1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
|
// Copyright 2019 The CryptoCorrosion Contributors
// Copyright 2020 Developers of the Rand project.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The ChaCha random number generator.
use ppv_lite86::{dispatch, dispatch_light128};
pub use ppv_lite86::Machine;
use ppv_lite86::{vec128_storage, ArithOps, BitOps32, LaneWords4, MultiLane, StoreBytes, Vec4};
pub(crate) const BLOCK: usize = 64;
pub(crate) const BLOCK64: u64 = BLOCK as u64;
const LOG2_BUFBLOCKS: u64 = 2;
const BUFBLOCKS: u64 = 1 << LOG2_BUFBLOCKS;
pub(crate) const BUFSZ64: u64 = BLOCK64 * BUFBLOCKS;
pub(crate) const BUFSZ: usize = BUFSZ64 as usize;
#[derive(Clone)]
pub struct ChaCha {
pub(crate) b: vec128_storage,
pub(crate) c: vec128_storage,
pub(crate) d: vec128_storage,
}
#[derive(Clone)]
pub struct State<V> {
pub(crate) a: V,
pub(crate) b: V,
pub(crate) c: V,
pub(crate) d: V,
}
#[inline(always)]
pub(crate) fn round<V: ArithOps + BitOps32>(mut x: State<V>) -> State<V> {
x.a += x.b;
x.d = (x.d ^ x.a).rotate_each_word_right16();
x.c += x.d;
x.b = (x.b ^ x.c).rotate_each_word_right20();
x.a += x.b;
x.d = (x.d ^ x.a).rotate_each_word_right24();
x.c += x.d;
x.b = (x.b ^ x.c).rotate_each_word_right25();
x
}
#[inline(always)]
pub(crate) fn diagonalize<V: LaneWords4>(mut x: State<V>) -> State<V> {
x.b = x.b.shuffle_lane_words3012();
x.c = x.c.shuffle_lane_words2301();
x.d = x.d.shuffle_lane_words1230();
x
}
#[inline(always)]
pub(crate) fn undiagonalize<V: LaneWords4>(mut x: State<V>) -> State<V> {
x.b = x.b.shuffle_lane_words1230();
x.c = x.c.shuffle_lane_words2301();
x.d = x.d.shuffle_lane_words3012();
x
}
impl ChaCha {
#[inline(always)]
pub fn new(key: &[u8; 32], nonce: &[u8]) -> Self {
init_chacha(key, nonce)
}
#[inline(always)]
fn pos64<M: Machine>(&self, m: M) -> u64 {
let d: M::u32x4 = m.unpack(self.d);
((d.extract(1) as u64) << 32) | d.extract(0) as u64
}
/// Produce 4 blocks of output, advancing the state
#[inline(always)]
pub fn refill4(&mut self, drounds: u32, out: &mut [u8; BUFSZ]) {
refill_wide(self, drounds, out)
}
#[inline(always)]
pub fn set_stream_param(&mut self, param: u32, value: u64) {
set_stream_param(self, param, value)
}
#[inline(always)]
pub fn get_stream_param(&self, param: u32) -> u64 {
get_stream_param(self, param)
}
}
#[inline(always)]
fn refill_wide_impl<Mach: Machine>(
m: Mach, state: &mut ChaCha, drounds: u32, out: &mut [u8; BUFSZ],
) {
let k = m.vec([0x6170_7865, 0x3320_646e, 0x7962_2d32, 0x6b20_6574]);
let mut pos = state.pos64(m);
let d0: Mach::u32x4 = m.unpack(state.d);
pos += 1;
let d1 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos += 1;
let d2 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos += 1;
let d3 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
let b = m.unpack(state.b);
let c = m.unpack(state.c);
let mut x = State {
a: Mach::u32x4x4::from_lanes([k, k, k, k]),
b: Mach::u32x4x4::from_lanes([b, b, b, b]),
c: Mach::u32x4x4::from_lanes([c, c, c, c]),
d: m.unpack(Mach::u32x4x4::from_lanes([d0, d1, d2, d3]).into()),
};
for _ in 0..drounds {
x = round(x);
x = undiagonalize(round(diagonalize(x)));
}
let mut pos = state.pos64(m);
let d0: Mach::u32x4 = m.unpack(state.d);
pos += 1;
let d1 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos += 1;
let d2 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos += 1;
let d3 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
pos += 1;
let d4 = d0.insert((pos >> 32) as u32, 1).insert(pos as u32, 0);
let (a, b, c, d) = (
x.a.to_lanes(),
x.b.to_lanes(),
x.c.to_lanes(),
x.d.to_lanes(),
);
let sb = m.unpack(state.b);
let sc = m.unpack(state.c);
let sd = [m.unpack(state.d), d1, d2, d3];
state.d = d4.into();
let mut words = out.chunks_exact_mut(16);
for ((((&a, &b), &c), &d), &sd) in a.iter().zip(&b).zip(&c).zip(&d).zip(&sd) {
(a + k).write_le(words.next().unwrap());
(b + sb).write_le(words.next().unwrap());
(c + sc).write_le(words.next().unwrap());
(d + sd).write_le(words.next().unwrap());
}
}
dispatch!(m, Mach, {
fn refill_wide(state: &mut ChaCha, drounds: u32, out: &mut [u8; BUFSZ]) {
refill_wide_impl(m, state, drounds, out);
}
});
// Single-block, rounds-only; shared by try_apply_keystream for tails shorter than BUFSZ
// and XChaCha's setup step.
