)
}
(TyKind::Closure(id_a, substitution_a), TyKind::Closure(id_b, substitution_b)) => {
if id_a != id_b {
return Err(NoSolution);
}
self.zip_substs(
variance,
None,
substitution_a.as_slice(interner),
substitution_b.as_slice(interner),
)
}
(TyKind::Generator(id_a, substitution_a), TyKind::Generator(id_b, substitution_b)) => {
if id_a != id_b {
return Err(NoSolution);
}
self.zip_substs(
variance,
None,
substitution_a.as_slice(interner),
substitution_b.as_slice(interner),
)
}
(
TyKind::GeneratorWitness(id_a, substitution_a),
TyKind::GeneratorWitness(id_b, substitution_b),
) => {
if id_a != id_b {
return Err(NoSolution);
}
self.zip_substs(
variance,
None,
substitution_a.as_slice(interner),
substitution_b.as_slice(interner),
)
}
(TyKind::Foreign(id_a), TyKind::Foreign(id_b)) => {
Zip::zip_with(self, variance, id_a, id_b)
}
(TyKind::Error, TyKind::Error) => Ok(()),
(_, _) => Err(NoSolution),
}
}
/// Unify two inference variables
#[instrument(level = "debug", skip(self))]
fn unify_var_var(&mut self, a: InferenceVar, b: InferenceVar) -> Fallible<()> {
let var1 = EnaVariable::from(a);
let var2 = EnaVariable::from(b);
self.table
.unify
.unify_var_var(var1, var2)
.expect("unification of two unbound variables cannot fail");
Ok(())
}
/// Unify a general inference variable with a specific inference variable
/// (type kind is not `General`). For example, unify a `TyVariableKind::General`
/// inference variable with a `TyVariableKind::Integer` variable, resulting in the
/// general inference variable narrowing to an integer variable.
#[instrument(level = "debug", skip(self))]
fn unify_general_var_specific_ty(
&mut self,
general_var: InferenceVar,
specific_ty: Ty<I>,
) -> Fallible<()> {
self.table
.unify
.unify_var_value(
general_var,
InferenceValue::from_ty(self.interner, specific_ty),
)
.unwrap();
Ok(())
}
#[instrument(level = "debug", skip(self))]
fn relate_binders<'a, T>(
&mut self,
variance: Variance,
a: &Binders<T>,
b: &Binders<T>,
) -> Fallible<()>
where
T: Clone + TypeFoldable<I> + HasInterner<Interner = I> + Zip<I>,
't: 'a,
{
// for<'a...> T == for<'b...> U
//
// if:
//
// for<'a...> exists<'b...> T == U &&
// for<'b...> exists<'a...> T == U
// for<'a...> T <: for<'b...> U
//
// if
//
// for<'b...> exists<'a...> T <: U
let interner = self.interner;
if let Variance::Invariant | Variance::Contravariant = variance {
let a_universal = self
.table
.instantiate_binders_universally(interner, a.clone());
let b_existential = self
.table
.instantiate_binders_existentially(interner, b.clone());
Zip::zip_with(self, Variance::Contravariant, &a_universal, &b_existential)?;
}
if let Variance::Invariant | Variance::Covariant = variance {
let b_universal = self
.table
.instantiate_binders_universally(interner, b.clone());
let a_existential = self
.table
.instantiate_binders_existentially(interner, a.clone());
Zip::zip_with(self, Variance::Covariant, &a_existential, &b_universal)?;
}
Ok(())
}
/// Relate an alias like `<T as Trait>::Item` or `impl Trait` with some other
/// type `ty`. If the variance is `Invariant`, creates a goal like
///
/// ```notrust
/// AliasEq(<T as Trait>::Item = U) // associated type projection
/// AliasEq(impl Trait = U) // impl trait
/// ```
/// Otherwise, this creates a new variable `?X`, creates a goal like
/// ```notrust
/// AliasEq(Alias = ?X)
/// ```
/// and relates `?X` and `ty`.
