summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata-0.2.0/src/dfa/search.rs
blob: 492414981d6ebfd61eaf04fcd960d2032e27fc7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
use crate::{
    dfa::{
        accel,
        automaton::{Automaton, OverlappingState, StateMatch},
    },
    util::{
        id::{PatternID, StateID},
        matchtypes::HalfMatch,
        prefilter, MATCH_OFFSET,
    },
    MatchError,
};

#[inline(never)]
pub fn find_earliest_fwd<A: Automaton + ?Sized>(
    pre: Option<&mut prefilter::Scanner>,
    dfa: &A,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    // Searching with a pattern ID is always anchored, so we should never use
    // a prefilter.
    if pre.is_some() && pattern_id.is_none() {
        find_fwd(pre, true, dfa, pattern_id, bytes, start, end)
    } else {
        find_fwd(None, true, dfa, pattern_id, bytes, start, end)
    }
}

#[inline(never)]
pub fn find_leftmost_fwd<A: Automaton + ?Sized>(
    pre: Option<&mut prefilter::Scanner>,
    dfa: &A,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    // Searching with a pattern ID is always anchored, so we should never use
    // a prefilter.
    if pre.is_some() && pattern_id.is_none() {
        find_fwd(pre, false, dfa, pattern_id, bytes, start, end)
    } else {
        find_fwd(None, false, dfa, pattern_id, bytes, start, end)
    }
}

/// This is marked as `inline(always)` specifically because it supports
/// multiple modes of searching. Namely, the 'pre' and 'earliest' parameters
/// getting inlined eliminate some critical branches. To avoid bloating binary
/// size, we only call this function in a fixed number of places.
#[inline(always)]
fn find_fwd<A: Automaton + ?Sized>(
    mut pre: Option<&mut prefilter::Scanner>,
    earliest: bool,
    dfa: &A,
    pattern_id: Option<PatternID>,
    haystack: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    assert!(start <= end);
    assert!(start <= haystack.len());
    assert!(end <= haystack.len());

    // Why do this? This lets 'bytes[at]' work without bounds checks below.
    // It seems the assert on 'end <= haystack.len()' above is otherwise
    // not enough. Why not just make 'bytes' scoped this way anyway? Well,
    // 'eoi_fwd' (below) might actually want to try to access the byte at 'end'
    // for resolving look-ahead.
    let bytes = &haystack[..end];

    let mut state = init_fwd(dfa, pattern_id, haystack, start, end)?;
    let mut last_match = None;
    let mut at = start;
    if let Some(ref mut pre) = pre {
        // If a prefilter doesn't report false positives, then we don't need to
        // touch the DFA at all. However, since all matches include the pattern
        // ID, and the prefilter infrastructure doesn't report pattern IDs, we
        // limit this optimization to cases where there is exactly one pattern.
        // In that case, any match must be the 0th pattern.
        if dfa.pattern_count() == 1 && !pre.reports_false_positives() {
            return Ok(pre.next_candidate(bytes, at).into_option().map(
                |offset| HalfMatch { pattern: PatternID::ZERO, offset },
            ));
        } else if pre.is_effective(at) {
            match pre.next_candidate(bytes, at).into_option() {
                None => return Ok(None),
                Some(i) => {
                    at = i;
                }
            }
        }
    }
    while at < end {
        let byte = bytes[at];
        state = dfa.next_state(state, byte);
        at += 1;
        if dfa.is_special_state(state) {
            if dfa.is_start_state(state) {
                if let Some(ref mut pre) = pre {
                    if pre.is_effective(at) {
                        match pre.next_candidate(bytes, at).into_option() {
                            None => return Ok(None),
                            Some(i) => {
                                at = i;
                            }
                        }
                    }
                } else if dfa.is_accel_state(state) {
                    let needles = dfa.accelerator(state);
                    at = accel::find_fwd(needles, bytes, at)
                        .unwrap_or(bytes.len());
                }
            } else if dfa.is_match_state(state) {
                last_match = Some(HalfMatch {
                    pattern: dfa.match_pattern(state, 0),
                    offset: at - MATCH_OFFSET,
                });
                if earliest {
                    return Ok(last_match);
                }
                if dfa.is_accel_state(state) {
                    let needles = dfa.accelerator(state);
                    at = accel::find_fwd(needles, bytes, at)
                        .unwrap_or(bytes.len());
                }
            } else if dfa.is_accel_state(state) {
                let needs = dfa.accelerator(state);
                at = accel::find_fwd(needs, bytes, at).unwrap_or(bytes.len());
            } else if dfa.is_dead_state(state) {
                return Ok(last_match);
            } else {
                debug_assert!(dfa.is_quit_state(state));
                if last_match.is_some() {
                    return Ok(last_match);
                }
                return Err(MatchError::Quit { byte, offset: at - 1 });
            }
        }
        while at < end && dfa.next_state(state, bytes[at]) == state {
            at += 1;
        }
    }
    Ok(eoi_fwd(dfa, haystack, end, &mut state)?.or(last_match))
}

