1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
|
use std::borrow::Cow;
use std::io;
use std::sync::Arc;
use std::time::Duration;
#[cfg(not(target_arch = "wasm32"))]
use std::time::Instant;
#[cfg(target_arch = "wasm32")]
use instant::Instant;
use portable_atomic::{AtomicU64, AtomicU8, Ordering};
use crate::draw_target::ProgressDrawTarget;
use crate::style::ProgressStyle;
pub(crate) struct BarState {
pub(crate) draw_target: ProgressDrawTarget,
pub(crate) on_finish: ProgressFinish,
pub(crate) style: ProgressStyle,
pub(crate) state: ProgressState,
pub(crate) tab_width: usize,
}
impl BarState {
pub(crate) fn new(
len: Option<u64>,
draw_target: ProgressDrawTarget,
pos: Arc<AtomicPosition>,
) -> Self {
Self {
draw_target,
on_finish: ProgressFinish::default(),
style: ProgressStyle::default_bar(),
state: ProgressState::new(len, pos),
tab_width: DEFAULT_TAB_WIDTH,
}
}
/// Finishes the progress bar using the [`ProgressFinish`] behavior stored
/// in the [`ProgressStyle`].
pub(crate) fn finish_using_style(&mut self, now: Instant, finish: ProgressFinish) {
self.state.status = Status::DoneVisible;
match finish {
ProgressFinish::AndLeave => {
if let Some(len) = self.state.len {
self.state.pos.set(len);
}
}
ProgressFinish::WithMessage(msg) => {
if let Some(len) = self.state.len {
self.state.pos.set(len);
}
self.state.message = TabExpandedString::new(msg, self.tab_width);
}
ProgressFinish::AndClear => {
if let Some(len) = self.state.len {
self.state.pos.set(len);
}
self.state.status = Status::DoneHidden;
}
ProgressFinish::Abandon => {}
ProgressFinish::AbandonWithMessage(msg) => {
self.state.message = TabExpandedString::new(msg, self.tab_width);
}
}
// There's no need to update the estimate here; once the `status` is no longer
// `InProgress`, we will use the length and elapsed time to estimate.
let _ = self.draw(true, now);
}
pub(crate) fn reset(&mut self, now: Instant, mode: Reset) {
// Always reset the estimator; this is the only reset that will occur if mode is
// `Reset::Eta`.
self.state.est.reset(now);
if let Reset::Elapsed | Reset::All = mode {
self.state.started = now;
}
if let Reset::All = mode {
self.state.pos.reset(now);
self.state.status = Status::InProgress;
for tracker in self.style.format_map.values_mut() {
tracker.reset(&self.state, now);
}
let _ = self.draw(false, now);
}
}
pub(crate) fn update(&mut self, now: Instant, f: impl FnOnce(&mut ProgressState), tick: bool) {
f(&mut self.state);
if tick {
self.tick(now);
}
}
pub(crate) fn set_length(&mut self, now: Instant, len: u64) {
self.state.len = Some(len);
self.update_estimate_and_draw(now);
}
pub(crate) fn inc_length(&mut self, now: Instant, delta: u64) {
if let Some(len) = self.state.len {
self.state.len = Some(len.saturating_add(delta));
}
self.update_estimate_and_draw(now);
}
pub(crate) fn set_tab_width(&mut self, tab_width: usize) {
self.tab_width = tab_width;
self.state.message.set_tab_width(tab_width);
self.state.prefix.set_tab_width(tab_width);
self.style.set_tab_width(tab_width);
}
pub(crate) fn set_style(&mut self, style: ProgressStyle) {
self.style = style;
self.style.set_tab_width(self.tab_width);
}
pub(crate) fn tick(&mut self, now: Instant) {
self.state.tick = self.state.tick.saturating_add(1);
self.update_estimate_and_draw(now);
}
pub(crate) fn update_estimate_and_draw(&mut self, now: Instant) {
let pos = self.state.pos.pos.load(Ordering::Relaxed);
self.state.est.record(pos, now);
let _ = self.draw(false, now);
for tracker in self.style.format_map.values_mut() {
tracker.tick(&self.state, now);
}
}
pub(crate) fn println(&mut self, now: Instant, msg: &str) {
let width = self.draw_target.width();