#[instrument(level = "debug", skip(self))]
fn relate_alias_ty(
&mut self,
variance: Variance,
alias: &AliasTy<I>,
ty: &Ty<I>,
) -> Fallible<()> {
let interner = self.interner;
match variance {
Variance::Invariant => {
self.goals.push(InEnvironment::new(
self.environment,
AliasEq {
alias: alias.clone(),
ty: ty.clone(),
}
.cast(interner),
));
Ok(())
}
Variance::Covariant | Variance::Contravariant => {
let var = self
.table
.new_variable(UniverseIndex::root())
.to_ty(interner);
self.goals.push(InEnvironment::new(
self.environment,
AliasEq {
alias: alias.clone(),
ty: var.clone(),
}
.cast(interner),
));
self.relate_ty_ty(variance, &var, ty)
}
}
}
#[instrument(level = "debug", skip(self))]
fn generalize_ty(
&mut self,
ty: &Ty<I>,
universe_index: UniverseIndex,
variance: Variance,
) -> Ty<I> {
let interner = self.interner;
match ty.kind(interner) {
TyKind::Adt(id, substitution) => {
let variances = if matches!(variance, Variance::Invariant) {
None
} else {
Some(self.unification_database().adt_variance(*id))
};
let get_variance = |i| {
variances
.as_ref()
.map(|v| v.as_slice(interner)[i])
.unwrap_or(Variance::Invariant)
};
TyKind::Adt(
*id,
self.generalize_substitution(substitution, universe_index, get_variance),
)
.intern(interner)
}
TyKind::AssociatedType(id, substitution) => TyKind::AssociatedType(
*id,
self.generalize_substitution(substitution, universe_index, |_| variance),
)
.intern(interner),
TyKind::Scalar(scalar) => TyKind::Scalar(*scalar).intern(interner),
TyKind::Str => TyKind::Str.intern(interner),
TyKind::Tuple(arity, substitution) => TyKind::Tuple(
*arity,
self.generalize_substitution(substitution, universe_index, |_| variance),
)
.intern(interner),
TyKind::OpaqueType(id, substitution) => TyKind::OpaqueType(
*id,
self.generalize_substitution(substitution, universe_index, |_| variance),
)
.intern(interner),
TyKind::Slice(ty) => {
TyKind::Slice(self.generalize_ty(ty, universe_index, variance)).intern(interner)
}
TyKind::FnDef(id, substitution) => {
let variances = if matches!(variance, Variance::Invariant) {
None
} else {
Some(self.unification_database().fn_def_variance(*id))
};
let get_variance = |i| {
variances
.as_ref()
.map(|v| v.as_slice(interner)[i])
.unwrap_or(Variance::Invariant)
};
TyKind::FnDef(
*id,
self.generalize_substitution(substitution, universe_index, get_variance),
)
.intern(interner)
}
TyKind::Ref(mutability, lifetime, ty) => {
let lifetime_variance = variance.xform(Variance::Contravariant);
let ty_variance = match mutability {
Mutability::Not => Variance::Covariant,
Mutability::Mut => Variance::Invariant,
};
TyKind::Ref(
*mutability,
self.generalize_lifetime(lifetime, universe_index, lifetime_variance),
self.generalize_ty(ty, universe_index, ty_variance),
)
.intern(interner)
}
TyKind::Raw(mutability, ty) => {
let ty_variance = match mutability {
Mutability::Not => Variance::Covariant,
Mutability::Mut => Variance::Invariant,
};
TyKind::Raw(
*mutability,
self.generalize_ty(ty, universe_index, ty_variance),
)
.intern(interner)
}
TyKind::Never => TyKind::Never.intern(interner),
TyKind::Array(ty, const_) => TyKind::Array(
self.generalize_ty(ty, universe_index, variance),
self.generalize_const(const_, universe_index),
)
.intern(interner),
TyKind::Closure(id, substitution) => TyKind::Closure(
*id,
self.generalize_substitution(substitution, universe_index, |_| variance),
)
.intern(interner),
TyKind::Generator(id, substitution) => TyKind::Generator(
*id,
self.generalize_substitution(substitution, universe_index, |_| variance),
)
.intern(interner),
TyKind::GeneratorWitness(id, substitution) => TyKind::GeneratorWitness(
*id,
self.generalize_substitution(substitution, universe_index, |_| variance),
)
.intern(interner),
TyKind::Foreign(id) => TyKind::Foreign(*id).intern(interner),
TyKind::Error => TyKind::Error.intern(interner),
TyKind::Dyn(dyn_ty) => {
let DynTy { bounds, lifetime } = dyn_ty;
let lifetime = self.generalize_lifetime(
lifetime,
universe_index,
variance.xform(Variance::Contravariant),
);
let bounds = bounds.map_ref(|value| {
let iter = value.iter(interner).map(|sub_var| {
sub_var.map_ref(|clause| {
match clause {
WhereClause::Implemented(trait_ref) => {
let TraitRef {
ref substitution,
trait_id,
} = *trait_ref;
let substitution = self.generalize_substitution_skip_self(
substitution,
universe_index,
|_| Some(variance),
);
WhereClause::Implemented(TraitRef {
substitution,
trait_id,
})
}
WhereClause::AliasEq(alias_eq) => {
let AliasEq { alias, ty: _ } = alias_eq;
let alias = match alias {
AliasTy::Opaque(opaque_ty) => {
let OpaqueTy {
ref substitution,
opaque_ty_id,
} = *opaque_ty;
let substitution = self.generalize_substitution(
substitution,
universe_index,
|_| variance,
);
AliasTy::Opaque(OpaqueTy {
substitution,
opaque_ty_id,
})
}
AliasTy::Projection(projection_ty) => {
let ProjectionTy {
ref substitution,
associated_ty_id,
} = *projection_ty;
// TODO: We should be skipping "self", which
// would be the first element of
// "trait_params" if we had a
// `RustIrDatabase` to call
// `split_projection` on...
