summaryrefslogtreecommitdiffstats
path: root/vendor/openssl/src/pkey_ctx.rs
blob: 4ac32a8517e8b67cd2747a9078fd6d06cca46e63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
//! The asymmetric encryption context.
//!
//! # Examples
//!
//! Encrypt data with RSA
//!
//! ```
//! use openssl::rsa::Rsa;
//! use openssl::pkey::PKey;
//! use openssl::pkey_ctx::PkeyCtx;
//!
//! let key = Rsa::generate(4096).unwrap();
//! let key = PKey::from_rsa(key).unwrap();
//!
//! let mut ctx = PkeyCtx::new(&key).unwrap();
//! ctx.encrypt_init().unwrap();
//!
//! let data = b"Some Crypto Text";
//! let mut ciphertext = vec![];
//! ctx.encrypt_to_vec(data, &mut ciphertext).unwrap();
//! ```

#![cfg_attr(
    not(boringssl),
    doc = r#"\
Generate a CMAC key

```
use openssl::pkey_ctx::PkeyCtx;
use openssl::pkey::Id;
use openssl::cipher::Cipher;

let mut ctx = PkeyCtx::new_id(Id::CMAC).unwrap();
ctx.keygen_init().unwrap();
ctx.set_keygen_cipher(Cipher::aes_128_cbc()).unwrap();
ctx.set_keygen_mac_key(b"0123456789abcdef").unwrap();
let cmac_key = ctx.keygen().unwrap();
```"#
)]

//!
//! Sign and verify data with RSA
//!
//! ```
//! use openssl::pkey_ctx::PkeyCtx;
//! use openssl::pkey::PKey;
//! use openssl::rsa::Rsa;
//!
//! // Generate a random RSA key.
//! let key = Rsa::generate(4096).unwrap();
//! let key = PKey::from_rsa(key).unwrap();
//!
//! let text = b"Some Crypto Text";
//!
//! // Create the signature.
//! let mut ctx = PkeyCtx::new(&key).unwrap();
//! ctx.sign_init().unwrap();
//! let mut signature = vec![];
//! ctx.sign_to_vec(text, &mut signature).unwrap();
//!
//! // Verify the signature.
//! let mut ctx = PkeyCtx::new(&key).unwrap();
//! ctx.verify_init().unwrap();
//! let valid = ctx.verify(text, &signature).unwrap();
//! assert!(valid);
//! ```
#[cfg(not(boringssl))]
use crate::cipher::CipherRef;
use crate::error::ErrorStack;
use crate::md::MdRef;
use crate::pkey::{HasPrivate, HasPublic, Id, PKey, PKeyRef, Private};
use crate::rsa::Padding;
use crate::sign::RsaPssSaltlen;
use crate::{cvt, cvt_p};
use foreign_types::{ForeignType, ForeignTypeRef};
#[cfg(not(boringssl))]
use libc::c_int;
use openssl_macros::corresponds;
use std::convert::TryFrom;
use std::ptr;

/// HKDF modes of operation.
#[cfg(ossl111)]
pub struct HkdfMode(c_int);

#[cfg(ossl111)]
impl HkdfMode {
    /// This is the default mode. Calling [`derive`][PkeyCtxRef::derive] on a [`PkeyCtxRef`] set up
    /// for HKDF will perform an extract followed by an expand operation in one go. The derived key
    /// returned will be the result after the expand operation. The intermediate fixed-length
    /// pseudorandom key K is not returned.
    pub const EXTRACT_THEN_EXPAND: Self = HkdfMode(ffi::EVP_PKEY_HKDEF_MODE_EXTRACT_AND_EXPAND);

    /// In this mode calling [`derive`][PkeyCtxRef::derive] will just perform the extract operation.
    /// The value returned will be the intermediate fixed-length pseudorandom key K.
    ///
    /// The digest, key and salt values must be set before a key is derived or an error occurs.
    pub const EXTRACT_ONLY: Self = HkdfMode(ffi::EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY);

    /// In this mode calling [`derive`][PkeyCtxRef::derive] will just perform the expand operation.
    /// The input key should be set to the intermediate fixed-length pseudorandom key K returned
    /// from a previous extract operation.
    ///
    /// The digest, key and info values must be set before a key is derived or an error occurs.
    pub const EXPAND_ONLY: Self = HkdfMode(ffi::EVP_PKEY_HKDEF_MODE_EXPAND_ONLY);
}

generic_foreign_type_and_impl_send_sync! {
    type CType = ffi::EVP_PKEY_CTX;
    fn drop = ffi::EVP_PKEY_CTX_free;