let mut drawable = match self.draw_target.drawable(true, now) {
Some(drawable) => drawable,
None => return,
};
let mut draw_state = drawable.state();
let lines: Vec<String> = msg.lines().map(Into::into).collect();
// Empty msg should trigger newline as we are in println
if lines.is_empty() {
draw_state.lines.push(String::new());
} else {
draw_state.lines.extend(lines);
}
draw_state.orphan_lines_count = draw_state.lines.len();
if !matches!(self.state.status, Status::DoneHidden) {
self.style
.format_state(&self.state, &mut draw_state.lines, width);
}
drop(draw_state);
let _ = drawable.draw();
}
pub(crate) fn suspend<F: FnOnce() -> R, R>(&mut self, now: Instant, f: F) -> R {
if let Some((state, _)) = self.draw_target.remote() {
return state.write().unwrap().suspend(f, now);
}
if let Some(drawable) = self.draw_target.drawable(true, now) {
let _ = drawable.clear();
}
let ret = f();
let _ = self.draw(true, Instant::now());
ret
}
pub(crate) fn draw(&mut self, mut force_draw: bool, now: Instant) -> io::Result<()> {
let width = self.draw_target.width();
// `|= self.is_finished()` should not be needed here, but we used to always draw for
// finished progress bars, so it's kept as to not cause compatibility issues in weird cases.
force_draw |= self.state.is_finished();
let mut drawable = match self.draw_target.drawable(force_draw, now) {
Some(drawable) => drawable,
None => return Ok(()),
};
let mut draw_state = drawable.state();
if !matches!(self.state.status, Status::DoneHidden) {
self.style
.format_state(&self.state, &mut draw_state.lines, width);
}
drop(draw_state);
drawable.draw()
}
}
impl Drop for BarState {
fn drop(&mut self) {
// Progress bar is already finished. Do not need to do anything other than notify
// the `MultiProgress` that we're now a zombie.
if self.state.is_finished() {
self.draw_target.mark_zombie();
return;
}
self.finish_using_style(Instant::now(), self.on_finish.clone());
// Notify the `MultiProgress` that we're now a zombie.
self.draw_target.mark_zombie();
}
}
pub(crate) enum Reset {
Eta,
Elapsed,
All,
}
/// The state of a progress bar at a moment in time.
#[non_exhaustive]
pub struct ProgressState {
pos: Arc<AtomicPosition>,
len: Option<u64>,
pub(crate) tick: u64,
pub(crate) started: Instant,
status: Status,
est: Estimator,
pub(crate) message: TabExpandedString,
pub(crate) prefix: TabExpandedString,
}
impl ProgressState {
pub(crate) fn new(len: Option<u64>, pos: Arc<AtomicPosition>) -> Self {
let now = Instant::now();
Self {
pos,
len,
tick: 0,
status: Status::InProgress,
started: now,
est: Estimator::new(now),
message: TabExpandedString::NoTabs("".into()),
prefix: TabExpandedString::NoTabs("".into()),
}
}
/// Indicates that the progress bar finished.
pub fn is_finished(&self) -> bool {
match self.status {
Status::InProgress => false,
Status::DoneVisible => true,
Status::DoneHidden => true,
}
}
/// Returns the completion as a floating-point number between 0 and 1
pub fn fraction(&self) -> f32 {
let pos = self.pos.pos.load(Ordering::Relaxed);
let pct = match (pos, self.len) {
(_, None) => 0.0,
(_, Some(0)) => 1.0,
(0, _) => 0.0,
(pos, Some(len)) => pos as f32 / len as f32,
};
pct.clamp(0.0, 1.0)
}
/// The expected ETA
pub fn eta(&self) -> Duration {
if self.is_finished() {
return Duration::new(0, 0);
}
let len = match self.len {
Some(len) => len,
None => return Duration::new(0, 0),
};
let pos = self.pos.pos.load(Ordering::Relaxed);
let sps = self.est.steps_per_second(Instant::now());
// Infinite duration should only ever happen at the beginning, so in this case it's okay to
// just show an ETA of 0 until progress starts to occur.
