1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
//! [`Uint`] comparisons.
//!
//! By default these are all constant-time and use the `subtle` crate.
use super::Uint;
use crate::{CtChoice, Limb};
use core::cmp::Ordering;
use subtle::{Choice, ConstantTimeEq, ConstantTimeGreater, ConstantTimeLess};
impl<const LIMBS: usize> Uint<LIMBS> {
/// Return `b` if `c` is truthy, otherwise return `a`.
#[inline]
pub(crate) const fn ct_select(a: &Self, b: &Self, c: CtChoice) -> Self {
let mut limbs = [Limb::ZERO; LIMBS];
let mut i = 0;
while i < LIMBS {
limbs[i] = Limb::ct_select(a.limbs[i], b.limbs[i], c);
i += 1;
}
Uint { limbs }
}
#[inline]
pub(crate) const fn ct_swap(a: &Self, b: &Self, c: CtChoice) -> (Self, Self) {
let new_a = Self::ct_select(a, b, c);
let new_b = Self::ct_select(b, a, c);
(new_a, new_b)
}
/// Returns the truthy value if `self`!=0 or the falsy value otherwise.
#[inline]
pub(crate) const fn ct_is_nonzero(&self) -> CtChoice {
let mut b = 0;
let mut i = 0;
while i < LIMBS {
b |= self.limbs[i].0;
i += 1;
}
Limb(b).ct_is_nonzero()
}
/// Returns the truthy value if `self` is odd or the falsy value otherwise.
pub(crate) const fn ct_is_odd(&self) -> CtChoice {
CtChoice::from_lsb(self.limbs[0].0 & 1)
}
/// Returns the truthy value if `self == rhs` or the falsy value otherwise.
#[inline]
pub(crate) const fn ct_eq(lhs: &Self, rhs: &Self) -> CtChoice {
let mut acc = 0;
let mut i = 0;
while i < LIMBS {
acc |= lhs.limbs[i].0 ^ rhs.limbs[i].0;
i += 1;
}
// acc == 0 if and only if self == rhs
Limb(acc).ct_is_nonzero().not()
}
/// Returns the truthy value if `self <= rhs` and the falsy value otherwise.
#[inline]
pub(crate) const fn ct_lt(lhs: &Self, rhs: &Self) -> CtChoice {
// We could use the same approach as in Limb::ct_lt(),
// but since we have to use Uint::wrapping_sub(), which calls `sbb()`,
// there are no savings compared to just calling `sbb()` directly.
let (_res, borrow) = lhs.sbb(rhs, Limb::ZERO);
CtChoice::from_mask(borrow.0)
}
/// Returns the truthy value if `self <= rhs` and the falsy value otherwise.
#[inline]
pub(crate) const fn ct_gt(lhs: &Self, rhs: &Self) -> CtChoice {
let (_res, borrow) = rhs.sbb(lhs, Limb::ZERO);
CtChoice::from_mask(borrow.0)
}
}
impl<const LIMBS: usize> ConstantTimeEq for Uint<LIMBS> {
#[inline]
fn ct_eq(&self, other: &Self) -> Choice {
Uint::ct_eq(self, other).into()
}
}
impl<const LIMBS: usize> ConstantTimeGreater for Uint<LIMBS> {
#[inline]
fn ct_gt(&self, other: &Self) -> Choice {
Uint::ct_gt(self, other).into()
}
}
impl<const LIMBS: usize> ConstantTimeLess for Uint<LIMBS> {
#[inline]
fn ct_lt(&self, other: &Self) -> Choice {
Uint::ct_lt(self, other).into()
}
}
impl<const LIMBS: usize> Eq for Uint<LIMBS> {}
impl<const LIMBS: usize> Ord for Uint<LIMBS> {
fn cmp(&self, other: &Self) -> Ordering {
let is_lt = self.ct_lt(other);
let is_eq = self.ct_eq(other);
if is_lt.into() {
Ordering::Less
} else if is_eq.into() {
Ordering::Equal
} else {
Ordering::Greater
}
}
}
impl<const LIMBS: usize> PartialOrd for Uint<LIMBS> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl<const LIMBS: usize> PartialEq for Uint<LIMBS> {
fn eq(&self, other: &Self) -> bool {
self.ct_eq(other).into()
}
}
#[cfg(test)]
mod tests {
use crate::{Integer, Zero, U128};
use subtle::{ConstantTimeEq, ConstantTimeGreater, ConstantTimeLess};
#[test]
fn is_zero() {
assert!(bool::from(U128::ZERO.is_zero()));
assert!(!bool::from(U128::ONE.is_zero()));
assert!(!bool::from(U128::MAX.is_zero()));
}
#[test]
fn is_odd() {
assert!(!bool::from(U128::ZERO.is_odd()));
assert!(bool::from(U128::ONE.is_odd()));
assert!(bool::from(U128::MAX.is_odd()));
}
#[test]
fn ct_eq() {
let a = U128::ZERO;
let b = U128::MAX;
assert!(bool::from(a.ct_eq(&a)));
assert!(!bool::from(a.ct_eq(&b)));
assert!(!bool::from(b.ct_eq(&a)));
assert!(bool::from(b.ct_eq(&b)));
}
#[test]
fn ct_gt() {
let a = U128::ZERO;
let b = U128::ONE;
let c = U128::MAX;
assert!(bool::from(b.ct_gt(&a)));
assert!(bool::from(c.ct_gt(&a)));
assert!(bool::from(c.ct_gt(&b)));
assert!(!bool::from(a.ct_gt(&a)));
assert!(!bool::from(b.ct_gt(&b)));
assert!(!bool::from(c.ct_gt(&c)));
assert!(!bool::from(a.ct_gt(&b)));
assert!(!bool::from(a.ct_gt(&c)));
assert!(!bool::from(b.ct_gt(&c)));
}
#[test]
fn ct_lt() {
let a = U128::ZERO;
let b = U128::ONE;
let c = U128::MAX;
assert!(bool::from(a.ct_lt(&b)));
assert!(bool::from(a.ct_lt(&c)));
assert!(bool::from(b.ct_lt(&c)));
assert!(!bool::from(a.ct_lt(&a)));
assert!(!bool::from(b.ct_lt(&b)));
assert!(!bool::from(c.ct_lt(&c)));
assert!(!bool::from(b.ct_lt(&a)));
assert!(!bool::from(c.ct_lt(&a)));
assert!(!bool::from(c.ct_lt(&b)));
}
}
|