1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
|
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::Mutex;
use crate::iter::plumbing::{bridge_unindexed, Folder, UnindexedConsumer, UnindexedProducer};
use crate::iter::ParallelIterator;
use crate::{current_num_threads, current_thread_index};
/// Conversion trait to convert an `Iterator` to a `ParallelIterator`.
///
/// This creates a "bridge" from a sequential iterator to a parallel one, by distributing its items
/// across the Rayon thread pool. This has the advantage of being able to parallelize just about
/// anything, but the resulting `ParallelIterator` can be less efficient than if you started with
/// `par_iter` instead. However, it can still be useful for iterators that are difficult to
/// parallelize by other means, like channels or file or network I/O.
///
/// Iterator items are pulled by `next()` one at a time, synchronized from each thread that is
/// ready for work, so this may become a bottleneck if the serial iterator can't keep up with the
/// parallel demand. The items are not buffered by `IterBridge`, so it's fine to use this with
/// large or even unbounded iterators.
///
/// The resulting iterator is not guaranteed to keep the order of the original iterator.
///
/// # Examples
///
/// To use this trait, take an existing `Iterator` and call `par_bridge` on it. After that, you can
/// use any of the `ParallelIterator` methods:
///
/// ```
/// use rayon::iter::ParallelBridge;
/// use rayon::prelude::ParallelIterator;
/// use std::sync::mpsc::channel;
///
/// let rx = {
/// let (tx, rx) = channel();
///
/// tx.send("one!");
/// tx.send("two!");
/// tx.send("three!");
///
/// rx
/// };
///
/// let mut output: Vec<&'static str> = rx.into_iter().par_bridge().collect();
/// output.sort_unstable();
///
/// assert_eq!(&*output, &["one!", "three!", "two!"]);
/// ```
pub trait ParallelBridge: Sized {
/// Creates a bridge from this type to a `ParallelIterator`.
fn par_bridge(self) -> IterBridge<Self>;
}
impl<T: Iterator + Send> ParallelBridge for T
where
T::Item: Send,
{
fn par_bridge(self) -> IterBridge<Self> {
IterBridge { iter: self }
}
}
/// `IterBridge` is a parallel iterator that wraps a sequential iterator.
///
/// This type is created when using the `par_bridge` method on `ParallelBridge`. See the
/// [`ParallelBridge`] documentation for details.
///
/// [`ParallelBridge`]: trait.ParallelBridge.html
#[derive(Debug, Clone)]
pub struct IterBridge<Iter> {
iter: Iter,
}
impl<Iter: Iterator + Send> ParallelIterator for IterBridge<Iter>
where
Iter::Item: Send,
{
type Item = Iter::Item;
fn drive_unindexed<C>(self, consumer: C) -> C::Result
where
C: UnindexedConsumer<Self::Item>,
{
let num_threads = current_num_threads();
let threads_started: Vec<_> = (0..num_threads).map(|_| AtomicBool::new(false)).collect();
bridge_unindexed(
&IterParallelProducer {
split_count: AtomicUsize::new(num_threads),
iter: Mutex::new(self.iter.fuse()),
threads_started: &threads_started,
},
consumer,
)
}
}
struct IterParallelProducer<'a, Iter> {
split_count: AtomicUsize,
iter: Mutex<std::iter::Fuse<Iter>>,
threads_started: &'a [AtomicBool],
}
impl<Iter: Iterator + Send> UnindexedProducer for &IterParallelProducer<'_, Iter> {
type Item = Iter::Item;
fn split(self) -> (Self, Option<Self>) {
let mut count = self.split_count.load(Ordering::SeqCst);
loop {
// Check if the iterator is exhausted
if let Some(new_count) = count.checked_sub(1) {
match self.split_count.compare_exchange_weak(
count,
new_count,
Ordering::SeqCst,
Ordering::SeqCst,
) {
Ok(_) => return (self, Some(self)),
Err(last_count) => count = last_count,
}
} else {
return (self, None);
}
}
}
fn fold_with<F>(self, mut folder: F) -> F
where
F: Folder<Self::Item>,
{
// Guard against work-stealing-induced recursion, in case `Iter::next()`
// calls rayon internally, so we don't deadlock our mutex. We might also
// be recursing via `folder` methods, which doesn't present a mutex hazard,
// but it's lower overhead for us to just check this once, rather than
// updating additional shared state on every mutex lock/unlock.
// (If this isn't a rayon thread, then there's no work-stealing anyway...)
if let Some(i) = current_thread_index() {
// Note: If the number of threads in the pool ever grows dynamically, then
// we'll end up sharing flags and may falsely detect recursion -- that's
// still fine for overall correctness, just not optimal for parallelism.
let thread_started = &self.threads_started[i % self.threads_started.len()];
if thread_started.swap(true, Ordering::Relaxed) {
// We can't make progress with a nested mutex, so just return and let
// the outermost loop continue with the rest of the iterator items.
return folder;
}
}
loop {
if let Ok(mut iter) = self.iter.lock() {
if let Some(it) = iter.next() {
drop(iter);
folder = folder.consume(it);
if folder.full() {
return folder;
}
} else {
return folder;
}
} else {
// any panics from other threads will have been caught by the pool,
// and will be re-thrown when joined - just exit
return folder;
}
}
}
}
|