if sps == 0.0 {
return Duration::new(0, 0);
}
secs_to_duration(len.saturating_sub(pos) as f64 / sps)
}
/// The expected total duration (that is, elapsed time + expected ETA)
pub fn duration(&self) -> Duration {
if self.len.is_none() || self.is_finished() {
return Duration::new(0, 0);
}
self.started.elapsed().saturating_add(self.eta())
}
/// The number of steps per second
pub fn per_sec(&self) -> f64 {
if let Status::InProgress = self.status {
self.est.steps_per_second(Instant::now())
} else {
let len = self.len.unwrap_or_else(|| self.pos());
len as f64 / self.started.elapsed().as_secs_f64()
}
}
pub fn elapsed(&self) -> Duration {
self.started.elapsed()
}
pub fn pos(&self) -> u64 {
self.pos.pos.load(Ordering::Relaxed)
}
pub fn set_pos(&mut self, pos: u64) {
self.pos.set(pos);
}
#[allow(clippy::len_without_is_empty)]
pub fn len(&self) -> Option<u64> {
self.len
}
pub fn set_len(&mut self, len: u64) {
self.len = Some(len);
}
}
#[derive(Debug, PartialEq, Eq, Clone)]
pub(crate) enum TabExpandedString {
NoTabs(Cow<'static, str>),
WithTabs {
original: Cow<'static, str>,
expanded: String,
tab_width: usize,
},
}
impl TabExpandedString {
pub(crate) fn new(s: Cow<'static, str>, tab_width: usize) -> Self {
let expanded = s.replace('\t', &" ".repeat(tab_width));
if s == expanded {
Self::NoTabs(s)
} else {
Self::WithTabs {
original: s,
expanded,
tab_width,
}
}
}
pub(crate) fn expanded(&self) -> &str {
match &self {
Self::NoTabs(s) => {
debug_assert!(!s.contains('\t'));
s
}
Self::WithTabs { expanded, .. } => expanded,
}
}
pub(crate) fn set_tab_width(&mut self, new_tab_width: usize) {
if let Self::WithTabs {
original,
expanded,
tab_width,
} = self
{
if *tab_width != new_tab_width {
*tab_width = new_tab_width;
*expanded = original.replace('\t', &" ".repeat(new_tab_width));
}
}
}
}
/// Double-smoothed exponentially weighted estimator
///
/// This uses an exponentially weighted *time-based* estimator, meaning that it exponentially
/// downweights old data based on its age. The rate at which this occurs is currently a constant
/// value of 15 seconds for 90% weighting. This means that all data older than 15 seconds has a
/// collective weight of 0.1 in the estimate, and all data older than 30 seconds has a collective
/// weight of 0.01, and so on.
///
/// The primary value exposed by `Estimator` is `steps_per_second`. This value is doubly-smoothed,
/// meaning that is the result of using an exponentially weighted estimator (as described above) to
/// estimate the value of another exponentially weighted estimator, which estimates the value of
/// the raw data.
///
/// The purpose of this extra smoothing step is to reduce instantaneous fluctations in the estimate
/// when large updates are received. Without this, estimates might have a large spike followed by a
/// slow asymptotic approach to zero (until the next spike).
#[derive(Debug)]
pub(crate) struct Estimator {
smoothed_steps_per_sec: f64,
double_smoothed_steps_per_sec: f64,
prev_steps: u64,
prev_time: Instant,
start_time: Instant,
}
impl Estimator {
fn new(now: Instant) -> Self {
Self {
smoothed_steps_per_sec: 0.0,
double_smoothed_steps_per_sec: 0.0,
prev_steps: 0,
prev_time: now,
start_time: now,
}
}
fn record(&mut self, new_steps: u64, now: Instant) {
// sanity check: don't record data if time or steps have not advanced
if new_steps <= self.prev_steps || now <= self.prev_time {
// Reset on backwards seek to prevent breakage from seeking to the end for length determination
// See https://github.com/console-rs/indicatif/issues/480
if new_steps < self.prev_steps {
self.prev_steps = new_steps;
self.reset(now);
}
return;
}
let delta_steps = new_steps - self.prev_steps;
let delta_t = duration_to_secs(now - self.prev_time);
// the rate of steps we saw in this update
let new_steps_per_second = delta_steps as f64 / delta_t;
// update the estimate: a weighted average of the old estimate and new data
let weight = estimator_weight(delta_t);
self.smoothed_steps_per_sec =
self.smoothed_steps_per_sec * weight + new_steps_per_second * (1.0 - weight);
// An iterative estimate like `smoothed_steps_per_sec` is supposed to be an exponentially
// weighted average from t=0 back to t=-inf; Since we initialize it to 0, we neglect the
// (non-existent) samples in the weighted average prior to the first one, so the resulting
// average must be normalized. We normalize the single estimate here in order to use it as
// a source for the double smoothed estimate. See comment on normalization in
// `steps_per_second` for details.