// let (assoc_ty_datum, trait_params, assoc_type_params) = s.db().split_projection(&self);
let substitution = self.generalize_substitution(
substitution,
universe_index,
|_| variance,
);
AliasTy::Projection(ProjectionTy {
substitution,
associated_ty_id,
})
}
};
let ty =
self.table.new_variable(universe_index).to_ty(interner);
WhereClause::AliasEq(AliasEq { alias, ty })
}
WhereClause::TypeOutlives(_) => {
let lifetime_var = self.table.new_variable(universe_index);
let lifetime = lifetime_var.to_lifetime(interner);
let ty_var = self.table.new_variable(universe_index);
let ty = ty_var.to_ty(interner);
WhereClause::TypeOutlives(TypeOutlives { ty, lifetime })
}
WhereClause::LifetimeOutlives(_) => {
unreachable!("dyn Trait never contains LifetimeOutlive bounds")
}
}
})
});
QuantifiedWhereClauses::from_iter(interner, iter)
});
TyKind::Dyn(DynTy { bounds, lifetime }).intern(interner)
}
TyKind::Function(fn_ptr) => {
let FnPointer {
num_binders,
sig,
ref substitution,
} = *fn_ptr;
let len = substitution.0.len(interner);
let vars = substitution.0.iter(interner).enumerate().map(|(i, var)| {
if i < len - 1 {
self.generalize_generic_var(
var,
universe_index,
variance.xform(Variance::Contravariant),
)
} else {
self.generalize_generic_var(
substitution.0.as_slice(interner).last().unwrap(),
universe_index,
variance,
)
}
});
let substitution = FnSubst(Substitution::from_iter(interner, vars));
TyKind::Function(FnPointer {
num_binders,
sig,
substitution,
})
.intern(interner)
}
TyKind::Placeholder(_) | TyKind::BoundVar(_) => {
debug!("just generalizing to the ty itself: {:?}", ty);
// BoundVar and PlaceHolder have no internal values to be
// generic over, so we just relate directly to it
ty.clone()
}
TyKind::Alias(_) => {
let ena_var = self.table.new_variable(universe_index);
ena_var.to_ty(interner)
}
TyKind::InferenceVar(_var, kind) => {
if matches!(kind, TyVariableKind::Integer | TyVariableKind::Float) {
ty.clone()
} else if let Some(ty) = self.table.normalize_ty_shallow(interner, ty) {
self.generalize_ty(&ty, universe_index, variance)
} else if matches!(variance, Variance::Invariant) {
ty.clone()
} else {
let ena_var = self.table.new_variable(universe_index);
ena_var.to_ty(interner)
}
}
}
}
#[instrument(level = "debug", skip(self))]
fn generalize_lifetime(
&mut self,
lifetime: &Lifetime<I>,
universe_index: UniverseIndex,
variance: Variance,
) -> Lifetime<I> {
if matches!(lifetime.data(self.interner), LifetimeData::BoundVar(_))
|| matches!(variance, Variance::Invariant)
{
lifetime.clone()
} else {
self.table
.new_variable(universe_index)
.to_lifetime(self.interner)
}
}
#[instrument(level = "debug", skip(self))]
fn generalize_const(&mut self, const_: &Const<I>, universe_index: UniverseIndex) -> Const<I> {
let data = const_.data(self.interner);
if matches!(data.value, ConstValue::BoundVar(_)) {
const_.clone()
} else {
self.table
.new_variable(universe_index)
.to_const(self.interner, data.ty.clone())
}
}
fn generalize_generic_var(
&mut self,
sub_var: &GenericArg<I>,
universe_index: UniverseIndex,
variance: Variance,
) -> GenericArg<I> {
let interner = self.interner;
(match sub_var.data(interner) {
GenericArgData::Ty(ty) => {
GenericArgData::Ty(self.generalize_ty(ty, universe_index, variance))
}
GenericArgData::Lifetime(lifetime) => GenericArgData::Lifetime(
self.generalize_lifetime(lifetime, universe_index, variance),
),
GenericArgData::Const(const_value) => {
GenericArgData::Const(self.generalize_const(const_value, universe_index))
}
})
.intern(interner)
}
/// Generalizes all but the first
