summaryrefslogtreecommitdiffstats
path: root/vendor/prodash/src/progress/key.rs
blob: bfdf13b2def08055181ba3b14ded8acc2b84ec63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
use std::ops::{Index, IndexMut};

use crate::progress::Task;

/// a level in the hierarchy of key components
///
/// _NOTE:_ This means we will show weird behaviour if there are more than 2^16 tasks at the same time on a level
/// as multiple progress handles will manipulate the same state.
pub type Level = u8;

pub(crate) type Id = u16;

/// A type identifying a spot in the hierarchy of `Tree` items.
#[derive(Copy, Clone, Default, Hash, Eq, PartialEq, Ord, PartialOrd, Debug)]
pub struct Key(Option<Id>, Option<Id>, Option<Id>, Option<Id>, Option<Id>, Option<Id>);

/// Determines if a sibling is above or below in the given level of hierarchy
#[derive(Default, Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
#[allow(missing_docs)]
pub enum SiblingLocation {
    Above,
    Below,
    AboveAndBelow,
    #[default]
    NotFound,
}

impl SiblingLocation {
    fn merge(&mut self, other: SiblingLocation) {
        use SiblingLocation::*;
        *self = match (*self, other) {
            (any, NotFound) => any,
            (NotFound, any) => any,
            (Above, Below) => AboveAndBelow,
            (Below, Above) => AboveAndBelow,
            (AboveAndBelow, _) => AboveAndBelow,
            (_, AboveAndBelow) => AboveAndBelow,
            (Above, Above) => Above,
            (Below, Below) => Below,
        };
    }
}

/// A type providing information about what's above and below `Tree` items.
#[derive(Copy, Clone, Default, Eq, PartialEq, Ord, PartialOrd, Debug)]
pub struct Adjacency(
    pub SiblingLocation,
    pub SiblingLocation,
    pub SiblingLocation,
    pub SiblingLocation,
    pub SiblingLocation,
    pub SiblingLocation,
);

impl Adjacency {
    /// Return the level at which this sibling is located in the hierarchy.
    pub fn level(&self) -> Level {
        use SiblingLocation::*;
        match self {
            Adjacency(NotFound, NotFound, NotFound, NotFound, NotFound, NotFound) => 0,
            Adjacency(_a, NotFound, NotFound, NotFound, NotFound, NotFound) => 1,
            Adjacency(_a, _b, NotFound, NotFound, NotFound, NotFound) => 2,
            Adjacency(_a, _b, _c, NotFound, NotFound, NotFound) => 3,
            Adjacency(_a, _b, _c, _d, NotFound, NotFound) => 4,
            Adjacency(_a, _b, _c, _d, _e, NotFound) => 5,
            Adjacency(_a, _b, _c, _d, _e, _f) => 6,
        }
    }
    /// Get a reference to the sibling location at `level`.
    pub fn get(&self, level: Level) -> Option<&SiblingLocation> {
        Some(match level {
            1 => &self.0,
            2 => &self.1,
            3 => &self.2,
            4 => &self.3,
            5 => &self.4,
            6 => &self.5,
            _ => return None,
        })
    }
    /// Get a mutable reference to the sibling location at `level`.
    pub fn get_mut(&mut self, level: Level) -> Option<&mut SiblingLocation> {
        Some(match level {
            1 => &mut self.0,
            2 => &mut self.1,
            3 => &mut self.2,
            4 => &mut self.3,
            5 => &mut self.4,
            6 => &mut self.5,
            _ => return None,
        })
    }
}

impl Index<Level> for Adjacency {
    type Output = SiblingLocation;
    fn index(&self, index: Level) -> &Self::Output {
        self.get(index).expect("adjacency index in bound")
    }
}

impl IndexMut<Level> for Adjacency {
    fn index_mut(&mut self, index: Level) -> &mut Self::Output {
        self.get_mut(index).expect("adjacency index in bound")
    }
}

impl Key {
    /// Return the key to the child identified by `child_id` located in a new nesting level below `self`.
    pub fn add_child(self, child_id: Id) -> Key {
        match self {
            Key(None, None, None, None, None, None) => Key(Some(child_id), None, None, None, None, None),
            Key(a, None, None, None, None, None) => Key(a, Some(child_id), None, None, None, None),
            Key(a, b, None, None, None, None) => Key(a, b, Some(child_id), None, None, None),
            Key(a, b, c, None, None, None) => Key(a, b, c, Some(child_id), None, None),
            Key(a, b, c, d, None, None) => Key(a, b, c, d, Some(child_id), None),
            Key(a, b, c, d, e, _f) => {
                crate::warn!("Maximum nesting level reached. Adding tasks to current parent");
                Key(a, b, c, d, e, Some(child_id))
            }
        }
    }

