1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
|
use super::Uint;
use crate::{CtChoice, Limb};
impl<const LIMBS: usize> Uint<LIMBS> {
/// Computes 1/`self` mod 2^k as specified in Algorithm 4 from
/// A Secure Algorithm for Inversion Modulo 2k by
/// Sadiel de la Fe and Carles Ferrer. See
/// <https://www.mdpi.com/2410-387X/2/3/23>.
///
/// Conditions: `self` < 2^k and `self` must be odd
pub const fn inv_mod2k(&self, k: usize) -> Self {
let mut x = Self::ZERO;
let mut b = Self::ONE;
let mut i = 0;
while i < k {
let mut x_i = Self::ZERO;
let j = b.limbs[0].0 & 1;
x_i.limbs[0] = Limb(j);
x = x.bitor(&x_i.shl_vartime(i));
let t = b.wrapping_sub(self);
b = Self::ct_select(&b, &t, CtChoice::from_lsb(j)).shr_vartime(1);
i += 1;
}
x
}
/// Computes the multiplicative inverse of `self` mod `modulus`, where `modulus` is odd.
/// In other words `self^-1 mod modulus`.
/// `bits` and `modulus_bits` are the bounds on the bit size
/// of `self` and `modulus`, respectively
/// (the inversion speed will be proportional to `bits + modulus_bits`).
/// The second element of the tuple is the truthy value if an inverse exists,
/// otherwise it is a falsy value.
///
/// **Note:** variable time in `bits` and `modulus_bits`.
///
/// The algorithm is the same as in GMP 6.2.1's `mpn_sec_invert`.
pub const fn inv_odd_mod_bounded(
&self,
modulus: &Self,
bits: usize,
modulus_bits: usize,
) -> (Self, CtChoice) {
debug_assert!(modulus.ct_is_odd().is_true_vartime());
let mut a = *self;
let mut u = Uint::ONE;
let mut v = Uint::ZERO;
let mut b = *modulus;
// `bit_size` can be anything >= `self.bits()` + `modulus.bits()`, setting to the minimum.
let bit_size = bits + modulus_bits;
let mut m1hp = *modulus;
let (m1hp_new, carry) = m1hp.shr_1();
debug_assert!(carry.is_true_vartime());
m1hp = m1hp_new.wrapping_add(&Uint::ONE);
let mut i = 0;
while i < bit_size {
debug_assert!(b.ct_is_odd().is_true_vartime());
let self_odd = a.ct_is_odd();
// Set `self -= b` if `self` is odd.
let (new_a, swap) = a.conditional_wrapping_sub(&b, self_odd);
// Set `b += self` if `swap` is true.
b = Uint::ct_select(&b, &b.wrapping_add(&new_a), swap);
// Negate `self` if `swap` is true.
a = new_a.conditional_wrapping_neg(swap);
let (new_u, new_v) = Uint::ct_swap(&u, &v, swap);
let (new_u, cy) = new_u.conditional_wrapping_sub(&new_v, self_odd);
let (new_u, cyy) = new_u.conditional_wrapping_add(modulus, cy);
debug_assert!(cy.is_true_vartime() == cyy.is_true_vartime());
let (new_a, overflow) = a.shr_1();
debug_assert!(!overflow.is_true_vartime());
let (new_u, cy) = new_u.shr_1();
let (new_u, cy) = new_u.conditional_wrapping_add(&m1hp, cy);
debug_assert!(!cy.is_true_vartime());
a = new_a;
u = new_u;
v = new_v;
i += 1;
}
debug_assert!(!a.ct_is_nonzero().is_true_vartime());
(v, Uint::ct_eq(&b, &Uint::ONE))
}
/// Computes the multiplicative inverse of `self` mod `modulus`, where `modulus` is odd.