#[instrument(level = "debug", skip(self, get_variance))]
fn generalize_substitution_skip_self<F: Fn(usize) -> Option<Variance>>(
&mut self,
substitution: &Substitution<I>,
universe_index: UniverseIndex,
get_variance: F,
) -> Substitution<I> {
let interner = self.interner;
let vars = substitution.iter(interner).enumerate().map(|(i, sub_var)| {
if i == 0 {
sub_var.clone()
} else {
let variance = get_variance(i).unwrap_or(Variance::Invariant);
self.generalize_generic_var(sub_var, universe_index, variance)
}
});
Substitution::from_iter(interner, vars)
}
#[instrument(level = "debug", skip(self, get_variance))]
fn generalize_substitution<F: Fn(usize) -> Variance>(
&mut self,
substitution: &Substitution<I>,
universe_index: UniverseIndex,
get_variance: F,
) -> Substitution<I> {
let interner = self.interner;
let vars = substitution.iter(interner).enumerate().map(|(i, sub_var)| {
let variance = get_variance(i);
self.generalize_generic_var(sub_var, universe_index, variance)
});
Substitution::from_iter(interner, vars)
}
/// Unify an inference variable `var` with some non-inference
/// variable `ty`, just bind `var` to `ty`. But we must enforce two conditions:
///
/// - `var` does not appear inside of `ty` (the standard `OccursCheck`)
/// - `ty` does not reference anything in a lifetime that could not be named in `var`
/// (the extended `OccursCheck` created to handle universes)
#[instrument(level = "debug", skip(self))]
fn relate_var_ty(
&mut self,
variance: Variance,
var: InferenceVar,
var_kind: TyVariableKind,
ty: &Ty<I>,
) -> Fallible<()> {
let interner = self.interner;
match (var_kind, ty.is_integer(interner), ty.is_float(interner)) {
// General inference variables can unify with any type
(TyVariableKind::General, _, _)
// Integer inference variables can only unify with integer types
| (TyVariableKind::Integer, true, _)
// Float inference variables can only unify with float types
| (TyVariableKind::Float, _, true) => {
},
_ => return Err(NoSolution),
}
let var = EnaVariable::from(var);
// Determine the universe index associated with this
// variable. This is basically a count of the number of
// `forall` binders that had been introduced at the point
// this variable was created -- though it may change over time
// as the variable is unified.
let universe_index = self.table.universe_of_unbound_var(var);
// let universe_index = self.table.max_universe();
debug!("relate_var_ty: universe index of var: {:?}", universe_index);
debug!("trying fold_with on {:?}", ty);
let ty1 = ty
.clone()
.try_fold_with(
&mut OccursCheck::new(self, var, universe_index),
DebruijnIndex::INNERMOST,
)
.map_err(|e| {
debug!("failed to fold {:?}", ty);
e
})?;
// "Generalize" types. This ensures that we aren't accidentally forcing
// too much onto `var`. Instead of directly setting `var` equal to `ty`,
// we just take the outermost structure we _know_ `var` holds, and then
// apply that to `ty`. This involves creating new inference vars for
// everything inside `var`, then calling `relate_ty_ty` to relate those
// inference vars to the things they generalized with the correct
// variance.
// The main problem this solves is that lifetime relationships are
// relationships, not just eq ones. So when solving &'a u32 <: U,
// generalizing we would end up with U = &'a u32. Instead, we want
// U = &'b u32, with a lifetime constraint 'a <: 'b. This matters
// especially when solving multiple constraints - for example, &'a u32
// <: U, &'b u32 <: U (where without generalizing, we'd end up with 'a
// <: 'b, where we really want 'a <: 'c, 'b <: 'c for some 'c).
