1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
|
/* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunSoft, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*
*/
/* lgamma_r(x, signgamp)
* Reentrant version of the logarithm of the Gamma function
* with user provide pointer for the sign of Gamma(x).
*
* Method:
* 1. Argument Reduction for 0 < x <= 8
* Since gamma(1+s)=s*gamma(s), for x in [0,8], we may
* reduce x to a number in [1.5,2.5] by
* lgamma(1+s) = log(s) + lgamma(s)
* for example,
* lgamma(7.3) = log(6.3) + lgamma(6.3)
* = log(6.3*5.3) + lgamma(5.3)
* = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3)
* 2. Polynomial approximation of lgamma around its
* minimun ymin=1.461632144968362245 to maintain monotonicity.
* On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use
* Let z = x-ymin;
* lgamma(x) = -1.214862905358496078218 + z^2*poly(z)
* where
* poly(z) is a 14 degree polynomial.
* 2. Rational approximation in the primary interval [2,3]
* We use the following approximation:
* s = x-2.0;
* lgamma(x) = 0.5*s + s*P(s)/Q(s)
* with accuracy
* |P/Q - (lgamma(x)-0.5s)| < 2**-61.71
* Our algorithms are based on the following observation
*
* zeta(2)-1 2 zeta(3)-1 3
* lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ...
* 2 3
*
* where Euler = 0.5771... is the Euler constant, which is very
* close to 0.5.
*
* 3. For x>=8, we have
* lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+....
* (better formula:
* lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...)
* Let z = 1/x, then we approximation
* f(z) = lgamma(x) - (x-0.5)(log(x)-1)
* by
* 3 5 11
* w = w0 + w1*z + w2*z + w3*z + ... + w6*z
* where
* |w - f(z)| < 2**-58.74
*
* 4. For negative x, since (G is gamma function)
* -x*G(-x)*G(x) = PI/sin(PI*x),
* we have
* G(x) = PI/(sin(PI*x)*(-x)*G(-x))
* since G(-x) is positive, sign(G(x)) = sign(sin(PI*x)) for x<0
* Hence, for x<0, signgam = sign(sin(PI*x)) and
* lgamma(x) = log(|Gamma(x)|)
* = log(PI/(|x*sin(PI*x)|)) - lgamma(-x);
* Note: one should avoid compute PI*(-x) directly in the
* computation of sin(PI*(-x)).
*
* 5. Special Cases
* lgamma(2+s) ~ s*(1-Euler) for tiny s
* lgamma(1) = lgamma(2) = 0
* lgamma(x) ~ -log(|x|) for tiny x
* lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero
* lgamma(inf) = inf
* lgamma(-inf) = inf (bug for bug compatible with C99!?)
*
*/
use super::{floor, k_cos, k_sin, log};
const PI: f64 = 3.14159265358979311600e+00; /* 0x400921FB, 0x54442D18 */
const A0: f64 = 7.72156649015328655494e-02; /* 0x3FB3C467, 0xE37DB0C8 */
const A1: f64 = 3.22467033424113591611e-01; /* 0x3FD4A34C, 0xC4A60FAD */
const A2: f64 = 6.73523010531292681824e-02; /* 0x3FB13E00, 0x1A5562A7 */
const A3: f64 = 2.05808084325167332806e-02; /* 0x3F951322, 0xAC92547B */
const A4: f64 = 7.38555086081402883957e-03; /* 0x3F7E404F, 0xB68FEFE8 */
const A5: f64 = 2.89051383673415629091e-03; /* 0x3F67ADD8, 0xCCB7926B */
const A6: f64 = 1.19270763183362067845e-03; /* 0x3F538A94, 0x116F3F5D */
const A7: f64 = 5.10069792153511336608e-04; /* 0x3F40B6C6, 0x89B99C00 */
const A8: f64 = 2.20862790713908385557e-04; /* 0x3F2CF2EC, 0xED10E54D */
const A9: f64 = 1.08011567247583939954e-04; /* 0x3F1C5088, 0x987DFB07 */
const A10: f64 = 2.52144565451257326939e-05; /* 0x3EFA7074, 0x428CFA52 */
const A11: f64 = 4.48640949618915160150e-05; /* 0x3F07858E, 0x90A45837 */
const TC: f64 = 1.46163214496836224576e+00; /* 0x3FF762D8, 0x6356BE3F */
