summaryrefslogtreecommitdiffstats
path: root/vendor/ecdsa/src/dev.rs
blob: ce00c7fbf34fc86e1bd2152963f1d6708eb231b2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
//! Development-related functionality.

// TODO(tarcieri): implement full set of tests from ECDSA2VS
// <https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-Program/documents/dss2/ecdsa2vs.pdf>

/// ECDSA test vector
pub struct TestVector {
    /// Private scalar
    pub d: &'static [u8],

    /// Public key x-coordinate (`Qx`)
    pub q_x: &'static [u8],

    /// Public key y-coordinate (`Qy`)
    pub q_y: &'static [u8],

    /// Ephemeral scalar (a.k.a. nonce)
    pub k: &'static [u8],

    /// Message digest (prehashed)
    pub m: &'static [u8],

    /// Signature `r` component
    pub r: &'static [u8],

    /// Signature `s` component
    pub s: &'static [u8],
}

/// Define ECDSA signing test.
#[macro_export]
#[cfg_attr(docsrs, doc(cfg(feature = "dev")))]
macro_rules! new_signing_test {
    ($curve:path, $vectors:expr) => {
        use $crate::{
            elliptic_curve::{
                bigint::Encoding, generic_array::GenericArray, group::ff::PrimeField, Curve,
                ProjectiveArithmetic, Scalar,
            },
            hazmat::SignPrimitive,
        };

        fn decode_scalar(bytes: &[u8]) -> Option<Scalar<$curve>> {
            if bytes.len() == <$curve as Curve>::UInt::BYTE_SIZE {
                Scalar::<$curve>::from_repr(GenericArray::clone_from_slice(bytes)).into()
            } else {
                None
            }
        }

        #[test]
        fn ecdsa_signing() {
            for vector in $vectors {
                let d = decode_scalar(vector.d).expect("invalid vector.d");
                let k = decode_scalar(vector.k).expect("invalid vector.m");
                let z = GenericArray::clone_from_slice(vector.m);
                let sig = d.try_sign_prehashed(k, z).expect("ECDSA sign failed").0;

                assert_eq!(vector.r, sig.r().to_bytes().as_slice());
                assert_eq!(vector.s, sig.s().to_bytes().as_slice());
            }
        }
    };
}

/// Define ECDSA verification test.
#[macro_export]
#[cfg_attr(docsrs, doc(cfg(feature = "dev")))]
macro_rules! new_verification_test {
    ($curve:path, $vectors:expr) => {
        use $crate::{
            elliptic_curve::{
                generic_array::GenericArray,
                group::ff::PrimeField,
                sec1::{EncodedPoint, FromEncodedPoint},
                AffinePoint, ProjectiveArithmetic, Scalar,
            },
            hazmat::VerifyPrimitive,
            Signature,
        };

        #[test]
        fn ecdsa_verify_success() {
            for vector in $vectors {
                let q_encoded = EncodedPoint::<$curve>::from_affine_coordinates(
                    GenericArray::from_slice(vector.q_x),
                    GenericArray::from_slice(vector.q_y),
                    false,
                );

                let q = AffinePoint::<$curve>::from_encoded_point(&q_encoded).unwrap();
                let z = GenericArray::clone_from_slice(vector.m);

                let sig = Signature::from_scalars(
                    GenericArray::clone_from_slice(vector.r),
                    GenericArray::clone_from_slice(vector.s),
                )
                .unwrap();

                let result = q.verify_prehashed(z, &sig);
                assert!(result.is_ok());
            }
        }

        #[test]
        fn ecdsa_verify_invalid_s() {
            for vector in $vectors {
                let q_encoded = EncodedPoint::<$curve>::from_affine_coordinates(
                    GenericArray::from_slice(vector.q_x),
                    GenericArray::from_slice(vector.q_y),
                    false,
                );

                let q = AffinePoint::<$curve>::from_encoded_point(&q_encoded).unwrap();
                let z = GenericArray::clone_from_slice(vector.m);