// Example operation: consider `ty` as `&'x SomeType`. To generalize
// this, we create two new vars `'0` and `1`. Then we relate `var` with
// `&'0 1` and `&'0 1` with `&'x SomeType`. The second relation will
// recurse, and we'll end up relating `'0` with `'x` and `1` with `SomeType`.
let generalized_val = self.generalize_ty(&ty1, universe_index, variance);
debug!("var {:?} generalized to {:?}", var, generalized_val);
self.table
.unify
.unify_var_value(
var,
InferenceValue::from_ty(interner, generalized_val.clone()),
)
.unwrap();
debug!("var {:?} set to {:?}", var, generalized_val);
self.relate_ty_ty(variance, &generalized_val, &ty1)?;
debug!(
"generalized version {:?} related to original {:?}",
generalized_val, ty1
);
Ok(())
}
fn relate_lifetime_lifetime(
&mut self,
variance: Variance,
a: &Lifetime<I>,
b: &Lifetime<I>,
) -> Fallible<()> {
let interner = self.interner;
let n_a = self.table.normalize_lifetime_shallow(interner, a);
let n_b = self.table.normalize_lifetime_shallow(interner, b);
let a = n_a.as_ref().unwrap_or(a);
let b = n_b.as_ref().unwrap_or(b);
debug_span!("relate_lifetime_lifetime", ?variance, ?a, ?b);
match (a.data(interner), b.data(interner)) {
(&LifetimeData::InferenceVar(var_a), &LifetimeData::InferenceVar(var_b)) => {
let var_a = EnaVariable::from(var_a);
let var_b = EnaVariable::from(var_b);
debug!(?var_a, ?var_b);
self.table.unify.unify_var_var(var_a, var_b).unwrap();
Ok(())
}
(
&LifetimeData::InferenceVar(a_var),
&LifetimeData::Placeholder(PlaceholderIndex { ui, .. }),
) => self.unify_lifetime_var(variance, a_var, b, ui),
(
&LifetimeData::Placeholder(PlaceholderIndex { ui, .. }),
&LifetimeData::InferenceVar(b_var),
) => self.unify_lifetime_var(variance.invert(), b_var, a, ui),
(&LifetimeData::InferenceVar(a_var), &LifetimeData::Erased)
| (&LifetimeData::InferenceVar(a_var), &LifetimeData::Static) => {
self.unify_lifetime_var(variance, a_var, b, UniverseIndex::root())
}
(&LifetimeData::Erased, &LifetimeData::InferenceVar(b_var))
| (&LifetimeData::Static, &LifetimeData::InferenceVar(b_var)) => {
self.unify_lifetime_var(variance.invert(), b_var, a, UniverseIndex::root())
}
(&LifetimeData::Static, &LifetimeData::Static)
| (&LifetimeData::Erased, &LifetimeData::Erased) => Ok(()),
(&LifetimeData::Static, &LifetimeData::Placeholder(_))
| (&LifetimeData::Static, &LifetimeData::Erased)
| (&LifetimeData::Placeholder(_), &LifetimeData::Static)
| (&LifetimeData::Placeholder(_), &LifetimeData::Placeholder(_))
| (&LifetimeData::Placeholder(_), &LifetimeData::Erased)
| (&LifetimeData::Erased, &LifetimeData::Static)
| (&LifetimeData::Erased, &LifetimeData::Placeholder(_)) => {
if a != b {
self.push_lifetime_outlives_goals(variance, a.clone(), b.clone());
Ok(())
} else {
Ok(())
}
}
(LifetimeData::BoundVar(_), _) | (_, LifetimeData::BoundVar(_)) => panic!(
"unification encountered bound variable: a={:?} b={:?}",
a, b
),
(LifetimeData::Phantom(..), _) | (_, LifetimeData::Phantom(..)) => unreachable!(),
}
}
#[instrument(level = "debug", skip(self))]
fn unify_lifetime_var(
&mut self,
variance: Variance,
var: InferenceVar,
value: &Lifetime<I>,
value_ui: UniverseIndex,
) -> Fallible<()> {
let var = EnaVariable::from(var);
let var_ui = self.table.universe_of_unbound_var(var);
if var_ui.can_see(value_ui) && matches!(variance, Variance::Invariant) {
debug!("{:?} in {:?} can see {:?}; unifying", var, var_ui, value_ui);
self.table
.unify
.unify_var_value(
var,
InferenceValue::from_lifetime(self.interner, value.clone()),
)
.unwrap();
Ok(())
} else {
debug!(
"{:?} in {:?} cannot see {:?}; pushing constraint",
var, var_ui, value_ui
);
self.push_lifetime_outlives_goals(
variance,
var.to_lifetime(self.interner),
value.clone(),
);
Ok(())
}
}
fn relate_const_const<'a>(
&mut self,
variance: Variance,
a: &'a Const<I>,
b: &'a Const<I>,
) -> Fallible<()> {
let interner = self.interner;
let n_a = self.table.normalize_const_shallow(interner, a);
let n_b = self.table.normalize_const_shallow(interner, b);
let a = n_a.as_ref().unwrap_or(a);
let b = n_b.as_ref().unwrap_or(b);
debug_span!("relate_const_const", ?variance, ?a, ?b);
let ConstData {
ty: a_ty,
value: a_val,
} = a.data(interner);
let ConstData {
ty: b_ty,
value: b_val,
} = b.data(interner);
self.relate_ty_ty(variance, a_ty, b_ty)?;
match (a_val, b_val) {
// Unifying two inference variables: unify them in the underlying
// ena table.