const TF: f64 = -1.21486290535849611461e-01; /* 0xBFBF19B9, 0xBCC38A42 */
/* tt = -(tail of TF) */
const TT: f64 = -3.63867699703950536541e-18; /* 0xBC50C7CA, 0xA48A971F */
const T0: f64 = 4.83836122723810047042e-01; /* 0x3FDEF72B, 0xC8EE38A2 */
const T1: f64 = -1.47587722994593911752e-01; /* 0xBFC2E427, 0x8DC6C509 */
const T2: f64 = 6.46249402391333854778e-02; /* 0x3FB08B42, 0x94D5419B */
const T3: f64 = -3.27885410759859649565e-02; /* 0xBFA0C9A8, 0xDF35B713 */
const T4: f64 = 1.79706750811820387126e-02; /* 0x3F9266E7, 0x970AF9EC */
const T5: f64 = -1.03142241298341437450e-02; /* 0xBF851F9F, 0xBA91EC6A */
const T6: f64 = 6.10053870246291332635e-03; /* 0x3F78FCE0, 0xE370E344 */
const T7: f64 = -3.68452016781138256760e-03; /* 0xBF6E2EFF, 0xB3E914D7 */
const T8: f64 = 2.25964780900612472250e-03; /* 0x3F6282D3, 0x2E15C915 */
const T9: f64 = -1.40346469989232843813e-03; /* 0xBF56FE8E, 0xBF2D1AF1 */
const T10: f64 = 8.81081882437654011382e-04; /* 0x3F4CDF0C, 0xEF61A8E9 */
const T11: f64 = -5.38595305356740546715e-04; /* 0xBF41A610, 0x9C73E0EC */
const T12: f64 = 3.15632070903625950361e-04; /* 0x3F34AF6D, 0x6C0EBBF7 */
const T13: f64 = -3.12754168375120860518e-04; /* 0xBF347F24, 0xECC38C38 */
const T14: f64 = 3.35529192635519073543e-04; /* 0x3F35FD3E, 0xE8C2D3F4 */
const U0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
const U1: f64 = 6.32827064025093366517e-01; /* 0x3FE4401E, 0x8B005DFF */
const U2: f64 = 1.45492250137234768737e+00; /* 0x3FF7475C, 0xD119BD6F */
const U3: f64 = 9.77717527963372745603e-01; /* 0x3FEF4976, 0x44EA8450 */
const U4: f64 = 2.28963728064692451092e-01; /* 0x3FCD4EAE, 0xF6010924 */
const U5: f64 = 1.33810918536787660377e-02; /* 0x3F8B678B, 0xBF2BAB09 */
const V1: f64 = 2.45597793713041134822e+00; /* 0x4003A5D7, 0xC2BD619C */
const V2: f64 = 2.12848976379893395361e+00; /* 0x40010725, 0xA42B18F5 */
const V3: f64 = 7.69285150456672783825e-01; /* 0x3FE89DFB, 0xE45050AF */
const V4: f64 = 1.04222645593369134254e-01; /* 0x3FBAAE55, 0xD6537C88 */
const V5: f64 = 3.21709242282423911810e-03; /* 0x3F6A5ABB, 0x57D0CF61 */
const S0: f64 = -7.72156649015328655494e-02; /* 0xBFB3C467, 0xE37DB0C8 */
const S1: f64 = 2.14982415960608852501e-01; /* 0x3FCB848B, 0x36E20878 */
const S2: f64 = 3.25778796408930981787e-01; /* 0x3FD4D98F, 0x4F139F59 */
const S3: f64 = 1.46350472652464452805e-01; /* 0x3FC2BB9C, 0xBEE5F2F7 */
const S4: f64 = 2.66422703033638609560e-02; /* 0x3F9B481C, 0x7E939961 */
const S5: f64 = 1.84028451407337715652e-03; /* 0x3F5E26B6, 0x7368F239 */
const S6: f64 = 3.19475326584100867617e-05; /* 0x3F00BFEC, 0xDD17E945 */
const R1: f64 = 1.39200533467621045958e+00; /* 0x3FF645A7, 0x62C4AB74 */
const R2: f64 = 7.21935547567138069525e-01; /* 0x3FE71A18, 0x93D3DCDC */
const R3: f64 = 1.71933865632803078993e-01; /* 0x3FC601ED, 0xCCFBDF27 */
const R4: f64 = 1.86459191715652901344e-02; /* 0x3F9317EA, 0x742ED475 */
const R5: f64 = 7.77942496381893596434e-04; /* 0x3F497DDA, 0xCA41A95B */
const R6: f64 = 7.32668430744625636189e-06; /* 0x3EDEBAF7, 0xA5B38140 */
const W0: f64 = 4.18938533204672725052e-01; /* 0x3FDACFE3, 0x90C97D69 */
const W1: f64 = 8.33333333333329678849e-02; /* 0x3FB55555, 0x5555553B */
const W2: f64 = -2.77777777728775536470e-03; /* 0xBF66C16C, 0x16B02E5C */
const W3: f64 = 7.93650558643019558500e-04; /* 0x3F4A019F, 0x98CF38B6 */
const W4: f64 = -5.95187557450339963135e-04; /* 0xBF4380CB, 0x8C0FE741 */
