1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
|
//! Field arithmetic modulo p = 2^{384} − 2^{128} − 2^{96} + 2^{32} − 1
//!
//! Arithmetic implementations are extracted Rust code from the Coq fiat-crypto
//! libraries.
//!
//! # License
//!
//! Copyright (c) 2015-2020 the fiat-crypto authors
//!
//! fiat-crypto is distributed under the terms of the MIT License, the
//! Apache License (Version 2.0), and the BSD 1-Clause License;
//! users may pick which license to apply.
#![allow(
clippy::should_implement_trait,
clippy::suspicious_op_assign_impl,
clippy::unused_unit,
clippy::unnecessary_cast,
clippy::too_many_arguments,
clippy::identity_op
)]
#[cfg_attr(target_pointer_width = "32", path = "field/p384_32.rs")]
#[cfg_attr(target_pointer_width = "64", path = "field/p384_64.rs")]
mod field_impl;
use self::field_impl::*;
use crate::{FieldBytes, NistP384};
use core::{
iter::{Product, Sum},
ops::{AddAssign, MulAssign, Neg, SubAssign},
};
use elliptic_curve::{
bigint::{self, Limb, U384},
ff::PrimeField,
subtle::{Choice, ConstantTimeEq, CtOption},
};
/// Constant representing the modulus
/// p = 2^{384} − 2^{128} − 2^{96} + 2^{32} − 1
pub(crate) const MODULUS: U384 = U384::from_be_hex(FieldElement::MODULUS);
/// Element of the secp384r1 base field used for curve coordinates.
#[derive(Clone, Copy, Debug)]
pub struct FieldElement(pub(super) U384);
primeorder::impl_mont_field_element!(
NistP384,
FieldElement,
FieldBytes,
U384,
MODULUS,
fiat_p384_montgomery_domain_field_element,
fiat_p384_from_montgomery,
fiat_p384_to_montgomery,
fiat_p384_add,
fiat_p384_sub,
fiat_p384_mul,
fiat_p384_opp,
fiat_p384_square
);
impl FieldElement {
/// Compute [`FieldElement`] inversion: `1 / self`.
pub fn invert(&self) -> CtOption<Self> {
CtOption::new(self.invert_unchecked(), !self.is_zero())
}
/// Returns the multiplicative inverse of self.
///
/// Does not check that self is non-zero.
const fn invert_unchecked(&self) -> Self {
let words = impl_field_invert!(
self.to_canonical().as_words(),
Self::ONE.0.to_words(),
Limb::BITS,
bigint::nlimbs!(U384::BITS),
fiat_p384_mul,
fiat_p384_opp,
fiat_p384_divstep_precomp,
fiat_p384_divstep,
fiat_p384_msat,
fiat_p384_selectznz,
);
Self(U384::from_words(words))
}
/// Returns the square root of self mod p, or `None` if no square root
/// exists.
pub fn sqrt(&self) -> CtOption<Self> {
// p mod 4 = 3 -> compute sqrt(x) using x^((p+1)/4) =
// x^9850501549098619803069760025035903451269934817616361666987073351061430442874217582261816522064734500465401743278080
let t1 = *self;
let t10 = t1.square();
let t11 = t1 * t10;
let t110 = t11.square();
let t111 = t1 * t110;
let t111000 = t111.sqn(3);
let t111111 = t111 * t111000;
let t1111110 = t111111.square();
let t1111111 = t1 * t1111110;
let x12 = t1111110.sqn(5) * t111111;
let x24 = x12.sqn(12) * x12;
let x31 = x24.sqn(7) * t1111111;
let x32 = x31.square() * t1;
let x63 = x32.sqn(31) * x31;
let x126 = x63.sqn(63) * x63;
let x252 = x126.sqn(126) * x126;
let x255 = x252.sqn(3) * t111;
let x = ((x255.sqn(33) * x32).sqn(64) * t1).sqn(30);
CtOption::new(x, x.square().ct_eq(&t1))
}
/// Returns self^(2^n) mod p.
fn sqn(&self, n: usize) -> Self {
let mut x = *self;
for _ in 0..n {
x = x.square();
}
x
}
}
impl PrimeField for FieldElement {
type Repr = FieldBytes;
const MODULUS: &'static str = "fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff";
const NUM_BITS: u32 = 384;
const CAPACITY: u32 = 383;
const TWO_INV: Self = Self::from_u64(2).invert_unchecked();
const MULTIPLICATIVE_GENERATOR: Self = Self::from_u64(19);
const S: u32 = 1;
const ROOT_OF_UNITY: Self = Self::from_hex("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000fffffffe");
const ROOT_OF_UNITY_INV: Self = Self::ROOT_OF_UNITY.invert_unchecked();
const DELTA: Self = Self::from_u64(49);
#[inline]
fn from_repr(bytes: FieldBytes) -> CtOption<Self> {
Self::from_bytes(&bytes)
}
#[inline]
fn to_repr(&self) -> FieldBytes {
self.to_bytes()
}
#[inline]
fn is_odd(&self) -> Choice {
self.is_odd()
}
}
#[cfg(test)]
mod tests {
use super::FieldElement;
use elliptic_curve::ff::PrimeField;
use primeorder::impl_primefield_tests;
/// t = (modulus - 1) >> S
const T: [u64; 6] = [
0x000000007fffffff,
0x7fffffff80000000,
0xffffffffffffffff,
0xffffffffffffffff,
0xffffffffffffffff,
0x7fffffffffffffff,
];
impl_primefield_tests!(FieldElement, T);
/// Basic tests that field inversion works.
#[test]
fn invert() {
let one = FieldElement::ONE;
assert_eq!(one.invert().unwrap(), one);
let three = one + &one + &one;
let inv_three = three.invert().unwrap();
assert_eq!(three * &inv_three, one);
let minus_three = -three;
let inv_minus_three = minus_three.invert().unwrap();
assert_eq!(inv_minus_three, -inv_three);
assert_eq!(three * &inv_minus_three, -one);
}
#[test]
fn sqrt() {
let one = FieldElement::ONE;
let two = one + &one;
let four = two.square();
assert_eq!(four.sqrt().unwrap(), two);
}
}
|