    /// A context object which can perform asymmetric cryptography operations.
    pub struct PkeyCtx<T>;
    /// A reference to a [`PkeyCtx`].
    pub struct PkeyCtxRef<T>;
}

impl<T> PkeyCtx<T> {
    /// Creates a new pkey context using the provided key.
    #[corresponds(EVP_PKEY_CTX_new)]
    #[inline]
    pub fn new(pkey: &PKeyRef<T>) -> Result<Self, ErrorStack> {
        unsafe {
            let ptr = cvt_p(ffi::EVP_PKEY_CTX_new(pkey.as_ptr(), ptr::null_mut()))?;
            Ok(PkeyCtx::from_ptr(ptr))
        }
    }
}

impl PkeyCtx<()> {
    /// Creates a new pkey context for the specified algorithm ID.
    #[corresponds(EVP_PKEY_new_id)]
    #[inline]
    pub fn new_id(id: Id) -> Result<Self, ErrorStack> {
        unsafe {
            let ptr = cvt_p(ffi::EVP_PKEY_CTX_new_id(id.as_raw(), ptr::null_mut()))?;
            Ok(PkeyCtx::from_ptr(ptr))
        }
    }
}

impl<T> PkeyCtxRef<T>
where
    T: HasPublic,
{
    /// Prepares the context for encryption using the public key.
    #[corresponds(EVP_PKEY_encrypt_init)]
    #[inline]
    pub fn encrypt_init(&mut self) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_encrypt_init(self.as_ptr()))?;
        }

        Ok(())
    }

    /// Prepares the context for signature verification using the public key.
    #[corresponds(EVP_PKEY_verify_init)]
    #[inline]
    pub fn verify_init(&mut self) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_verify_init(self.as_ptr()))?;
        }

        Ok(())
    }

    /// Prepares the context for signature recovery using the public key.
    #[corresponds(EVP_PKEY_verify_recover_init)]
    #[inline]
    pub fn verify_recover_init(&mut self) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_verify_recover_init(self.as_ptr()))?;
        }

        Ok(())
    }

    /// Encrypts data using the public key.
    ///
    /// If `to` is set to `None`, an upper bound on the number of bytes required for the output buffer will be
    /// returned.
    #[corresponds(EVP_PKEY_encrypt)]
    #[inline]
    pub fn encrypt(&mut self, from: &[u8], to: Option<&mut [u8]>) -> Result<usize, ErrorStack> {
        let mut written = to.as_ref().map_or(0, |b| b.len());
        unsafe {
            cvt(ffi::EVP_PKEY_encrypt(
                self.as_ptr(),
                to.map_or(ptr::null_mut(), |b| b.as_mut_ptr()),
                &mut written,
                from.as_ptr(),
                from.len(),
            ))?;
        }

        Ok(written)
    }

    /// Like [`Self::encrypt`] but appends ciphertext to a [`Vec`].
    pub fn encrypt_to_vec(&mut self, from: &[u8], out: &mut Vec<u8>) -> Result<usize, ErrorStack> {
        let base = out.len();
        let len = self.encrypt(from, None)?;
        out.resize(base + len, 0);
        let len = self.encrypt(from, Some(&mut out[base..]))?;
        out.truncate(base + len);
        Ok(len)
    }

    /// Verifies the signature of data using the public key.
    ///
    /// Returns `Ok(true)` if the signature is valid, `Ok(false)` if the signature is invalid, and `Err` if an error
    /// occurred.
    ///
    /// # Note
    ///
    /// This verifies the signature of the *raw* data. It is more common to compute and verify the signature of the
    /// cryptographic hash of an arbitrary amount of data. The [`MdCtx`](crate::md_ctx::MdCtx) type can be used to do
    /// that.
    #[corresponds(EVP_PKEY_verify)]
    #[inline]
    pub fn verify(&mut self, data: &[u8], sig: &[u8]) -> Result<bool, ErrorStack> {
        unsafe {
            let r = ffi::EVP_PKEY_verify(
                self.as_ptr(),
                sig.as_ptr(),
                sig.len(),
                data.as_ptr(),
                data.len(),
            );
            // `EVP_PKEY_verify` is not terribly consistent about how it,
            // reports errors. It does not clearly distinguish between 0 and
            // -1, and may put errors on the stack in both cases. If there's
            // errors on the stack, we return `Err()`, else we return
            // `Ok(false)`.
            if r <= 0 {
                let errors = ErrorStack::get();
                if !errors.errors().is_empty() {
                    return Err(errors);
                }
            }