(&ConstValue::InferenceVar(var1), &ConstValue::InferenceVar(var2)) => {
debug!(?var1, ?var2, "relate_ty_ty");
let var1 = EnaVariable::from(var1);
let var2 = EnaVariable::from(var2);
self.table
.unify
.unify_var_var(var1, var2)
.expect("unification of two unbound variables cannot fail");
Ok(())
}
// Unifying an inference variables with a non-inference variable.
(&ConstValue::InferenceVar(var), &ConstValue::Concrete(_))
| (&ConstValue::InferenceVar(var), &ConstValue::Placeholder(_)) => {
debug!(?var, ty=?b, "unify_var_ty");
self.unify_var_const(var, b)
}
(&ConstValue::Concrete(_), &ConstValue::InferenceVar(var))
| (&ConstValue::Placeholder(_), &ConstValue::InferenceVar(var)) => {
debug!(?var, ty=?a, "unify_var_ty");
self.unify_var_const(var, a)
}
(&ConstValue::Placeholder(p1), &ConstValue::Placeholder(p2)) => {
Zip::zip_with(self, variance, &p1, &p2)
}
(&ConstValue::Concrete(ref ev1), &ConstValue::Concrete(ref ev2)) => {
if ev1.const_eq(a_ty, ev2, interner) {
Ok(())
} else {
Err(NoSolution)
}
}
(&ConstValue::Concrete(_), &ConstValue::Placeholder(_))
| (&ConstValue::Placeholder(_), &ConstValue::Concrete(_)) => Err(NoSolution),
(ConstValue::BoundVar(_), _) | (_, ConstValue::BoundVar(_)) => panic!(
"unification encountered bound variable: a={:?} b={:?}",
a, b
),
}
}
#[instrument(level = "debug", skip(self))]
fn unify_var_const(&mut self, var: InferenceVar, c: &Const<I>) -> Fallible<()> {
let interner = self.interner;
let var = EnaVariable::from(var);
// Determine the universe index associated with this
// variable. This is basically a count of the number of
// `forall` binders that had been introduced at the point
// this variable was created -- though it may change over time
// as the variable is unified.
let universe_index = self.table.universe_of_unbound_var(var);
let c1 = c.clone().try_fold_with(
&mut OccursCheck::new(self, var, universe_index),
DebruijnIndex::INNERMOST,
)?;
debug!("unify_var_const: var {:?} set to {:?}", var, c1);
self.table
.unify
.unify_var_value(var, InferenceValue::from_const(interner, c1))
.unwrap();
Ok(())
}
/// Relate `a`, `b` such that if `variance = Covariant`, `a` is a subtype of
/// `b` and thus `a` must outlive `b`.
fn push_lifetime_outlives_goals(&mut self, variance: Variance, a: Lifetime<I>, b: Lifetime<I>) {
debug!(
"pushing lifetime outlives goals for a={:?} b={:?} with variance {:?}",
a, b, variance
);
if matches!(variance, Variance::Invariant | Variance::Contravariant) {
self.goals.push(InEnvironment::new(
self.environment,
WhereClause::LifetimeOutlives(LifetimeOutlives {
a: a.clone(),
b: b.clone(),
})
.cast(self.interner),
));
}
if matches!(variance, Variance::Invariant | Variance::Covariant) {
self.goals.push(InEnvironment::new(
self.environment,
WhereClause::LifetimeOutlives(LifetimeOutlives { a: b, b: a }).cast(self.interner),
));
}
}
/// Pushes a goal of `a` being a subtype of `b`.