                // Flip a bit in `s`
                let mut s_tweaked = GenericArray::clone_from_slice(vector.s);
                s_tweaked[0] ^= 1;

                let sig =
                    Signature::from_scalars(GenericArray::clone_from_slice(vector.r), s_tweaked)
                        .unwrap();

                let result = q.verify_prehashed(z, &sig);
                assert!(result.is_err());
            }
        }

        // TODO(tarcieri): test invalid Q, invalid r, invalid m
    };
}

/// Define a Wycheproof verification test.
#[macro_export]
#[cfg_attr(docsrs, doc(cfg(feature = "dev")))]
macro_rules! new_wycheproof_test {
    ($name:ident, $test_name: expr, $curve:path) => {
        use $crate::{elliptic_curve::sec1::EncodedPoint, signature::Verifier, Signature};

        #[test]
        fn $name() {
            use blobby::Blob5Iterator;
            use elliptic_curve::{bigint::Encoding as _, generic_array::typenum::Unsigned};

            // Build a field element but allow for too-short input (left pad with zeros)
            // or too-long input (check excess leftmost bytes are zeros).
            fn element_from_padded_slice<C: elliptic_curve::Curve>(
                data: &[u8],
            ) -> elliptic_curve::FieldBytes<C> {
                let point_len = C::UInt::BYTE_SIZE;
                if data.len() >= point_len {
                    let offset = data.len() - point_len;
                    for v in data.iter().take(offset) {
                        assert_eq!(*v, 0, "EcdsaVerifier: point too large");
                    }
                    elliptic_curve::FieldBytes::<C>::clone_from_slice(&data[offset..])
                } else {
                    // Provided slice is too short and needs to be padded with zeros
                    // on the left.  Build a combined exact iterator to do this.
                    let iter = core::iter::repeat(0)
                        .take(point_len - data.len())
                        .chain(data.iter().cloned());
                    elliptic_curve::FieldBytes::<C>::from_exact_iter(iter).unwrap()
                }
            }

            fn run_test(
                wx: &[u8],
                wy: &[u8],
                msg: &[u8],
                sig: &[u8],
                pass: bool,
            ) -> Option<&'static str> {
                let x = element_from_padded_slice::<$curve>(wx);
                let y = element_from_padded_slice::<$curve>(wy);
                let q_encoded = EncodedPoint::<$curve>::from_affine_coordinates(
                    &x, &y, /* compress= */ false,
                );
                let verifying_key =
                    $crate::VerifyingKey::<$curve>::from_encoded_point(&q_encoded).unwrap();

                let sig = match Signature::from_der(sig) {
                    Ok(s) => s,
                    Err(_) if !pass => return None,
                    Err(_) => return Some("failed to parse signature ASN.1"),
                };

                match verifying_key.verify(msg, &sig) {
                    Ok(_) if pass => None,
                    Ok(_) => Some("signature verify unexpectedly succeeded"),
                    Err(_) if !pass => None,
                    Err(_) => Some("signature verify failed"),
                }
            }

            let data = include_bytes!(concat!("test_vectors/data/", $test_name, ".blb"));

            for (i, row) in Blob5Iterator::new(data).unwrap().enumerate() {
                let [wx, wy, msg, sig, status] = row.unwrap();
                let pass = match status[0] {
                    0 => false,
                    1 => true,
                    _ => panic!("invalid value for pass flag"),
                };
                if let Some(desc) = run_test(wx, wy, msg, sig, pass) {
                    panic!(
                        "\n\
                                 Failed test №{}: {}\n\
                                 wx:\t{:?}\n\
                                 wy:\t{:?}\n\
                                 msg:\t{:?}\n\
                                 sig:\t{:?}\n\
                                 pass:\t{}\n",
                        i, desc, wx, wy, msg, sig, pass,
                    );
                }
            }
        }
    };
}