1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
|
use std::ffi::CString;
use std::io;
use std::process::Command;
use std::ptr;
use std::sync::Arc;
use std::thread::{Builder, JoinHandle};
#[derive(Debug)]
pub struct Client {
sem: Handle,
name: String,
}
#[derive(Debug)]
pub struct Acquired;
type BOOL = i32;
type DWORD = u32;
type HANDLE = *mut u8;
type LONG = i32;
const ERROR_ALREADY_EXISTS: DWORD = 183;
const FALSE: BOOL = 0;
const INFINITE: DWORD = 0xffffffff;
const SEMAPHORE_MODIFY_STATE: DWORD = 0x2;
const SYNCHRONIZE: DWORD = 0x00100000;
const TRUE: BOOL = 1;
const WAIT_OBJECT_0: DWORD = 0;
extern "system" {
fn CloseHandle(handle: HANDLE) -> BOOL;
fn SetEvent(hEvent: HANDLE) -> BOOL;
fn WaitForMultipleObjects(
ncount: DWORD,
lpHandles: *const HANDLE,
bWaitAll: BOOL,
dwMilliseconds: DWORD,
) -> DWORD;
fn CreateEventA(
lpEventAttributes: *mut u8,
bManualReset: BOOL,
bInitialState: BOOL,
lpName: *const i8,
) -> HANDLE;
fn ReleaseSemaphore(
hSemaphore: HANDLE,
lReleaseCount: LONG,
lpPreviousCount: *mut LONG,
) -> BOOL;
fn CreateSemaphoreA(
lpEventAttributes: *mut u8,
lInitialCount: LONG,
lMaximumCount: LONG,
lpName: *const i8,
) -> HANDLE;
fn OpenSemaphoreA(dwDesiredAccess: DWORD, bInheritHandle: BOOL, lpName: *const i8) -> HANDLE;
fn WaitForSingleObject(hHandle: HANDLE, dwMilliseconds: DWORD) -> DWORD;
#[link_name = "SystemFunction036"]
fn RtlGenRandom(RandomBuffer: *mut u8, RandomBufferLength: u32) -> u8;
}
// Note that we ideally would use the `getrandom` crate, but unfortunately
// that causes build issues when this crate is used in rust-lang/rust (see
// rust-lang/rust#65014 for more information). As a result we just inline
// the pretty simple Windows-specific implementation of generating
// randomness.
fn getrandom(dest: &mut [u8]) -> io::Result<()> {
// Prevent overflow of u32
for chunk in dest.chunks_mut(u32::max_value() as usize) {
let ret = unsafe { RtlGenRandom(chunk.as_mut_ptr(), chunk.len() as u32) };
if ret == 0 {
return Err(io::Error::new(
io::ErrorKind::Other,
"failed to generate random bytes",
));
}
}
Ok(())
}
impl Client {
pub fn new(limit: usize) -> io::Result<Client> {
// Try a bunch of random semaphore names until we get a unique one,
// but don't try for too long.
//
// Note that `limit == 0` is a valid argument above but Windows
// won't let us create a semaphore with 0 slots available to it. Get
// `limit == 0` working by creating a semaphore instead with one
// slot and then immediately acquire it (without ever releaseing it
// back).