            Ok(r == 1)
        }
    }

    /// Recovers the original data signed by the private key. You almost
    /// always want `verify` instead.
    ///
    /// Returns the number of bytes written to `to`, or the number of bytes
    /// that would be written, if `to` is `None.
    #[corresponds(EVP_PKEY_verify_recover)]
    #[inline]
    pub fn verify_recover(
        &mut self,
        sig: &[u8],
        to: Option<&mut [u8]>,
    ) -> Result<usize, ErrorStack> {
        let mut written = to.as_ref().map_or(0, |b| b.len());
        unsafe {
            cvt(ffi::EVP_PKEY_verify_recover(
                self.as_ptr(),
                to.map_or(ptr::null_mut(), |b| b.as_mut_ptr()),
                &mut written,
                sig.as_ptr(),
                sig.len(),
            ))?;
        }

        Ok(written)
    }
}

impl<T> PkeyCtxRef<T>
where
    T: HasPrivate,
{
    /// Prepares the context for decryption using the private key.
    #[corresponds(EVP_PKEY_decrypt_init)]
    #[inline]
    pub fn decrypt_init(&mut self) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_decrypt_init(self.as_ptr()))?;
        }

        Ok(())
    }

    /// Prepares the context for signing using the private key.
    #[corresponds(EVP_PKEY_sign_init)]
    #[inline]
    pub fn sign_init(&mut self) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_sign_init(self.as_ptr()))?;
        }

        Ok(())
    }

    /// Sets the peer key used for secret derivation.
    #[corresponds(EVP_PKEY_derive_set_peer)]
    pub fn derive_set_peer<U>(&mut self, key: &PKeyRef<U>) -> Result<(), ErrorStack>
    where
        U: HasPublic,
    {
        unsafe {
            cvt(ffi::EVP_PKEY_derive_set_peer(self.as_ptr(), key.as_ptr()))?;
        }

        Ok(())
    }

    /// Decrypts data using the private key.
    ///
    /// If `to` is set to `None`, an upper bound on the number of bytes required for the output buffer will be
    /// returned.
    #[corresponds(EVP_PKEY_decrypt)]
    #[inline]
    pub fn decrypt(&mut self, from: &[u8], to: Option<&mut [u8]>) -> Result<usize, ErrorStack> {
        let mut written = to.as_ref().map_or(0, |b| b.len());
        unsafe {
            cvt(ffi::EVP_PKEY_decrypt(
                self.as_ptr(),
                to.map_or(ptr::null_mut(), |b| b.as_mut_ptr()),
                &mut written,
                from.as_ptr(),
                from.len(),
            ))?;
        }

        Ok(written)
    }

    /// Like [`Self::decrypt`] but appends plaintext to a [`Vec`].
    pub fn decrypt_to_vec(&mut self, from: &[u8], out: &mut Vec<u8>) -> Result<usize, ErrorStack> {
        let base = out.len();
        let len = self.decrypt(from, None)?;
        out.resize(base + len, 0);
        let len = self.decrypt(from, Some(&mut out[base..]))?;
        out.truncate(base + len);
        Ok(len)
    }

    /// Signs the contents of `data`.
    ///
    /// If `sig` is set to `None`, an upper bound on the number of bytes required for the output buffer will be
    /// returned.
    ///
    /// # Note
    ///
    /// This computes the signature of the *raw* bytes of `data`. It is more common to sign the cryptographic hash of
    /// an arbitrary amount of data. The [`MdCtx`](crate::md_ctx::MdCtx) type can be used to do that.
    #[corresponds(EVP_PKEY_sign)]
    #[inline]
    pub fn sign(&mut self, data: &[u8], sig: Option<&mut [u8]>) -> Result<usize, ErrorStack> {
        let mut written = sig.as_ref().map_or(0, |b| b.len());
        unsafe {
            cvt(ffi::EVP_PKEY_sign(
                self.as_ptr(),
                sig.map_or(ptr::null_mut(), |b| b.as_mut_ptr()),
                &mut written,
                data.as_ptr(),
                data.len(),
            ))?;
        }

        Ok(written)
    }

    /// Like [`Self::sign`] but appends the signature to a [`Vec`].
    pub fn sign_to_vec(&mut self, data: &[u8], sig: &mut Vec<u8>) -> Result<usize, ErrorStack> {
        let base = sig.len();
        let len = self.sign(data, None)?;
        sig.resize(base + len, 0);
        let len = self.sign(data, Some(&mut sig[base..]))?;
        sig.truncate(base + len);
        Ok(len)
    }
}

impl<T> PkeyCtxRef<T> {
    /// Prepares the context for shared secret derivation.
    #[corresponds(EVP_PKEY_derive_init)]
    #[inline]
    pub fn derive_init(&mut self) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_derive_init(self.as_ptr()))?;
        }

