1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
|
//! Decoder for PEM encapsulated data.
//!
//! From RFC 7468 Section 2:
//!
//! > Textual encoding begins with a line comprising "-----BEGIN ", a
//! > label, and "-----", and ends with a line comprising "-----END ", a
//! > label, and "-----". Between these lines, or "encapsulation
//! > boundaries", are base64-encoded data according to Section 4 of
//! > [RFC 4648].
//!
//! [RFC 4648]: https://datatracker.ietf.org/doc/html/rfc4648
use crate::{
grammar, Base64Decoder, Error, Result, BASE64_WRAP_WIDTH, POST_ENCAPSULATION_BOUNDARY,
PRE_ENCAPSULATION_BOUNDARY,
};
use core::str;
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
#[cfg(feature = "std")]
use std::io;
/// Decode a PEM document according to RFC 7468's "Strict" grammar.
///
/// On success, writes the decoded document into the provided buffer, returning
/// the decoded label and the portion of the provided buffer containing the
/// decoded message.
pub fn decode<'i, 'o>(pem: &'i [u8], buf: &'o mut [u8]) -> Result<(&'i str, &'o [u8])> {
let mut decoder = Decoder::new(pem).map_err(|e| check_for_headers(pem, e))?;
let type_label = decoder.type_label();
let buf = buf
.get_mut(..decoder.remaining_len())
.ok_or(Error::Length)?;
let decoded = decoder.decode(buf).map_err(|e| check_for_headers(pem, e))?;
if decoder.base64.is_finished() {
Ok((type_label, decoded))
} else {
Err(Error::Length)
}
}
/// Decode a PEM document according to RFC 7468's "Strict" grammar, returning
/// the result as a [`Vec`] upon success.
#[cfg(feature = "alloc")]
pub fn decode_vec(pem: &[u8]) -> Result<(&str, Vec<u8>)> {
let mut decoder = Decoder::new(pem).map_err(|e| check_for_headers(pem, e))?;
let type_label = decoder.type_label();
let mut buf = Vec::new();
decoder
.decode_to_end(&mut buf)
.map_err(|e| check_for_headers(pem, e))?;
Ok((type_label, buf))
}
/// Decode the encapsulation boundaries of a PEM document according to RFC 7468's "Strict" grammar.
///
/// On success, returning the decoded label.
pub fn decode_label(pem: &[u8]) -> Result<&str> {
Ok(Encapsulation::try_from(pem)?.label())
}
/// Buffered PEM decoder.
///
/// Stateful buffered decoder type which decodes an input PEM document according
/// to RFC 7468's "Strict" grammar.
#[derive(Clone)]
pub struct Decoder<'i> {
/// PEM type label.
type_label: &'i str,
/// Buffered Base64 decoder.
base64: Base64Decoder<'i>,
}
impl<'i> Decoder<'i> {
/// Create a new PEM [`Decoder`] with the default options.
///
/// Uses the default 64-character line wrapping.
pub fn new(pem: &'i [u8]) -> Result<Self> {
Self::new_wrapped(pem, BASE64_WRAP_WIDTH)
}
/// Create a new PEM [`Decoder`] which wraps at the given line width.
pub fn new_wrapped(pem: &'i [u8], line_width: usize) -> Result<Self> {
let encapsulation = Encapsulation::try_from(pem)?;
let type_label = encapsulation.label();
let base64 = Base64Decoder::new_wrapped(encapsulation.encapsulated_text, line_width)?;
Ok(Self { type_label, base64 })
}
/// Get the PEM type label for the input document.
pub fn type_label(&self) -> &'i str {
self.type_label
}
/// Decode data into the provided output buffer.
///
/// There must be at least as much remaining Base64 input to be decoded
/// in order to completely fill `buf`.
pub fn decode<'o>(&mut self, buf: &'o mut [u8]) -> Result<&'o [u8]> {
Ok(self.base64.decode(buf)?)
}
/// Decode all of the remaining data in the input buffer into `buf`.
#[cfg(feature = "alloc")]
pub fn decode_to_end<'o>(&mut self, buf: &'o mut Vec<u8>) -> Result<&'o [u8]> {
Ok(self.base64.decode_to_end(buf)?)
}
/// Get the decoded length of the remaining PEM data after Base64 decoding.
pub fn remaining_len(&self) -> usize {
self.base64.remaining_len()
}
/// Are we finished decoding the PEM input?
pub fn is_finished(&self) -> bool {
self.base64.is_finished()
}
}
impl<'i> From<Decoder<'i>> for Base64Decoder<'i> {
fn from(decoder: Decoder<'i>) -> Base64Decoder<'i> {
decoder.base64
}
}
#[cfg(feature = "std")]
impl<'i> io::Read for Decoder<'i> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.base64.read(buf)
}
fn read_to_end(&mut self, buf: &mut Vec<u8>) -> io::Result<usize> {
self.base64.read_to_end(buf)
}
fn read_exact(&mut self, buf: &mut [u8]) -> io::Result<()> {
self.base64.read_exact(buf)
}
}
/// PEM encapsulation parser.
