1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
|
// Copyright Mozilla Foundation. See the COPYRIGHT
// file at the top-level directory of this distribution.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use packed_simd::u16x8;
use packed_simd::u8x16;
use packed_simd::IntoBits;
// TODO: Migrate unaligned access to stdlib code if/when the RFC
// https://github.com/rust-lang/rfcs/pull/1725 is implemented.
#[inline(always)]
pub unsafe fn load16_unaligned(ptr: *const u8) -> u8x16 {
let mut simd = ::core::mem::uninitialized();
::core::ptr::copy_nonoverlapping(ptr, &mut simd as *mut u8x16 as *mut u8, 16);
simd
}
#[allow(dead_code)]
#[inline(always)]
pub unsafe fn load16_aligned(ptr: *const u8) -> u8x16 {
*(ptr as *const u8x16)
}
#[inline(always)]
pub unsafe fn store16_unaligned(ptr: *mut u8, s: u8x16) {
::core::ptr::copy_nonoverlapping(&s as *const u8x16 as *const u8, ptr, 16);
}
#[allow(dead_code)]
#[inline(always)]
pub unsafe fn store16_aligned(ptr: *mut u8, s: u8x16) {
*(ptr as *mut u8x16) = s;
}
#[inline(always)]
pub unsafe fn load8_unaligned(ptr: *const u16) -> u16x8 {
let mut simd = ::core::mem::uninitialized();
::core::ptr::copy_nonoverlapping(ptr as *const u8, &mut simd as *mut u16x8 as *mut u8, 16);
simd
}
#[allow(dead_code)]
#[inline(always)]
pub unsafe fn load8_aligned(ptr: *const u16) -> u16x8 {
*(ptr as *const u16x8)
}
#[inline(always)]
pub unsafe fn store8_unaligned(ptr: *mut u16, s: u16x8) {
::core::ptr::copy_nonoverlapping(&s as *const u16x8 as *const u8, ptr as *mut u8, 16);
}
#[allow(dead_code)]
#[inline(always)]
pub unsafe fn store8_aligned(ptr: *mut u16, s: u16x8) {
*(ptr as *mut u16x8) = s;
}
cfg_if! {
if #[cfg(all(target_feature = "sse2", target_arch = "x86_64"))] {
use core::arch::x86_64::__m128i;
use core::arch::x86_64::_mm_movemask_epi8;
use core::arch::x86_64::_mm_packus_epi16;
} else if #[cfg(all(target_feature = "sse2", target_arch = "x86"))] {
use core::arch::x86::__m128i;
use core::arch::x86::_mm_movemask_epi8;
use core::arch::x86::_mm_packus_epi16;
} else if #[cfg(target_arch = "aarch64")]{
use core::arch::aarch64::vmaxvq_u8;
use core::arch::aarch64::vmaxvq_u16;
} else {
}
}
// #[inline(always)]
// fn simd_byte_swap_u8(s: u8x16) -> u8x16 {
// unsafe {
// shuffle!(s, s, [1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14])
// }
// }
// #[inline(always)]
// pub fn simd_byte_swap(s: u16x8) -> u16x8 {
// to_u16_lanes(simd_byte_swap_u8(to_u8_lanes(s)))
// }
#[inline(always)]
pub fn simd_byte_swap(s: u16x8) -> u16x8 {
let left = s << 8;
let right = s >> 8;
left | right
}
#[inline(always)]
pub fn to_u16_lanes(s: u8x16) -> u16x8 {
s.into_bits()
}
cfg_if! {
if #[cfg(target_feature = "sse2")] {
// Expose low-level mask instead of higher-level conclusion,
// because the non-ASCII case would perform less well otherwise.
#[inline(always)]
pub fn mask_ascii(s: u8x16) -> i32 {
unsafe {
_mm_movemask_epi8(s.into_bits())
}
}
} else {
}
}
cfg_if! {
if #[cfg(target_feature = "sse2")] {
#[inline(always)]
pub fn simd_is_ascii(s: u8x16) -> bool {
unsafe {
_mm_movemask_epi8(s.into_bits()) == 0
}
}
} else if #[cfg(target_arch = "aarch64")]{
#[inline(always)]
pub fn simd_is_ascii(s: u8x16) -> bool {
unsafe {
vmaxvq_u8(s.into_bits()) < 0x80
}
}
} else {
#[inline(always)]
pub fn simd_is_ascii(s: u8x16) -> bool {
// This optimizes better on ARM than
// the lt formulation.