dispatch!(m, Mach, {
fn refill_narrow_rounds(state: &mut ChaCha, drounds: u32) -> State<vec128_storage> {
let k: Mach::u32x4 = m.vec([0x6170_7865, 0x3320_646e, 0x7962_2d32, 0x6b20_6574]);
let mut x = State {
a: k,
b: m.unpack(state.b),
c: m.unpack(state.c),
d: m.unpack(state.d),
};
for _ in 0..drounds {
x = round(x);
x = undiagonalize(round(diagonalize(x)));
}
State {
a: x.a.into(),
b: x.b.into(),
c: x.c.into(),
d: x.d.into(),
}
}
});
dispatch_light128!(m, Mach, {
fn set_stream_param(state: &mut ChaCha, param: u32, value: u64) {
let d: Mach::u32x4 = m.unpack(state.d);
state.d = d
.insert((value >> 32) as u32, (param << 1) | 1)
.insert(value as u32, param << 1)
.into();
}
});
dispatch_light128!(m, Mach, {
fn get_stream_param(state: &ChaCha, param: u32) -> u64 {
let d: Mach::u32x4 = m.unpack(state.d);
((d.extract((param << 1) | 1) as u64) << 32) | d.extract(param << 1) as u64
}
});
fn read_u32le(xs: &[u8]) -> u32 {
assert_eq!(xs.len(), 4);
u32::from(xs[0]) | (u32::from(xs[1]) << 8) | (u32::from(xs[2]) << 16) | (u32::from(xs[3]) << 24)
}
dispatch_light128!(m, Mach, {
fn init_chacha(key: &[u8; 32], nonce: &[u8]) -> ChaCha {
let ctr_nonce = [
0,
if nonce.len() == 12 {
read_u32le(&nonce[0..4])
} else {
0
},
read_u32le(&nonce[nonce.len() - 8..nonce.len() - 4]),
read_u32le(&nonce[nonce.len() - 4..]),
];
let key0: Mach::u32x4 = m.read_le(&key[..16]);
let key1: Mach::u32x4 = m.read_le(&key[16..]);
ChaCha {
b: key0.into(),
c: key1.into(),
d: ctr_nonce.into(),
}
}
});
dispatch_light128!(m, Mach, {
fn init_chacha_x(key: &[u8; 32], nonce: &[u8; 24], rounds: u32) -> ChaCha {
let key0: Mach::u32x4 = m.read_le(&key[..16]);
let key1: Mach::u32x4 = m.read_le(&key[16..]);
let nonce0: Mach::u32x4 = m.read_le(&nonce[..16]);
let mut state = ChaCha {
b: key0.into(),
c: key1.into(),
d: nonce0.into(),
};
let x = refill_narrow_rounds(&mut state, rounds);
let ctr_nonce1 = [0, 0, read_u32le(&nonce[16..20]), read_u32le(&nonce[20..24])];
state.b = x.a;
state.c = x.d;
state.d = ctr_nonce1.into();
state
}
});
|