        Ok(())
    }

    /// Prepares the context for key generation.
    #[corresponds(EVP_PKEY_keygen_init)]
    #[inline]
    pub fn keygen_init(&mut self) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_keygen_init(self.as_ptr()))?;
        }

        Ok(())
    }

    /// Sets which algorithm was used to compute the digest used in a
    /// signature. With RSA signatures this causes the signature to be wrapped
    /// in a `DigestInfo` structure. This is almost always what you want with
    /// RSA signatures.
    #[corresponds(EVP_PKEY_CTX_set_signature_md)]
    #[inline]
    pub fn set_signature_md(&self, md: &MdRef) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_CTX_set_signature_md(
                self.as_ptr(),
                md.as_ptr(),
            ))?;
        }
        Ok(())
    }

    /// Returns the RSA padding mode in use.
    ///
    /// This is only useful for RSA keys.
    #[corresponds(EVP_PKEY_CTX_get_rsa_padding)]
    #[inline]
    pub fn rsa_padding(&self) -> Result<Padding, ErrorStack> {
        let mut pad = 0;
        unsafe {
            cvt(ffi::EVP_PKEY_CTX_get_rsa_padding(self.as_ptr(), &mut pad))?;
        }

        Ok(Padding::from_raw(pad))
    }

    /// Sets the RSA padding mode.
    ///
    /// This is only useful for RSA keys.
    #[corresponds(EVP_PKEY_CTX_set_rsa_padding)]
    #[inline]
    pub fn set_rsa_padding(&mut self, padding: Padding) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_CTX_set_rsa_padding(
                self.as_ptr(),
                padding.as_raw(),
            ))?;
        }

        Ok(())
    }

    /// Sets the RSA PSS salt length.
    ///
    /// This is only useful for RSA keys.
    #[corresponds(EVP_PKEY_CTX_set_rsa_pss_saltlen)]
    #[inline]
    pub fn set_rsa_pss_saltlen(&mut self, len: RsaPssSaltlen) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_CTX_set_rsa_pss_saltlen(
                self.as_ptr(),
                len.as_raw(),
            ))
            .map(|_| ())
        }
    }

    /// Sets the RSA MGF1 algorithm.
    ///
    /// This is only useful for RSA keys.
    #[corresponds(EVP_PKEY_CTX_set_rsa_mgf1_md)]
    #[inline]
    pub fn set_rsa_mgf1_md(&mut self, md: &MdRef) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_CTX_set_rsa_mgf1_md(
                self.as_ptr(),
                md.as_ptr(),
            ))?;
        }

        Ok(())
    }

    /// Sets the RSA OAEP algorithm.
    ///
    /// This is only useful for RSA keys.
    #[corresponds(EVP_PKEY_CTX_set_rsa_oaep_md)]
    #[cfg(any(ossl102, libressl310, boringssl))]
    #[inline]
    pub fn set_rsa_oaep_md(&mut self, md: &MdRef) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_CTX_set_rsa_oaep_md(
                self.as_ptr(),
                md.as_ptr() as *mut _,
            ))?;
        }

        Ok(())
    }

    /// Sets the RSA OAEP label.
    ///
    /// This is only useful for RSA keys.
    #[corresponds(EVP_PKEY_CTX_set0_rsa_oaep_label)]
    #[cfg(any(ossl102, libressl310, boringssl))]
    pub fn set_rsa_oaep_label(&mut self, label: &[u8]) -> Result<(), ErrorStack> {
        use crate::LenType;
        let len = LenType::try_from(label.len()).unwrap();

        unsafe {
            let p = ffi::OPENSSL_malloc(label.len() as _);
            ptr::copy_nonoverlapping(label.as_ptr(), p as *mut _, label.len());

            let r = cvt(ffi::EVP_PKEY_CTX_set0_rsa_oaep_label(
                self.as_ptr(),
                p as *mut _,
                len,
            ));
            if r.is_err() {
                ffi::OPENSSL_free(p);
            }
            r?;
        }

