summaryrefslogtreecommitdiffstats
path: root/vendor/redox_syscall/src/io/dma.rs
blob: 0613fc9fc9b4c4934e3d728f2a578a7c08d81835 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
use core::mem::{self, MaybeUninit};
use core::ops::{Deref, DerefMut};
use core::{ptr, slice};

use crate::Result;
use crate::{PartialAllocStrategy, PhysallocFlags, PhysmapFlags};
use crate::arch::PAGE_SIZE;

/// An RAII guard of a physical memory allocation. Currently all physically allocated memory are
/// page-aligned and take up at least 4k of space (on x86_64).
#[derive(Debug)]
pub struct PhysBox {
    address: usize,
    size: usize
}

const fn round_up(x: usize) -> usize {
    (x + PAGE_SIZE - 1) / PAGE_SIZE * PAGE_SIZE
}
fn assert_aligned(x: usize) {
    assert_eq!(x % PAGE_SIZE, 0);
}

#[cfg(target_arch = "aarch64")]
fn physmap_flags() -> PhysmapFlags {
    // aarch64 currently must map DMA memory without caching to ensure coherence
    crate::PHYSMAP_NO_CACHE | crate::PHYSMAP_WRITE
}

#[cfg(any(target_arch = "x86", target_arch = "x86_64"))]
fn physmap_flags() -> PhysmapFlags {
    // x86 ensures cache coherence with DMA memory
    crate::PHYSMAP_WRITE
}

impl PhysBox {
    /// Construct a PhysBox from an address and a size. The address must be page-aligned, and the
    /// size must similarly be a multiple of the page size.
    ///
    /// # Safety
    /// This function is unsafe because when dropping, Self has to a valid allocation.
    pub unsafe fn from_raw_parts(address: usize, size: usize) -> Self {
        assert_aligned(address);
        assert_aligned(size);

        Self {
            address,
            size,
        }
    }

    /// Retrieve the byte address in physical memory, of this allocation.
    pub fn address(&self) -> usize {
        self.address
    }

    /// Retrieve the size in bytes of the alloc.
    pub fn size(&self) -> usize {
        self.size
    }

    /// Allocate physical memory that must reside in 32-bit space.
    pub fn new_in_32bit_space(size: usize) -> Result<Self> {
        Self::new_with_flags(size, PhysallocFlags::SPACE_32)
    }

    pub fn new_with_flags(size: usize, flags: PhysallocFlags) -> Result<Self> {
        assert!(!flags.contains(PhysallocFlags::PARTIAL_ALLOC));
        assert_aligned(size);

        let address = unsafe { crate::physalloc2(size, flags.bits())? };
        Ok(unsafe { Self::from_raw_parts(address, size) })
    }

    /// "Partially" allocate physical memory, in the sense that the allocation may be smaller than
    /// expected, but still with a minimum limit. This is particularly useful when the physical
    /// memory space is fragmented, and a device supports scatter-gather I/O. In that case, the
    /// driver can optimistically request e.g. 1 alloc of 1 MiB, with the minimum of 512 KiB. If
    /// that first allocation only returns half the size, the driver can do another allocation
    /// and then let the device use both buffers.
    pub fn new_partial_allocation(size: usize, flags: PhysallocFlags, strategy: Option<PartialAllocStrategy>, mut min: usize) -> Result<Self> {
        assert_aligned(size);
        debug_assert!(!(flags.contains(PhysallocFlags::PARTIAL_ALLOC) && strategy.is_none()));

        let address = unsafe { crate::physalloc3(size, flags.bits() | strategy.map_or(0, |s| s as usize), &mut min)? };
        Ok(unsafe { Self::from_raw_parts(address, size) })
    }

    pub fn new(size: usize) -> Result<Self> {
        assert_aligned(size);

        let address = unsafe { crate::physalloc(size)? };
        Ok(unsafe { Self::from_raw_parts(address, size) })
    }
}

impl Drop for PhysBox {
    fn drop(&mut self) {
        let _ = unsafe { crate::physfree(self.address, self.size) };
    }
}

pub struct Dma<T: ?Sized> {
    phys: PhysBox,
    virt: *mut T,
}

impl<T> Dma<T> {
    pub fn from_physbox_uninit(phys: PhysBox) -> Result<Dma<MaybeUninit<T>>> {
        let virt = unsafe { crate::physmap(phys.address, phys.size, physmap_flags())? } as *mut MaybeUninit<T>;