    /// The level of hierarchy a node is placed in, i.e. the amount of path components
    pub fn level(&self) -> Level {
        match self {
            Key(None, None, None, None, None, None) => 0,
            Key(Some(_), None, None, None, None, None) => 1,
            Key(Some(_), Some(_), None, None, None, None) => 2,
            Key(Some(_), Some(_), Some(_), None, None, None) => 3,
            Key(Some(_), Some(_), Some(_), Some(_), None, None) => 4,
            Key(Some(_), Some(_), Some(_), Some(_), Some(_), None) => 5,
            Key(Some(_), Some(_), Some(_), Some(_), Some(_), Some(_)) => 6,
            _ => unreachable!("This is a bug - Keys follow a certain pattern"),
        }
    }

    /// Return the identifier for the item at `level`.
    fn get(&self, level: Level) -> Option<&Id> {
        match level {
            1 => self.0.as_ref(),
            2 => self.1.as_ref(),
            3 => self.2.as_ref(),
            4 => self.3.as_ref(),
            5 => self.4.as_ref(),
            6 => self.5.as_ref(),
            _ => None,
        }
    }

    /// Return true if the item identified by `other` shares the parent at `parent_level`.
    pub fn shares_parent_with(&self, other: &Key, parent_level: Level) -> bool {
        if parent_level < 1 {
            return true;
        }
        for level in 1..=parent_level {
            if let (Some(lhs), Some(rhs)) = (self.get(level), other.get(level)) {
                if lhs != rhs {
                    return false;
                }
            } else {
                return false;
            }
        }
        true
    }

    /// Compute the adjacency map for the key in `sorted` at the given `index`.
    ///
    /// It's vital that the invariant of `sorted` to actually be sorted by key is upheld
    /// for the result to be reliable.
    pub fn adjacency(sorted: &[(Key, Task)], index: usize) -> Adjacency {
        use SiblingLocation::*;
        let key = &sorted[index].0;
        let key_level = key.level();
        let mut adjecency = Adjacency::default();
        if key_level == 0 {
            return adjecency;
        }

        fn search<'a>(
            iter: impl Iterator<Item = &'a (Key, Task)>,
            key: &Key,
            key_level: Level,
            current_level: Level,
            _id_at_level: Id,
        ) -> Option<usize> {
            iter.map(|(k, _)| k)
                .take_while(|other| key.shares_parent_with(other, current_level.saturating_sub(1)))
                .enumerate()
                .find(|(_idx, k)| {
                    if current_level == key_level {
                        k.level() == key_level || k.level() + 1 == key_level
                    } else {
                        k.level() == current_level
                    }
                })
                .map(|(idx, _)| idx)
        }

        let upward_iter = |from: usize, key: &Key, level: Level, id_at_level: Id| {
            search(sorted[..from].iter().rev(), key, key_level, level, id_at_level)
        };
        let downward_iter = |from: usize, key: &Key, level: Level, id_at_level: Id| {
            sorted
                .get(from + 1..)
                .and_then(|s| search(s.iter(), key, key_level, level, id_at_level))
        };

        {
            let mut cursor = index;
            for level in (1..=key_level).rev() {
                if level == 1 {
                    adjecency[level].merge(Above); // the root or any other sibling on level one
                    continue;
                }
                if let Some(key_offset) = upward_iter(cursor, key, level, key[level]) {
                    cursor = index.saturating_sub(key_offset);
                    adjecency[level].merge(Above);
                }
            }
        }
        {
            let mut cursor = index;
            for level in (1..=key_level).rev() {
                if let Some(key_offset) = downward_iter(cursor, key, level, key[level]) {
                    cursor = index + key_offset;
                    adjecency[level].merge(Below);
                }
            }
        }
        for level in 1..key_level {
            if key_level == 1 && index + 1 == sorted.len() {
                continue;
            }
            adjecency[level] = match adjecency[level] {
                Above | Below | NotFound => NotFound,
                AboveAndBelow => AboveAndBelow,
            };
        }
        adjecency
    }

    /// The maximum amount of path components we can represent.
    pub const fn max_level() -> Level {
        6
    }
}

impl Index<Level> for Key {
    type Output = Id;

    fn index(&self, index: Level) -> &Self::Output {
        self.get(index).expect("key index in bound")
    }
}