        Ok(())
    }

    /// Sets the cipher used during key generation.
    #[cfg(not(boringssl))]
    #[corresponds(EVP_PKEY_CTX_ctrl)]
    #[inline]
    pub fn set_keygen_cipher(&mut self, cipher: &CipherRef) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_CTX_ctrl(
                self.as_ptr(),
                -1,
                ffi::EVP_PKEY_OP_KEYGEN,
                ffi::EVP_PKEY_CTRL_CIPHER,
                0,
                cipher.as_ptr() as *mut _,
            ))?;
        }

        Ok(())
    }

    /// Sets the key MAC key used during key generation.
    #[cfg(not(boringssl))]
    #[corresponds(EVP_PKEY_CTX_ctrl)]
    #[inline]
    pub fn set_keygen_mac_key(&mut self, key: &[u8]) -> Result<(), ErrorStack> {
        let len = c_int::try_from(key.len()).unwrap();

        unsafe {
            cvt(ffi::EVP_PKEY_CTX_ctrl(
                self.as_ptr(),
                -1,
                ffi::EVP_PKEY_OP_KEYGEN,
                ffi::EVP_PKEY_CTRL_SET_MAC_KEY,
                len,
                key.as_ptr() as *mut _,
            ))?;
        }

        Ok(())
    }

    /// Sets the digest used for HKDF derivation.
    ///
    /// Requires OpenSSL 1.1.0 or newer.
    #[corresponds(EVP_PKEY_CTX_set_hkdf_md)]
    #[cfg(any(ossl110, boringssl))]
    #[inline]
    pub fn set_hkdf_md(&mut self, digest: &MdRef) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_CTX_set_hkdf_md(
                self.as_ptr(),
                digest.as_ptr(),
            ))?;
        }

        Ok(())
    }

    /// Sets the HKDF mode of operation.
    ///
    /// Defaults to [`HkdfMode::EXTRACT_THEN_EXPAND`].
    ///
    /// WARNING: Although this API calls it a "mode", HKDF-Extract and HKDF-Expand are distinct
    /// operations with distinct inputs and distinct kinds of keys. Callers should not pass input
    /// secrets for one operation into the other.
    ///
    /// Requires OpenSSL 1.1.1 or newer.
    #[corresponds(EVP_PKEY_CTX_set_hkdf_mode)]
    #[cfg(ossl111)]
    #[inline]
    pub fn set_hkdf_mode(&mut self, mode: HkdfMode) -> Result<(), ErrorStack> {
        unsafe {
            cvt(ffi::EVP_PKEY_CTX_set_hkdf_mode(self.as_ptr(), mode.0))?;
        }

        Ok(())
    }

    /// Sets the input material for HKDF generation as the "key".
    ///
    /// Which input is the key depends on the "mode" (see [`set_hkdf_mode`][Self::set_hkdf_mode]).
    /// If [`HkdfMode::EXTRACT_THEN_EXPAND`] or [`HkdfMode::EXTRACT_ONLY`], this function specifies
    /// the input keying material (IKM) for HKDF-Extract. If [`HkdfMode::EXPAND_ONLY`], it instead
    /// specifies the pseudorandom key (PRK) for HKDF-Expand.
    ///
    /// Requires OpenSSL 1.1.0 or newer.
    #[corresponds(EVP_PKEY_CTX_set1_hkdf_key)]
    #[cfg(any(ossl110, boringssl))]
    #[inline]
    pub fn set_hkdf_key(&mut self, key: &[u8]) -> Result<(), ErrorStack> {
        #[cfg(not(boringssl))]
        let len = c_int::try_from(key.len()).unwrap();
        #[cfg(boringssl)]
        let len = key.len();

        unsafe {
            cvt(ffi::EVP_PKEY_CTX_set1_hkdf_key(
                self.as_ptr(),
                key.as_ptr(),
                len,
            ))?;
        }

        Ok(())
    }

    /// Sets the salt value for HKDF generation.
    ///
    /// If performing HKDF-Expand only, this parameter is ignored.
    ///
    /// Requires OpenSSL 1.1.0 or newer.
    #[corresponds(EVP_PKEY_CTX_set1_hkdf_salt)]
    #[cfg(any(ossl110, boringssl))]
    #[inline]
    pub fn set_hkdf_salt(&mut self, salt: &[u8]) -> Result<(), ErrorStack> {
        #[cfg(not(boringssl))]
        let len = c_int::try_from(salt.len()).unwrap();
        #[cfg(boringssl)]
        let len = salt.len();

        unsafe {
            cvt(ffi::EVP_PKEY_CTX_set1_hkdf_salt(
                self.as_ptr(),
                salt.as_ptr(),
                len,
            ))?;
        }