        Ok(Dma {
            phys,
            virt,
        })
    }
    pub fn from_physbox_zeroed(phys: PhysBox) -> Result<Dma<MaybeUninit<T>>> {
        let this = Self::from_physbox_uninit(phys)?;
        unsafe { ptr::write_bytes(this.virt as *mut MaybeUninit<u8>, 0, this.phys.size) }
        Ok(this)
    }

    pub fn from_physbox(phys: PhysBox, value: T) -> Result<Self> {
        let this = Self::from_physbox_uninit(phys)?;

        Ok(unsafe {
            ptr::write(this.virt, MaybeUninit::new(value));
            this.assume_init()
        })
    }

    pub fn new(value: T) -> Result<Self> {
        let phys = PhysBox::new(round_up(mem::size_of::<T>()))?;
        Self::from_physbox(phys, value)
    }
    pub fn zeroed() -> Result<Dma<MaybeUninit<T>>> {
        let phys = PhysBox::new(round_up(mem::size_of::<T>()))?;
        Self::from_physbox_zeroed(phys)
    }
}

impl<T> Dma<MaybeUninit<T>> {
    pub unsafe fn assume_init(self) -> Dma<T> {
        let &Dma { phys: PhysBox { address, size }, virt } = &self;
        mem::forget(self);

        Dma {
            phys: PhysBox { address, size },
            virt: virt as *mut T,
        }
    }
}
impl<T: ?Sized> Dma<T> {
    pub fn physical(&self) -> usize {
        self.phys.address()
    }
    pub fn size(&self) -> usize {
        self.phys.size()
    }
    pub fn phys(&self) -> &PhysBox {
        &self.phys
    }
}

impl<T> Dma<[T]> {
    pub fn from_physbox_uninit_unsized(phys: PhysBox, len: usize) -> Result<Dma<[MaybeUninit<T>]>> {
        let max_len = phys.size() / mem::size_of::<T>();
        assert!(len <= max_len);

        Ok(Dma {
            virt: unsafe { slice::from_raw_parts_mut(crate::physmap(phys.address, phys.size, physmap_flags())? as *mut MaybeUninit<T>, len) } as *mut [MaybeUninit<T>],
            phys,
        })
    }
    pub fn from_physbox_zeroed_unsized(phys: PhysBox, len: usize) -> Result<Dma<[MaybeUninit<T>]>> {
        let this = Self::from_physbox_uninit_unsized(phys, len)?;
        unsafe { ptr::write_bytes(this.virt as *mut MaybeUninit<u8>, 0, this.phys.size()) }
        Ok(this)
    }
    /// Creates a new DMA buffer with a size only known at runtime.
    /// ## Safety
    /// * `T` must be properly aligned.
    /// * `T` must be valid as zeroed (i.e. no NonNull pointers).
    pub unsafe fn zeroed_unsized(count: usize) -> Result<Self> {
        let phys = PhysBox::new(round_up(mem::size_of::<T>() * count))?;
        Ok(Self::from_physbox_zeroed_unsized(phys, count)?.assume_init())
    }
}
impl<T> Dma<[MaybeUninit<T>]> {
    pub unsafe fn assume_init(self) -> Dma<[T]> {
        let &Dma { phys: PhysBox { address, size }, virt } = &self;
        mem::forget(self);

        Dma {
            phys: PhysBox { address, size },
            virt: virt as *mut [T],
        }
    }
}

impl<T: ?Sized> Deref for Dma<T> {
    type Target = T;
    fn deref(&self) -> &T {
        unsafe { &*self.virt }
    }
}

impl<T: ?Sized> DerefMut for Dma<T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.virt }
    }
}

impl<T: ?Sized> Drop for Dma<T> {
    fn drop(&mut self) {
        unsafe { ptr::drop_in_place(self.virt) }
        let _ = unsafe { crate::funmap(self.virt as *mut u8 as usize, self.phys.size) };
    }
}