fn push_subtype_goal(&mut self, a: Ty<I>, b: Ty<I>) {
let subtype_goal = GoalData::SubtypeGoal(SubtypeGoal { a, b }).intern(self.interner());
self.goals
.push(InEnvironment::new(self.environment, subtype_goal));
}
}
impl<'i, I: Interner> Zipper<I> for Unifier<'i, I> {
fn zip_tys(&mut self, variance: Variance, a: &Ty<I>, b: &Ty<I>) -> Fallible<()> {
debug!("zip_tys {:?}, {:?}, {:?}", variance, a, b);
self.relate_ty_ty(variance, a, b)
}
fn zip_lifetimes(
&mut self,
variance: Variance,
a: &Lifetime<I>,
b: &Lifetime<I>,
) -> Fallible<()> {
self.relate_lifetime_lifetime(variance, a, b)
}
fn zip_consts(&mut self, variance: Variance, a: &Const<I>, b: &Const<I>) -> Fallible<()> {
self.relate_const_const(variance, a, b)
}
fn zip_binders<T>(&mut self, variance: Variance, a: &Binders<T>, b: &Binders<T>) -> Fallible<()>
where
T: Clone + HasInterner<Interner = I> + Zip<I> + TypeFoldable<I>,
{
// The binders that appear in types (apart from quantified types, which are
// handled in `unify_ty`) appear as part of `dyn Trait` and `impl Trait` types.
//
// They come in two varieties:
//
// * The existential binder from `dyn Trait` / `impl Trait`
// (representing the hidden "self" type)
// * The `for<..>` binders from higher-ranked traits.
//
// In both cases we can use the same `relate_binders` routine.
self.relate_binders(variance, a, b)
}
fn interner(&self) -> I {
self.interner
}
fn unification_database(&self) -> &dyn UnificationDatabase<I> {
self.db
}
}
struct OccursCheck<'u, 't, I: Interner> {
unifier: &'u mut Unifier<'t, I>,
var: EnaVariable<I>,
universe_index: UniverseIndex,
}
impl<'u, 't, I: Interner> OccursCheck<'u, 't, I> {
fn new(
unifier: &'u mut Unifier<'t, I>,
var: EnaVariable<I>,
universe_index: UniverseIndex,
) -> Self {
OccursCheck {
unifier,
var,
universe_index,
}
}
}
impl<'i, I: Interner> FallibleTypeFolder<I> for OccursCheck<'_, 'i, I> {
type Error = NoSolution;
fn as_dyn(&mut self) -> &mut dyn FallibleTypeFolder<I, Error = Self::Error> {
self
}
fn try_fold_free_placeholder_ty(
&mut self,
universe: PlaceholderIndex,
_outer_binder: DebruijnIndex,
) -> Fallible<Ty<I>> {
let interner = self.interner();
if self.universe_index < universe.ui {
debug!(
"OccursCheck aborting because self.universe_index ({:?}) < universe.ui ({:?})",
self.universe_index, universe.ui
);
Err(NoSolution)
} else {
Ok(universe.to_ty(interner)) // no need to shift, not relative to depth
}
}
fn try_fold_free_placeholder_const(
&mut self,
ty: Ty<I>,
universe: PlaceholderIndex,
_outer_binder: DebruijnIndex,
) -> Fallible<Const<I>> {
let interner = self.interner();
if self.universe_index < universe.ui {
Err(NoSolution)
} else {
Ok(universe.to_const(interner, ty)) // no need to shift, not relative to depth
}
}
#[instrument(level = "debug", skip(self))]
fn try_fold_free_placeholder_lifetime(
&mut self,
ui: PlaceholderIndex,
_outer_binder: DebruijnIndex,
) -> Fallible<Lifetime<I>> {
let interner = self.interner();
if self.universe_index < ui.ui {
// Scenario is like:
//
// exists<T> forall<'b> ?T = Foo<'b>
//
// unlike with a type variable, this **might** be
// ok. Ultimately it depends on whether the
// `forall` also introduced relations to lifetimes
// nameable in T. To handle that, we introduce a
// fresh region variable `'x` in same universe as `T`
// and add a side-constraint that `'x = 'b`:
//
// exists<'x> forall<'b> ?T = Foo<'x>, where 'x = 'b
let tick_x = self.unifier.table.new_variable(self.universe_index);
self.unifier.push_lifetime_outlives_goals(
Variance::Invariant,
tick_x.to_lifetime(interner),
ui.to_lifetime(interner),
);
Ok(tick_x.to_lifetime(interner))
} else {
// If the `ui` is higher than `self.universe_index`, then we can name
// this lifetime, no problem.