let highest_ascii = u8x16::splat(0x7F);
!s.gt(highest_ascii).any()
}
}
}
cfg_if! {
if #[cfg(target_feature = "sse2")] {
#[inline(always)]
pub fn simd_is_str_latin1(s: u8x16) -> bool {
if simd_is_ascii(s) {
return true;
}
let above_str_latin1 = u8x16::splat(0xC4);
s.lt(above_str_latin1).all()
}
} else if #[cfg(target_arch = "aarch64")]{
#[inline(always)]
pub fn simd_is_str_latin1(s: u8x16) -> bool {
unsafe {
vmaxvq_u8(s.into_bits()) < 0xC4
}
}
} else {
#[inline(always)]
pub fn simd_is_str_latin1(s: u8x16) -> bool {
let above_str_latin1 = u8x16::splat(0xC4);
s.lt(above_str_latin1).all()
}
}
}
cfg_if! {
if #[cfg(target_arch = "aarch64")]{
#[inline(always)]
pub fn simd_is_basic_latin(s: u16x8) -> bool {
unsafe {
vmaxvq_u16(s.into_bits()) < 0x80
}
}
#[inline(always)]
pub fn simd_is_latin1(s: u16x8) -> bool {
unsafe {
vmaxvq_u16(s.into_bits()) < 0x100
}
}
} else {
#[inline(always)]
pub fn simd_is_basic_latin(s: u16x8) -> bool {
let above_ascii = u16x8::splat(0x80);
s.lt(above_ascii).all()
}
#[inline(always)]
pub fn simd_is_latin1(s: u16x8) -> bool {
// For some reason, on SSE2 this formulation
// seems faster in this case while the above
// function is better the other way round...
let highest_latin1 = u16x8::splat(0xFF);
!s.gt(highest_latin1).any()
}
}
}
#[inline(always)]
pub fn contains_surrogates(s: u16x8) -> bool {
let mask = u16x8::splat(0xF800);
let surrogate_bits = u16x8::splat(0xD800);
(s & mask).eq(surrogate_bits).any()
}
cfg_if! {
if #[cfg(target_arch = "aarch64")]{
macro_rules! aarch64_return_false_if_below_hebrew {
($s:ident) => ({
unsafe {
if vmaxvq_u16($s.into_bits()) < 0x0590 {
return false;
}
}
})
}
macro_rules! non_aarch64_return_false_if_all {
($s:ident) => ()
}
} else {
macro_rules! aarch64_return_false_if_below_hebrew {
($s:ident) => ()
}
macro_rules! non_aarch64_return_false_if_all {
($s:ident) => ({
if $s.all() {
return false;
}
})
}
}
}
macro_rules! in_range16x8 {
($s:ident, $start:expr, $end:expr) => {{
// SIMD sub is wrapping
($s - u16x8::splat($start)).lt(u16x8::splat($end - $start))
}};
}
#[inline(always)]
pub fn is_u16x8_bidi(s: u16x8) -> bool {
// We try to first quickly refute the RTLness of the vector. If that
// fails, we do the real RTL check, so in that case we end up wasting
// the work for the up-front quick checks. Even the quick-check is
// two-fold in order to return `false` ASAP if everything is below
// Hebrew.
aarch64_return_false_if_below_hebrew!(s);
let below_hebrew = s.lt(u16x8::splat(0x0590));
non_aarch64_return_false_if_all!(below_hebrew);
if (below_hebrew | in_range16x8!(s, 0x0900, 0x200F) | in_range16x8!(s, 0x2068, 0xD802)).all() {
return false;
}
// Quick refutation failed. Let's do the full check.