        Ok(())
    }

    /// Appends info bytes for HKDF generation.
    ///
    /// If performing HKDF-Extract only, this parameter is ignored.
    ///
    /// Requires OpenSSL 1.1.0 or newer.
    #[corresponds(EVP_PKEY_CTX_add1_hkdf_info)]
    #[cfg(any(ossl110, boringssl))]
    #[inline]
    pub fn add_hkdf_info(&mut self, info: &[u8]) -> Result<(), ErrorStack> {
        #[cfg(not(boringssl))]
        let len = c_int::try_from(info.len()).unwrap();
        #[cfg(boringssl)]
        let len = info.len();

        unsafe {
            cvt(ffi::EVP_PKEY_CTX_add1_hkdf_info(
                self.as_ptr(),
                info.as_ptr(),
                len,
            ))?;
        }

        Ok(())
    }

    /// Derives a shared secret between two keys.
    ///
    /// If `buf` is set to `None`, an upper bound on the number of bytes required for the buffer will be returned.
    #[corresponds(EVP_PKEY_derive)]
    pub fn derive(&mut self, buf: Option<&mut [u8]>) -> Result<usize, ErrorStack> {
        let mut len = buf.as_ref().map_or(0, |b| b.len());
        unsafe {
            cvt(ffi::EVP_PKEY_derive(
                self.as_ptr(),
                buf.map_or(ptr::null_mut(), |b| b.as_mut_ptr()),
                &mut len,
            ))?;
        }

        Ok(len)
    }

    /// Like [`Self::derive`] but appends the secret to a [`Vec`].
    pub fn derive_to_vec(&mut self, buf: &mut Vec<u8>) -> Result<usize, ErrorStack> {
        let base = buf.len();
        let len = self.derive(None)?;
        buf.resize(base + len, 0);
        let len = self.derive(Some(&mut buf[base..]))?;
        buf.truncate(base + len);
        Ok(len)
    }

    /// Generates a new public/private keypair.
    #[corresponds(EVP_PKEY_keygen)]
    #[inline]
    pub fn keygen(&mut self) -> Result<PKey<Private>, ErrorStack> {
        unsafe {
            let mut key = ptr::null_mut();
            cvt(ffi::EVP_PKEY_keygen(self.as_ptr(), &mut key))?;
            Ok(PKey::from_ptr(key))
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    #[cfg(not(boringssl))]
    use crate::cipher::Cipher;
    use crate::ec::{EcGroup, EcKey};
    use crate::hash::{hash, MessageDigest};
    use crate::md::Md;
    use crate::nid::Nid;
    use crate::pkey::PKey;
    use crate::rsa::Rsa;
    use crate::sign::Verifier;

    #[test]
    fn rsa() {
        let key = include_bytes!("../test/rsa.pem");
        let rsa = Rsa::private_key_from_pem(key).unwrap();
        let pkey = PKey::from_rsa(rsa).unwrap();

        let mut ctx = PkeyCtx::new(&pkey).unwrap();
        ctx.encrypt_init().unwrap();
        ctx.set_rsa_padding(Padding::PKCS1).unwrap();

        let pt = "hello world".as_bytes();
        let mut ct = vec![];
        ctx.encrypt_to_vec(pt, &mut ct).unwrap();

        ctx.decrypt_init().unwrap();
        ctx.set_rsa_padding(Padding::PKCS1).unwrap();

        let mut out = vec![];
        ctx.decrypt_to_vec(&ct, &mut out).unwrap();

        assert_eq!(pt, out);
    }

    #[test]
    #[cfg(any(ossl102, libressl310, boringssl))]
    fn rsa_oaep() {
        let key = include_bytes!("../test/rsa.pem");
        let rsa = Rsa::private_key_from_pem(key).unwrap();
        let pkey = PKey::from_rsa(rsa).unwrap();

        let mut ctx = PkeyCtx::new(&pkey).unwrap();
        ctx.encrypt_init().unwrap();
        ctx.set_rsa_padding(Padding::PKCS1_OAEP).unwrap();
        ctx.set_rsa_oaep_md(Md::sha256()).unwrap();
        ctx.set_rsa_mgf1_md(Md::sha256()).unwrap();

        let pt = "hello world".as_bytes();
        let mut ct = vec![];
        ctx.encrypt_to_vec(pt, &mut ct).unwrap();

        ctx.decrypt_init().unwrap();
        ctx.set_rsa_padding(Padding::PKCS1_OAEP).unwrap();
        ctx.set_rsa_oaep_md(Md::sha256()).unwrap();
        ctx.set_rsa_mgf1_md(Md::sha256()).unwrap();