Ok(ui.to_lifetime(interner)) // no need to shift, not relative to depth
}
}
fn try_fold_inference_ty(
&mut self,
var: InferenceVar,
kind: TyVariableKind,
_outer_binder: DebruijnIndex,
) -> Fallible<Ty<I>> {
let interner = self.interner();
let var = EnaVariable::from(var);
match self.unifier.table.unify.probe_value(var) {
// If this variable already has a value, fold over that value instead.
InferenceValue::Bound(normalized_ty) => {
let normalized_ty = normalized_ty.assert_ty_ref(interner);
let normalized_ty = normalized_ty
.clone()
.try_fold_with(self, DebruijnIndex::INNERMOST)?;
assert!(!normalized_ty.needs_shift(interner));
Ok(normalized_ty)
}
// Otherwise, check the universe of the variable, and also
// check for cycles with `self.var` (which this will soon
// become the value of).
InferenceValue::Unbound(ui) => {
if self.unifier.table.unify.unioned(var, self.var) {
debug!(
"OccursCheck aborting because {:?} unioned with {:?}",
var, self.var,
);
return Err(NoSolution);
}
if self.universe_index < ui {
// Scenario is like:
//
// ?A = foo(?B)
//
// where ?A is in universe 0 and ?B is in universe 1.
// This is OK, if ?B is promoted to universe 0.
self.unifier
.table
.unify
.unify_var_value(var, InferenceValue::Unbound(self.universe_index))
.unwrap();
}
Ok(var.to_ty_with_kind(interner, kind))
}
}
}
fn try_fold_inference_const(
&mut self,
ty: Ty<I>,
var: InferenceVar,
_outer_binder: DebruijnIndex,
) -> Fallible<Const<I>> {
let interner = self.interner();
let var = EnaVariable::from(var);
match self.unifier.table.unify.probe_value(var) {
// If this variable already has a value, fold over that value instead.
InferenceValue::Bound(normalized_const) => {
let normalized_const = normalized_const.assert_const_ref(interner);
let normalized_const = normalized_const
.clone()
.try_fold_with(self, DebruijnIndex::INNERMOST)?;
assert!(!normalized_const.needs_shift(interner));
Ok(normalized_const)
}
// Otherwise, check the universe of the variable, and also
// check for cycles with `self.var` (which this will soon
// become the value of).
InferenceValue::Unbound(ui) => {
if self.unifier.table.unify.unioned(var, self.var) {
return Err(NoSolution);
}
if self.universe_index < ui {
// Scenario is like:
//
// forall<const A> exists<const B> ?C = Foo<B>
//
// where A is in universe 0 and B is in universe 1.
// This is OK, if B is promoted to universe 0.
self.unifier
.table
.unify
.unify_var_value(var, InferenceValue::Unbound(self.universe_index))
.unwrap();
}
Ok(var.to_const(interner, ty))
}
}
}
fn try_fold_inference_lifetime(
&mut self,
var: InferenceVar,
outer_binder: DebruijnIndex,
) -> Fallible<Lifetime<I>> {
// a free existentially bound region; find the
// inference variable it corresponds to
let interner = self.interner();
let var = EnaVariable::from(var);
match self.unifier.table.unify.probe_value(var) {
InferenceValue::Unbound(ui) => {
if self.universe_index < ui {
// Scenario is like:
//
// exists<T> forall<'b> exists<'a> ?T = Foo<'a>
//
// where ?A is in universe 0 and `'b` is in universe 1.
// This is OK, if `'b` is promoted to universe 0.
self.unifier
.table
.unify
.unify_var_value(var, InferenceValue::Unbound(self.universe_index))
.unwrap();
}
Ok(var.to_lifetime(interner))
}
InferenceValue::Bound(l) => {
let l = l.assert_lifetime_ref(interner);
let l = l.clone().try_fold_with(self, outer_binder)?;
assert!(!l.needs_shift(interner));
Ok(l)
}
}
}
fn forbid_free_vars(&self) -> bool {
true
}
fn interner(&self) -> I {
self.unifier.interner
}
}
|