(in_range16x8!(s, 0x0590, 0x0900)
| in_range16x8!(s, 0xFB1D, 0xFE00)
| in_range16x8!(s, 0xFE70, 0xFEFF)
| in_range16x8!(s, 0xD802, 0xD804)
| in_range16x8!(s, 0xD83A, 0xD83C)
| s.eq(u16x8::splat(0x200F))
| s.eq(u16x8::splat(0x202B))
| s.eq(u16x8::splat(0x202E))
| s.eq(u16x8::splat(0x2067)))
.any()
}
#[inline(always)]
pub fn simd_unpack(s: u8x16) -> (u16x8, u16x8) {
unsafe {
let first: u8x16 = shuffle!(
s,
u8x16::splat(0),
[0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23]
);
let second: u8x16 = shuffle!(
s,
u8x16::splat(0),
[8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31]
);
(first.into_bits(), second.into_bits())
}
}
cfg_if! {
if #[cfg(target_feature = "sse2")] {
#[inline(always)]
pub fn simd_pack(a: u16x8, b: u16x8) -> u8x16 {
unsafe {
_mm_packus_epi16(a.into_bits(), b.into_bits()).into_bits()
}
}
} else {
#[inline(always)]
pub fn simd_pack(a: u16x8, b: u16x8) -> u8x16 {
unsafe {
let first: u8x16 = a.into_bits();
let second: u8x16 = b.into_bits();
shuffle!(
first,
second,
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]
)
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::vec::Vec;
#[test]
fn test_unpack() {
let ascii: [u8; 16] = [
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let basic_latin: [u16; 16] = [
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let simd = unsafe { load16_unaligned(ascii.as_ptr()) };
let mut vec = Vec::with_capacity(16);
vec.resize(16, 0u16);
let (first, second) = simd_unpack(simd);
let ptr = vec.as_mut_ptr();
unsafe {
store8_unaligned(ptr, first);
store8_unaligned(ptr.add(8), second);
}
assert_eq!(&vec[..], &basic_latin[..]);
}
#[test]
fn test_simd_is_basic_latin_success() {
let ascii: [u8; 16] = [
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let basic_latin: [u16; 16] = [
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let first = unsafe { load8_unaligned(basic_latin.as_ptr()) };
let second = unsafe { load8_unaligned(basic_latin.as_ptr().add(8)) };
let mut vec = Vec::with_capacity(16);
vec.resize(16, 0u8);
let ptr = vec.as_mut_ptr();
assert!(simd_is_basic_latin(first | second));
unsafe {
store16_unaligned(ptr, simd_pack(first, second));
}
assert_eq!(&vec[..], &ascii[..]);
}
#[test]
fn test_simd_is_basic_latin_c0() {
let input: [u16; 16] = [
0x61, 0x62, 0x63, 0x81, 0x65, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let first = unsafe { load8_unaligned(input.as_ptr()) };
let second = unsafe { load8_unaligned(input.as_ptr().add(8)) };
assert!(!simd_is_basic_latin(first | second));
}
#[test]
fn test_simd_is_basic_latin_0fff() {
let input: [u16; 16] = [
0x61, 0x62, 0x63, 0x0FFF, 0x65, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let first = unsafe { load8_unaligned(input.as_ptr()) };
let second = unsafe { load8_unaligned(input.as_ptr().add(8)) };
assert!(!simd_is_basic_latin(first | second));
}
#[test]
fn test_simd_is_basic_latin_ffff() {
let input: [u16; 16] = [
0x61, 0x62, 0x63, 0xFFFF, 0x65, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let first = unsafe { load8_unaligned(input.as_ptr()) };
let second = unsafe { load8_unaligned(input.as_ptr().add(8)) };
assert!(!simd_is_basic_latin(first | second));
}
#[test]
fn test_simd_is_ascii_success() {
let ascii: [u8; 16] = [
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let simd = unsafe { load16_unaligned(ascii.as_ptr()) };
assert!(simd_is_ascii(simd));
}
#[test]
fn test_simd_is_ascii_failure() {
let input: [u8; 16] = [
0x61, 0x62, 0x63, 0x64, 0x81, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let simd = unsafe { load16_unaligned(input.as_ptr()) };
assert!(!simd_is_ascii(simd));
}
#[cfg(target_feature = "sse2")]
#[test]
fn test_check_ascii() {
let input: [u8; 16] = [
0x61, 0x62, 0x63, 0x64, 0x81, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let simd = unsafe { load16_unaligned(input.as_ptr()) };
let mask = mask_ascii(simd);
assert_ne!(mask, 0);
assert_eq!(mask.trailing_zeros(), 4);
}
#[test]
fn test_alu() {
let input: [u8; 16] = [
0x61, 0x62, 0x63, 0x64, 0x81, 0x66, 0x67, 0x68, 0x69, 0x70, 0x71, 0x72, 0x73, 0x74,
0x75, 0x76,
];
let mut alu = 0u64;
unsafe {
::core::ptr::copy_nonoverlapping(input.as_ptr(), &mut alu as *mut u64 as *mut u8, 8);
}
let masked = alu & 0x8080808080808080;
assert_eq!(masked.trailing_zeros(), 39);
}
}
|