        let mut out = vec![];
        ctx.decrypt_to_vec(&ct, &mut out).unwrap();

        assert_eq!(pt, out);
    }

    #[test]
    fn rsa_sign() {
        let key = include_bytes!("../test/rsa.pem");
        let rsa = Rsa::private_key_from_pem(key).unwrap();
        let pkey = PKey::from_rsa(rsa).unwrap();

        let mut ctx = PkeyCtx::new(&pkey).unwrap();
        ctx.sign_init().unwrap();
        ctx.set_rsa_padding(Padding::PKCS1).unwrap();
        ctx.set_signature_md(Md::sha384()).unwrap();

        let msg = b"hello world";
        let digest = hash(MessageDigest::sha384(), msg).unwrap();
        let mut signature = vec![];
        ctx.sign_to_vec(&digest, &mut signature).unwrap();

        let mut verifier = Verifier::new(MessageDigest::sha384(), &pkey).unwrap();
        verifier.update(msg).unwrap();
        assert!(matches!(verifier.verify(&signature), Ok(true)));
    }

    #[test]
    fn rsa_sign_pss() {
        let key = include_bytes!("../test/rsa.pem");
        let rsa = Rsa::private_key_from_pem(key).unwrap();
        let pkey = PKey::from_rsa(rsa).unwrap();

        let mut ctx = PkeyCtx::new(&pkey).unwrap();
        ctx.sign_init().unwrap();
        ctx.set_rsa_padding(Padding::PKCS1_PSS).unwrap();
        ctx.set_signature_md(Md::sha384()).unwrap();
        ctx.set_rsa_pss_saltlen(RsaPssSaltlen::custom(14)).unwrap();

        let msg = b"hello world";
        let digest = hash(MessageDigest::sha384(), msg).unwrap();
        let mut signature = vec![];
        ctx.sign_to_vec(&digest, &mut signature).unwrap();

        let mut verifier = Verifier::new(MessageDigest::sha384(), &pkey).unwrap();
        verifier.set_rsa_padding(Padding::PKCS1_PSS).unwrap();
        verifier
            .set_rsa_pss_saltlen(RsaPssSaltlen::custom(14))
            .unwrap();
        verifier.update(msg).unwrap();
        assert!(matches!(verifier.verify(&signature), Ok(true)));
    }

    #[test]
    fn derive() {
        let group = EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap();
        let key1 = EcKey::generate(&group).unwrap();
        let key1 = PKey::from_ec_key(key1).unwrap();
        let key2 = EcKey::generate(&group).unwrap();
        let key2 = PKey::from_ec_key(key2).unwrap();

        let mut ctx = PkeyCtx::new(&key1).unwrap();
        ctx.derive_init().unwrap();
        ctx.derive_set_peer(&key2).unwrap();

        let mut buf = vec![];
        ctx.derive_to_vec(&mut buf).unwrap();
    }

    #[test]
    #[cfg(not(boringssl))]
    fn cmac_keygen() {
        let mut ctx = PkeyCtx::new_id(Id::CMAC).unwrap();
        ctx.keygen_init().unwrap();
        ctx.set_keygen_cipher(Cipher::aes_128_cbc()).unwrap();
        ctx.set_keygen_mac_key(&hex::decode("9294727a3638bb1c13f48ef8158bfc9d").unwrap())
            .unwrap();
        ctx.keygen().unwrap();
    }

    #[test]
    #[cfg(any(ossl110, boringssl))]
    fn hkdf() {
        let mut ctx = PkeyCtx::new_id(Id::HKDF).unwrap();
        ctx.derive_init().unwrap();
        ctx.set_hkdf_md(Md::sha256()).unwrap();
        ctx.set_hkdf_key(&hex::decode("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b").unwrap())
            .unwrap();
        ctx.set_hkdf_salt(&hex::decode("000102030405060708090a0b0c").unwrap())
            .unwrap();
        ctx.add_hkdf_info(&hex::decode("f0f1f2f3f4f5f6f7f8f9").unwrap())
            .unwrap();
        let mut out = [0; 42];
        ctx.derive(Some(&mut out)).unwrap();

        assert_eq!(
            &out[..],
            hex::decode("3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865")
                .unwrap()
        );
    }