let delta_t_start = duration_to_secs(now - self.start_time);
let total_weight = 1.0 - estimator_weight(delta_t_start);
let normalized_smoothed_steps_per_sec = self.smoothed_steps_per_sec / total_weight;
// determine the double smoothed value (EWA smoothing of the single EWA)
self.double_smoothed_steps_per_sec = self.double_smoothed_steps_per_sec * weight
+ normalized_smoothed_steps_per_sec * (1.0 - weight);
self.prev_steps = new_steps;
self.prev_time = now;
}
/// Reset the state of the estimator. Once reset, estimates will not depend on any data prior
/// to `now`. This does not reset the stored position of the progress bar.
pub(crate) fn reset(&mut self, now: Instant) {
self.smoothed_steps_per_sec = 0.0;
self.double_smoothed_steps_per_sec = 0.0;
// only reset prev_time, not prev_steps
self.prev_time = now;
self.start_time = now;
}
/// Average time per step in seconds, using double exponential smoothing
fn steps_per_second(&self, now: Instant) -> f64 {
// Because the value stored in the Estimator is only updated when the Estimator receives an
// update, this value will become stuck if progress stalls. To return an accurate estimate,
// we determine how much time has passed since the last update, and treat this as a
// pseudo-update with 0 steps.
let delta_t = duration_to_secs(now - self.prev_time);
let reweight = estimator_weight(delta_t);
// Normalization of estimates:
//
// The raw estimate is a single value (smoothed_steps_per_second) that is iteratively
// updated. At each update, the previous value of the estimate is downweighted according to
// its age, receiving the iterative weight W(t) = 0.1 ^ (t/15).
//
// Since W(Sum(t_n)) = Prod(W(t_n)), the total weight of a sample after a series of
// iterative steps is simply W(t_e) - W(t_b), where t_e is the time since the end of the
// sample, and t_b is the time since the beginning. The resulting estimate is therefore a
// weighted average with sample weights W(t_e) - W(t_b).
//
// Notice that the weighting function generates sample weights that sum to 1 only when the
// sample times span from t=0 to t=inf; but this is not the case. We have a first sample
// with finite, positive t_b = t_f. In the raw estimate, we handle times prior to t_f by
// setting an initial value of 0, meaning that these (non-existent) samples have no weight.
//
// Therefore, the raw estimate must be normalized by dividing it by the sum of the weights
// in the weighted average. This sum is just W(0) - W(t_f), where t_f is the time since the
// first sample, and W(0) = 1.
let delta_t_start = duration_to_secs(now - self.start_time);
let total_weight = 1.0 - estimator_weight(delta_t_start);
// Generate updated values for `smoothed_steps_per_sec` and `double_smoothed_steps_per_sec`
// (sps and dsps) without storing them. Note that we normalize sps when using it as a
// source to update dsps, and then normalize dsps itself before returning it.
let sps = self.smoothed_steps_per_sec * reweight / total_weight;
let dsps = self.double_smoothed_steps_per_sec * reweight + sps * (1.0 - reweight);
dsps / total_weight
}
}
pub(crate) struct AtomicPosition {
pub(crate) pos: AtomicU64,
capacity: AtomicU8,
prev: AtomicU64,
start: Instant,
}
impl AtomicPosition {
pub(crate) fn new() -> Self {
Self {
pos: AtomicU64::new(0),
capacity: AtomicU8::new(MAX_BURST),
prev: AtomicU64::new(0),
start: Instant::now(),
}
}
pub(crate) fn allow(&self, now: Instant) -> bool {
if now < self.start {
return false;
}
let mut capacity = self.capacity.load(Ordering::Acquire);
// `prev` is the number of ms after `self.started` we last returned `true`, in ns
let prev = self.prev.load(Ordering::Acquire);
// `elapsed` is the number of ns since `self.started`
let elapsed = (now - self.start).as_nanos() as u64;
// `diff` is the number of ns since we last returned `true`
let diff = elapsed.saturating_sub(prev);
// If `capacity` is 0 and not enough time (1ms) has passed since `prev`
// to add new capacity, return `false`. The goal of this method is to
// make this decision as efficient as possible.