/// Returns `(inverse, Word::MAX)` if an inverse exists, otherwise `(undefined, Word::ZERO)`.
pub const fn inv_odd_mod(&self, modulus: &Self) -> (Self, CtChoice) {
self.inv_odd_mod_bounded(modulus, Uint::<LIMBS>::BITS, Uint::<LIMBS>::BITS)
}
}
#[cfg(test)]
mod tests {
use crate::{U1024, U256, U64};
#[test]
fn inv_mod2k() {
let v =
U256::from_be_hex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f");
let e =
U256::from_be_hex("3642e6faeaac7c6663b93d3d6a0d489e434ddc0123db5fa627c7f6e22ddacacf");
let a = v.inv_mod2k(256);
assert_eq!(e, a);
let v =
U256::from_be_hex("fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141");
let e =
U256::from_be_hex("261776f29b6b106c7680cf3ed83054a1af5ae537cb4613dbb4f20099aa774ec1");
let a = v.inv_mod2k(256);
assert_eq!(e, a);
}
#[test]
fn test_invert() {
let a = U1024::from_be_hex(concat![
"000225E99153B467A5B451979A3F451DAEF3BF8D6C6521D2FA24BBB17F29544E",
"347A412B065B75A351EA9719E2430D2477B11CC9CF9C1AD6EDEE26CB15F463F8",
"BCC72EF87EA30288E95A48AA792226CEC959DCB0672D8F9D80A54CBBEA85CAD8",
"382EC224DEB2F5784E62D0CC2F81C2E6AD14EBABE646D6764B30C32B87688985"
]);
let m = U1024::from_be_hex(concat![
"D509E7854ABDC81921F669F1DC6F61359523F3949803E58ED4EA8BC16483DC6F",
"37BFE27A9AC9EEA2969B357ABC5C0EE214BE16A7D4C58FC620D5B5A20AFF001A",
"D198D3155E5799DC4EA76652D64983A7E130B5EACEBAC768D28D589C36EC749C",
"558D0B64E37CD0775C0D0104AE7D98BA23C815185DD43CD8B16292FD94156767"
]);
let (res, is_some) = a.inv_odd_mod(&m);
let expected = U1024::from_be_hex(concat![
"B03623284B0EBABCABD5C5881893320281460C0A8E7BF4BFDCFFCBCCBF436A55",
"D364235C8171E46C7D21AAD0680676E57274A8FDA6D12768EF961CACDD2DAE57",
"88D93DA5EB8EDC391EE3726CDCF4613C539F7D23E8702200CB31B5ED5B06E5CA",
"3E520968399B4017BF98A864FABA2B647EFC4998B56774D4F2CB026BC024A336"
]);
assert!(is_some.is_true_vartime());
assert_eq!(res, expected);
}
#[test]
fn test_invert_bounded() {
let a = U1024::from_be_hex(concat![
"0000000000000000000000000000000000000000000000000000000000000000",
"347A412B065B75A351EA9719E2430D2477B11CC9CF9C1AD6EDEE26CB15F463F8",
"BCC72EF87EA30288E95A48AA792226CEC959DCB0672D8F9D80A54CBBEA85CAD8",
"382EC224DEB2F5784E62D0CC2F81C2E6AD14EBABE646D6764B30C32B87688985"
]);
let m = U1024::from_be_hex(concat![
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000",
"D198D3155E5799DC4EA76652D64983A7E130B5EACEBAC768D28D589C36EC749C",
"558D0B64E37CD0775C0D0104AE7D98BA23C815185DD43CD8B16292FD94156767"
]);
let (res, is_some) = a.inv_odd_mod_bounded(&m, 768, 512);
let expected = U1024::from_be_hex(concat![
"0000000000000000000000000000000000000000000000000000000000000000",
"0000000000000000000000000000000000000000000000000000000000000000",
"0DCC94E2FE509E6EBBA0825645A38E73EF85D5927C79C1AD8FFE7C8DF9A822FA",
"09EB396A21B1EF05CBE51E1A8EF284EF01EBDD36A9A4EA17039D8EEFDD934768"
]);
assert!(is_some.is_true_vartime());
assert_eq!(res, expected);
}
#[test]
fn test_invert_small() {
let a = U64::from(3u64);
let m = U64::from(13u64);
let (res, is_some) = a.inv_odd_mod(&m);
assert!(is_some.is_true_vartime());
assert_eq!(U64::from(9u64), res);
}
#[test]
fn test_no_inverse_small() {
let a = U64::from(14u64);
let m = U64::from(49u64);
let (_res, is_some) = a.inv_odd_mod(&m);
assert!(!is_some.is_true_vartime());
}
}
|