    #[test]
    #[cfg(ossl111)]
    fn hkdf_expand() {
        let mut ctx = PkeyCtx::new_id(Id::HKDF).unwrap();
        ctx.derive_init().unwrap();
        ctx.set_hkdf_mode(HkdfMode::EXPAND_ONLY).unwrap();
        ctx.set_hkdf_md(Md::sha256()).unwrap();
        ctx.set_hkdf_key(
            &hex::decode("077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5")
                .unwrap(),
        )
        .unwrap();
        ctx.add_hkdf_info(&hex::decode("f0f1f2f3f4f5f6f7f8f9").unwrap())
            .unwrap();
        let mut out = [0; 42];
        ctx.derive(Some(&mut out)).unwrap();

        assert_eq!(
            &out[..],
            hex::decode("3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865")
                .unwrap()
        );
    }

    #[test]
    #[cfg(ossl111)]
    fn hkdf_extract() {
        let mut ctx = PkeyCtx::new_id(Id::HKDF).unwrap();
        ctx.derive_init().unwrap();
        ctx.set_hkdf_mode(HkdfMode::EXTRACT_ONLY).unwrap();
        ctx.set_hkdf_md(Md::sha256()).unwrap();
        ctx.set_hkdf_key(&hex::decode("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b").unwrap())
            .unwrap();
        ctx.set_hkdf_salt(&hex::decode("000102030405060708090a0b0c").unwrap())
            .unwrap();
        let mut out = vec![];
        ctx.derive_to_vec(&mut out).unwrap();

        assert_eq!(
            &out[..],
            hex::decode("077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5")
                .unwrap()
        );
    }

    #[test]
    fn verify_fail() {
        let key1 = Rsa::generate(4096).unwrap();
        let key1 = PKey::from_rsa(key1).unwrap();

        let data = b"Some Crypto Text";

        let mut ctx = PkeyCtx::new(&key1).unwrap();
        ctx.sign_init().unwrap();
        let mut signature = vec![];
        ctx.sign_to_vec(data, &mut signature).unwrap();

        let bad_data = b"Some Crypto text";

        ctx.verify_init().unwrap();
        let valid = ctx.verify(bad_data, &signature);
        assert!(matches!(valid, Ok(false) | Err(_)));
        assert!(ErrorStack::get().errors().is_empty());
    }

    #[test]
    fn verify_fail_ec() {
        let key1 =
            EcKey::generate(&EcGroup::from_curve_name(Nid::X9_62_PRIME256V1).unwrap()).unwrap();
        let key1 = PKey::from_ec_key(key1).unwrap();

        let data = b"Some Crypto Text";
        let mut ctx = PkeyCtx::new(&key1).unwrap();
        ctx.verify_init().unwrap();
        assert!(matches!(ctx.verify(data, &[0; 64]), Ok(false) | Err(_)));
        assert!(ErrorStack::get().errors().is_empty());
    }

    #[test]
    fn test_verify_recover() {
        let key = Rsa::generate(2048).unwrap();
        let key = PKey::from_rsa(key).unwrap();

        let digest = [
            0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
            24, 25, 26, 27, 28, 29, 30, 31,
        ];

        let mut ctx = PkeyCtx::new(&key).unwrap();
        ctx.sign_init().unwrap();
        ctx.set_rsa_padding(Padding::PKCS1).unwrap();
        ctx.set_signature_md(Md::sha256()).unwrap();
        let mut signature = vec![];
        ctx.sign_to_vec(&digest, &mut signature).unwrap();

        // Attempt recovery of just the digest.
        let mut ctx = PkeyCtx::new(&key).unwrap();
        ctx.verify_recover_init().unwrap();
        ctx.set_rsa_padding(Padding::PKCS1).unwrap();
        ctx.set_signature_md(Md::sha256()).unwrap();
        let length = ctx.verify_recover(&signature, None).unwrap();
        let mut result_buf = vec![0; length];
        let length = ctx
            .verify_recover(&signature, Some(&mut result_buf))
            .unwrap();
        assert_eq!(length, digest.len());
        // result_buf contains the digest
        assert_eq!(result_buf[..length], digest);

        // Attempt recovery of teh entire DigestInfo
        let mut ctx = PkeyCtx::new(&key).unwrap();
        ctx.verify_recover_init().unwrap();
        ctx.set_rsa_padding(Padding::PKCS1).unwrap();
        let length = ctx.verify_recover(&signature, None).unwrap();
        let mut result_buf = vec![0; length];
        let length = ctx
            .verify_recover(&signature, Some(&mut result_buf))
            .unwrap();
        // 32-bytes of SHA256 digest + the ASN.1 DigestInfo structure == 51 bytes
        assert_eq!(length, 51);
        // The digest is the end of the DigestInfo structure.
        assert_eq!(result_buf[length - digest.len()..length], digest);
    }
}