if capacity == 0 && diff < INTERVAL {
return false;
}
// We now calculate `new`, the number of ms, in ns, since we last returned `true`,
// and `remainder`, which represents a number of ns less than 1ms which we cannot
// convert into capacity now, so we're saving it for later. We do this by
// substracting this from `elapsed` before storing it into `self.prev`.
let (new, remainder) = ((diff / INTERVAL), (diff % INTERVAL));
// We add `new` to `capacity`, subtract one for returning `true` from here,
// then make sure it does not exceed a maximum of `MAX_BURST`.
capacity = Ord::min(MAX_BURST as u128, (capacity as u128) + (new as u128) - 1) as u8;
// Then, we just store `capacity` and `prev` atomically for the next iteration
self.capacity.store(capacity, Ordering::Release);
self.prev.store(elapsed - remainder, Ordering::Release);
true
}
fn reset(&self, now: Instant) {
self.set(0);
let elapsed = (now.saturating_duration_since(self.start)).as_millis() as u64;
self.prev.store(elapsed, Ordering::Release);
}
pub(crate) fn inc(&self, delta: u64) {
self.pos.fetch_add(delta, Ordering::SeqCst);
}
pub(crate) fn set(&self, pos: u64) {
self.pos.store(pos, Ordering::Release);
}
}
const INTERVAL: u64 = 1_000_000;
const MAX_BURST: u8 = 10;
/// Behavior of a progress bar when it is finished
///
/// This is invoked when a [`ProgressBar`] or [`ProgressBarIter`] completes and
/// [`ProgressBar::is_finished`] is false.
///
/// [`ProgressBar`]: crate::ProgressBar
/// [`ProgressBarIter`]: crate::ProgressBarIter
/// [`ProgressBar::is_finished`]: crate::ProgressBar::is_finished
#[derive(Clone, Debug)]
pub enum ProgressFinish {
/// Finishes the progress bar and leaves the current message
///
/// Same behavior as calling [`ProgressBar::finish()`](crate::ProgressBar::finish).
AndLeave,
/// Finishes the progress bar and sets a message
///
/// Same behavior as calling [`ProgressBar::finish_with_message()`](crate::ProgressBar::finish_with_message).
WithMessage(Cow<'static, str>),
/// Finishes the progress bar and completely clears it (this is the default)
///
/// Same behavior as calling [`ProgressBar::finish_and_clear()`](crate::ProgressBar::finish_and_clear).
AndClear,
/// Finishes the progress bar and leaves the current message and progress
///
/// Same behavior as calling [`ProgressBar::abandon()`](crate::ProgressBar::abandon).
Abandon,
/// Finishes the progress bar and sets a message, and leaves the current progress
///
/// Same behavior as calling [`ProgressBar::abandon_with_message()`](crate::ProgressBar::abandon_with_message).
AbandonWithMessage(Cow<'static, str>),
}
impl Default for ProgressFinish {
fn default() -> Self {
Self::AndClear
}
}
/// Get the appropriate dilution weight for Estimator data given the data's age (in seconds)
///
/// Whenever an update occurs, we will create a new estimate using a weight `w_i` like so:
///
/// ```math
/// <new estimate> = <previous estimate> * w_i + <new data> * (1 - w_i)
/// ```
///
/// In other words, the new estimate is a weighted average of the previous estimate and the new
/// data. We want to choose weights such that for any set of samples where `t_0, t_1, ...` are
/// the durations of the samples:
///
/// ```math
/// Sum(t_i) = ews ==> Prod(w_i) = 0.1
/// ```
///
/// With this constraint it is easy to show that
///
/// ```math
/// w_i = 0.1 ^ (t_i / ews)
/// ```
///
/// Notice that the constraint implies that estimates are independent of the durations of the
/// samples, a very useful feature.