for _ in 0..100 {
let mut bytes = [0; 4];
getrandom(&mut bytes)?;
let mut name = format!("__rust_jobserver_semaphore_{}\0", u32::from_ne_bytes(bytes));
unsafe {
let create_limit = if limit == 0 { 1 } else { limit };
let r = CreateSemaphoreA(
ptr::null_mut(),
create_limit as LONG,
create_limit as LONG,
name.as_ptr() as *const _,
);
if r.is_null() {
return Err(io::Error::last_os_error());
}
let handle = Handle(r);
let err = io::Error::last_os_error();
if err.raw_os_error() == Some(ERROR_ALREADY_EXISTS as i32) {
continue;
}
name.pop(); // chop off the trailing nul
let client = Client {
sem: handle,
name: name,
};
if create_limit != limit {
client.acquire()?;
}
return Ok(client);
}
}
Err(io::Error::new(
io::ErrorKind::Other,
"failed to find a unique name for a semaphore",
))
}
pub unsafe fn open(s: &str) -> Option<Client> {
let name = match CString::new(s) {
Ok(s) => s,
Err(_) => return None,
};
let sem = OpenSemaphoreA(SYNCHRONIZE | SEMAPHORE_MODIFY_STATE, FALSE, name.as_ptr());
if sem.is_null() {
None
} else {
Some(Client {
sem: Handle(sem),
name: s.to_string(),
})
}
}
pub fn acquire(&self) -> io::Result<Acquired> {
unsafe {
let r = WaitForSingleObject(self.sem.0, INFINITE);
if r == WAIT_OBJECT_0 {
Ok(Acquired)
} else {
Err(io::Error::last_os_error())
}
}
}
pub fn release(&self, _data: Option<&Acquired>) -> io::Result<()> {
unsafe {
let r = ReleaseSemaphore(self.sem.0, 1, ptr::null_mut());
if r != 0 {
Ok(())
} else {
Err(io::Error::last_os_error())
}
}
}
pub fn string_arg(&self) -> String {
self.name.clone()
}
pub fn available(&self) -> io::Result<usize> {
// Can't read value of a semaphore on Windows, so
// try to acquire without sleeping, since we can find out the
// old value on release. If acquisiton fails, then available is 0.
unsafe {
let r = WaitForSingleObject(self.sem.0, 0);
if r != WAIT_OBJECT_0 {
Ok(0)
} else {
let mut prev: LONG = 0;
let r = ReleaseSemaphore(self.sem.0, 1, &mut prev);
if r != 0 {
Ok(prev as usize + 1)
} else {
Err(io::Error::last_os_error())
}
}
}
}
pub fn configure(&self, _cmd: &mut Command) {
// nothing to do here, we gave the name of our semaphore to the
// child above
}
}
#[derive(Debug)]
struct Handle(HANDLE);
// HANDLE is a raw ptr, but we're send/sync
unsafe impl Sync for Handle {}
unsafe impl Send for Handle {}
impl Drop for Handle {
fn drop(&mut self) {
unsafe {
CloseHandle(self.0);
}
}
}
#[derive(Debug)]
pub struct Helper {
event: Arc<Handle>,
thread: JoinHandle<()>,
}
pub(crate) fn spawn_helper(
client: crate::Client,
state: Arc<super::HelperState>,
mut f: Box<dyn FnMut(io::Result<crate::Acquired>) + Send>,
) -> io::Result<Helper> {
let event = unsafe {
let r = CreateEventA(ptr::null_mut(), TRUE, FALSE, ptr::null());
if r.is_null() {
return Err(io::Error::last_os_error());
} else {
Handle(r)
}
};
let event = Arc::new(event);
let event2 = event.clone();
let thread = Builder::new().spawn(move || {
let objects = [event2.0, client.inner.sem.0];
state.for_each_request(|_| {
const WAIT_OBJECT_1: u32 = WAIT_OBJECT_0 + 1;
match unsafe { WaitForMultipleObjects(2, objects.as_ptr(), FALSE, INFINITE) } {
WAIT_OBJECT_0 => return,
WAIT_OBJECT_1 => f(Ok(crate::Acquired {
client: client.inner.clone(),
data: Acquired,
disabled: false,
})),
_ => f(Err(io::Error::last_os_error())),
}
});
})?;
Ok(Helper { thread, event })
}
impl Helper {
pub fn join(self) {
// Unlike unix this logic is much easier. If our thread was blocked
// in waiting for requests it should already be woken up and
// exiting. Otherwise it's waiting for a token, so we wake it up
// with a different event that it's also waiting on here. After
// these two we should be guaranteed the thread is on its way out,
// so we can safely `join`.
let r = unsafe { SetEvent(self.event.0) };
if r == 0 {
panic!("failed to set event: {}", io::Error::last_os_error());
}
drop(self.thread.join());
}
}
|