///
/// This parser performs an initial pass over the data, locating the
/// pre-encapsulation (`---BEGIN [...]---`) and post-encapsulation
/// (`---END [...]`) boundaries while attempting to avoid branching
/// on the potentially secret Base64-encoded data encapsulated between
/// the two boundaries.
///
/// It only supports a single encapsulated message at present. Future work
/// could potentially include extending it provide an iterator over a series
/// of encapsulated messages.
#[derive(Copy, Clone, Debug)]
struct Encapsulation<'a> {
/// Type label extracted from the pre/post-encapsulation boundaries.
///
/// From RFC 7468 Section 2:
///
/// > The type of data encoded is labeled depending on the type label in
/// > the "-----BEGIN " line (pre-encapsulation boundary). For example,
/// > the line may be "-----BEGIN CERTIFICATE-----" to indicate that the
/// > content is a PKIX certificate (see further below). Generators MUST
/// > put the same label on the "-----END " line (post-encapsulation
/// > boundary) as the corresponding "-----BEGIN " line. Labels are
/// > formally case-sensitive, uppercase, and comprised of zero or more
/// > characters; they do not contain consecutive spaces or hyphen-minuses,
/// > nor do they contain spaces or hyphen-minuses at either end. Parsers
/// > MAY disregard the label in the post-encapsulation boundary instead of
/// > signaling an error if there is a label mismatch: some extant
/// > implementations require the labels to match; others do not.
label: &'a str,
/// Encapsulated text portion contained between the boundaries.
///
/// This data should be encoded as Base64, however this type performs no
/// validation of it so it can be handled in constant-time.
encapsulated_text: &'a [u8],
}
impl<'a> Encapsulation<'a> {
/// Parse the type label and encapsulated text from between the
/// pre/post-encapsulation boundaries.
pub fn parse(data: &'a [u8]) -> Result<Self> {
// Strip the "preamble": optional text occurring before the pre-encapsulation boundary
let data = grammar::strip_preamble(data)?;
// Parse pre-encapsulation boundary (including label)
let data = data
.strip_prefix(PRE_ENCAPSULATION_BOUNDARY)
.ok_or(Error::PreEncapsulationBoundary)?;
let (label, body) = grammar::split_label(data).ok_or(Error::Label)?;
let mut body = match grammar::strip_trailing_eol(body).unwrap_or(body) {
[head @ .., b'-', b'-', b'-', b'-', b'-'] => head,
_ => return Err(Error::PreEncapsulationBoundary),
};
// Ensure body ends with a properly labeled post-encapsulation boundary
for &slice in [POST_ENCAPSULATION_BOUNDARY, label.as_bytes()].iter().rev() {
// Ensure the input ends with the post encapsulation boundary as
// well as a matching label
if !body.ends_with(slice) {
return Err(Error::PostEncapsulationBoundary);
}
let len = body.len().checked_sub(slice.len()).ok_or(Error::Length)?;
body = body.get(..len).ok_or(Error::PostEncapsulationBoundary)?;
}
let encapsulated_text =
grammar::strip_trailing_eol(body).ok_or(Error::PostEncapsulationBoundary)?;
Ok(Self {
label,
encapsulated_text,
})
}
/// Get the label parsed from the encapsulation boundaries.
pub fn label(self) -> &'a str {
self.label
}
}
impl<'a> TryFrom<&'a [u8]> for Encapsulation<'a> {
type Error = Error;
fn try_from(bytes: &'a [u8]) -> Result<Self> {
Self::parse(bytes)
}
}
/// Check for PEM headers in the input, as they are disallowed by RFC7468.
///
/// Returns `Error::HeaderDisallowed` if headers are encountered.
fn check_for_headers(pem: &[u8], err: Error) -> Error {
if err == Error::Base64(base64ct::Error::InvalidEncoding)
&& pem.iter().any(|&b| b == grammar::CHAR_COLON)
{
Error::HeaderDisallowed
} else {
err
}
}
#[cfg(test)]
mod tests {
use super::Encapsulation;
#[test]
fn pkcs8_example() {
let pem = include_bytes!("../tests/examples/pkcs8.pem");
let encapsulation = Encapsulation::parse(pem).unwrap();
assert_eq!(encapsulation.label, "PRIVATE KEY");
assert_eq!(
encapsulation.encapsulated_text,
&[
77, 67, 52, 67, 65, 81, 65, 119, 66, 81, 89, 68, 75, 50, 86, 119, 66, 67, 73, 69,
73, 66, 102, 116, 110, 72, 80, 112, 50, 50, 83, 101, 119, 89, 109, 109, 69, 111,
77, 99, 88, 56, 86, 119, 73, 52, 73, 72, 119, 97, 113, 100, 43, 57, 76, 70, 80,
106, 47, 49, 53, 101, 113, 70
]
);
}
}
|