fn estimator_weight(age: f64) -> f64 {
const EXPONENTIAL_WEIGHTING_SECONDS: f64 = 15.0;
0.1_f64.powf(age / EXPONENTIAL_WEIGHTING_SECONDS)
}
fn duration_to_secs(d: Duration) -> f64 {
d.as_secs() as f64 + f64::from(d.subsec_nanos()) / 1_000_000_000f64
}
fn secs_to_duration(s: f64) -> Duration {
let secs = s.trunc() as u64;
let nanos = (s.fract() * 1_000_000_000f64) as u32;
Duration::new(secs, nanos)
}
#[derive(Debug)]
pub(crate) enum Status {
InProgress,
DoneVisible,
DoneHidden,
}
pub(crate) const DEFAULT_TAB_WIDTH: usize = 8;
#[cfg(test)]
mod tests {
use super::*;
use crate::ProgressBar;
// https://github.com/rust-lang/rust-clippy/issues/10281
#[allow(clippy::uninlined_format_args)]
#[test]
fn test_steps_per_second() {
let test_rate = |items_per_second| {
let mut now = Instant::now();
let mut est = Estimator::new(now);
let mut pos = 0;
for _ in 0..20 {
pos += items_per_second;
now += Duration::from_secs(1);
est.record(pos, now);
}
let avg_steps_per_second = est.steps_per_second(now);
assert!(avg_steps_per_second > 0.0);
assert!(avg_steps_per_second.is_finite());
let absolute_error = (avg_steps_per_second - items_per_second as f64).abs();
let relative_error = absolute_error / items_per_second as f64;
assert!(
relative_error < 1.0 / 1e9,
"Expected rate: {}, actual: {}, relative error: {}",
items_per_second,
avg_steps_per_second,
relative_error
);
};
test_rate(1);
test_rate(1_000);
test_rate(1_000_000);
test_rate(1_000_000_000);
test_rate(1_000_000_001);
test_rate(100_000_000_000);
test_rate(1_000_000_000_000);
test_rate(100_000_000_000_000);
test_rate(1_000_000_000_000_000);
}
#[test]
fn test_double_exponential_ave() {
let mut now = Instant::now();
let mut est = Estimator::new(now);
let mut pos = 0;
// note: this is the default weight set in the Estimator
let weight = 15;
for _ in 0..weight {
pos += 1;
now += Duration::from_secs(1);
est.record(pos, now);
}
now += Duration::from_secs(weight);
// The first level EWA:
// -> 90% weight @ 0 eps, 9% weight @ 1 eps, 1% weight @ 0 eps
// -> then normalized by deweighting the 1% weight (before -30 seconds)
let single_target = 0.09 / 0.99;
// The second level EWA:
// -> same logic as above, but using the first level EWA as the source
let double_target = (0.9 * single_target + 0.09) / 0.99;
assert_eq!(est.steps_per_second(now), double_target);
}
#[test]
fn test_estimator_rewind_position() {
let mut now = Instant::now();
let mut est = Estimator::new(now);
now += Duration::from_secs(1);
est.record(1, now);
// should not panic
now += Duration::from_secs(1);
est.record(0, now);
// check that reset occurred (estimator at 1 event per sec)
now += Duration::from_secs(1);
est.record(1, now);
assert_eq!(est.steps_per_second(now), 1.0);
// check that progress bar handles manual seeking
let pb = ProgressBar::hidden();
pb.set_length(10);
pb.set_position(1);
pb.tick();
// Should not panic.
pb.set_position(0);
}
#[test]
fn test_reset_eta() {
let mut now = Instant::now();
let mut est = Estimator::new(now);
// two per second, then reset
now += Duration::from_secs(1);
est.record(2, now);
est.reset(now);
// now one per second, and verify
now += Duration::from_secs(1);
est.record(3, now);
assert_eq!(est.steps_per_second(now), 1.0);
}
#[test]
fn test_duration_stuff() {
let duration = Duration::new(42, 100_000_000);
let secs = duration_to_secs(duration);
assert_eq!(secs_to_duration(secs), duration);
}
#[test]
fn test_atomic_position_large_time_difference() {
let atomic_position = AtomicPosition::new();
let later = atomic_position.start + Duration::from_nanos(INTERVAL * u64::from(u8::MAX));
// Should not panic.
atomic_position.allow(later);
}
}
|