const W5: f64 = 8.36339918996282139126e-04; /* 0x3F4B67BA, 0x4CDAD5D1 */
const W6: f64 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
/* sin(PI*x) assuming x > 2^-100, if sin(PI*x)==0 the sign is arbitrary */
fn sin_pi(mut x: f64) -> f64 {
let mut n: i32;
/* spurious inexact if odd int */
x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */
n = (x * 4.0) as i32;
n = (n + 1) / 2;
x -= (n as f64) * 0.5;
x *= PI;
match n {
1 => k_cos(x, 0.0),
2 => k_sin(-x, 0.0, 0),
3 => -k_cos(x, 0.0),
0 | _ => k_sin(x, 0.0, 0),
}
}
pub fn lgamma_r(mut x: f64) -> (f64, i32) {
let u: u64 = x.to_bits();
let mut t: f64;
let y: f64;
let mut z: f64;
let nadj: f64;
let p: f64;
let p1: f64;
let p2: f64;
let p3: f64;
let q: f64;
let mut r: f64;
let w: f64;
let ix: u32;
let sign: bool;
let i: i32;
let mut signgam: i32;
/* purge off +-inf, NaN, +-0, tiny and negative arguments */
signgam = 1;
sign = (u >> 63) != 0;
ix = ((u >> 32) as u32) & 0x7fffffff;
if ix >= 0x7ff00000 {
return (x * x, signgam);
}
if ix < (0x3ff - 70) << 20 {
/* |x|<2**-70, return -log(|x|) */
if sign {
x = -x;
signgam = -1;
}
return (-log(x), signgam);
}
if sign {
x = -x;
t = sin_pi(x);
if t == 0.0 {
/* -integer */
return (1.0 / (x - x), signgam);
}
if t > 0.0 {
signgam = -1;
} else {
t = -t;
}
nadj = log(PI / (t * x));
} else {
nadj = 0.0;
}
/* purge off 1 and 2 */
if (ix == 0x3ff00000 || ix == 0x40000000) && (u & 0xffffffff) == 0 {
r = 0.0;
}
/* for x < 2.0 */
else if ix < 0x40000000 {
if ix <= 0x3feccccc {
/* lgamma(x) = lgamma(x+1)-log(x) */
r = -log(x);
if ix >= 0x3FE76944 {
y = 1.0 - x;
i = 0;
} else if ix >= 0x3FCDA661 {
y = x - (TC - 1.0);
i = 1;
} else {
y = x;
i = 2;
}
} else {
r = 0.0;
if ix >= 0x3FFBB4C3 {
/* [1.7316,2] */
y = 2.0 - x;
i = 0;
} else if ix >= 0x3FF3B4C4 {
/* [1.23,1.73] */
y = x - TC;
i = 1;
} else {
y = x - 1.0;
i = 2;
}
}
match i {
0 => {
z = y * y;
p1 = A0 + z * (A2 + z * (A4 + z * (A6 + z * (A8 + z * A10))));
p2 = z * (A1 + z * (A3 + z * (A5 + z * (A7 + z * (A9 + z * A11)))));
p = y * p1 + p2;
r += p - 0.5 * y;
}
1 => {
z = y * y;
w = z * y;
p1 = T0 + w * (T3 + w * (T6 + w * (T9 + w * T12))); /* parallel comp */
p2 = T1 + w * (T4 + w * (T7 + w * (T10 + w * T13)));
p3 = T2 + w * (T5 + w * (T8 + w * (T11 + w * T14)));
p = z * p1 - (TT - w * (p2 + y * p3));
r += TF + p;
}
2 => {
p1 = y * (U0 + y * (U1 + y * (U2 + y * (U3 + y * (U4 + y * U5)))));
p2 = 1.0 + y * (V1 + y * (V2 + y * (V3 + y * (V4 + y * V5))));
r += -0.5 * y + p1 / p2;
}
#[cfg(feature = "checked")]
_ => unreachable!(),
#[cfg(not(feature = "checked"))]
_ => {}
}
} else if ix < 0x40200000 {
/* x < 8.0 */
i = x as i32;
y = x - (i as f64);
p = y * (S0 + y * (S1 + y * (S2 + y * (S3 + y * (S4 + y * (S5 + y * S6))))));
q = 1.0 + y * (R1 + y * (R2 + y * (R3 + y * (R4 + y * (R5 + y * R6)))));
r = 0.5 * y + p / q;
z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
// TODO: In C, this was implemented using switch jumps with fallthrough.
// Does this implementation have performance problems?
if i >= 7 {
z *= y + 6.0;
}
if i >= 6 {
z *= y + 5.0;
}
if i >= 5 {
z *= y + 4.0;
}
if i >= 4 {
z *= y + 3.0;
}
if i >= 3 {
z *= y + 2.0;
r += log(z);
}
} else if ix < 0x43900000 {
/* 8.0 <= x < 2**58 */
t = log(x);
z = 1.0 / x;
y = z * z;
w = W0 + z * (W1 + y * (W2 + y * (W3 + y * (W4 + y * (W5 + y * W6)))));
r = (x - 0.5) * (t - 1.0) + w;
} else {
/* 2**58 <= x <= inf */
r = x * (log(x) - 1.0);
}
if sign {
r = nadj - r;
}
return (r, signgam);
}
|