#[inline(never)]
pub fn find_earliest_rev<A: Automaton + ?Sized>(
    dfa: &A,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    find_rev(true, dfa, pattern_id, bytes, start, end)
}

#[inline(never)]
pub fn find_leftmost_rev<A: Automaton + ?Sized>(
    dfa: &A,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    find_rev(false, dfa, pattern_id, bytes, start, end)
}

/// This is marked as `inline(always)` specifically because it supports
/// multiple modes of searching. Namely, the 'earliest' boolean getting inlined
/// permits eliminating a few crucial branches.
#[inline(always)]
fn find_rev<A: Automaton + ?Sized>(
    earliest: bool,
    dfa: &A,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    assert!(start <= end);
    assert!(start <= bytes.len());
    assert!(end <= bytes.len());

    let mut state = init_rev(dfa, pattern_id, bytes, start, end)?;
    let mut last_match = None;
    let mut at = end;
    while at > start {
        at -= 1;
        while at > start && dfa.next_state(state, bytes[at]) == state {
            at -= 1;
        }

        let byte = bytes[at];
        state = dfa.next_state(state, byte);
        if dfa.is_special_state(state) {
            if dfa.is_start_state(state) {
                if dfa.is_accel_state(state) {
                    let needles = dfa.accelerator(state);
                    at = accel::find_rev(needles, bytes, at)
                        .map(|i| i + 1)
                        .unwrap_or(0);
                }
            } else if dfa.is_match_state(state) {
                last_match = Some(HalfMatch {
                    pattern: dfa.match_pattern(state, 0),
                    offset: at + MATCH_OFFSET,
                });
                if earliest {
                    return Ok(last_match);
                }
                if dfa.is_accel_state(state) {
                    let needles = dfa.accelerator(state);
                    at = accel::find_rev(needles, bytes, at)
                        .map(|i| i + 1)
                        .unwrap_or(0);
                }
            } else if dfa.is_accel_state(state) {
                let needles = dfa.accelerator(state);
                at = accel::find_rev(needles, bytes, at)
                    .map(|i| i + 1)
                    .unwrap_or(0);
            } else if dfa.is_dead_state(state) {
                return Ok(last_match);
            } else {
                debug_assert!(dfa.is_quit_state(state));
                if last_match.is_some() {
                    return Ok(last_match);
                }
                return Err(MatchError::Quit { byte, offset: at });
            }
        }
    }
    Ok(eoi_rev(dfa, bytes, start, state)?.or(last_match))
}

#[inline(never)]
pub fn find_overlapping_fwd<A: Automaton + ?Sized>(
    pre: Option<&mut prefilter::Scanner>,
    dfa: &A,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
    caller_state: &mut OverlappingState,
) -> Result<Option<HalfMatch>, MatchError> {
    // Searching with a pattern ID is always anchored, so we should only ever
    // use a prefilter when no pattern ID is given.
    if pre.is_some() && pattern_id.is_none() {
        find_overlapping_fwd_imp(
            pre,
            dfa,
            pattern_id,
            bytes,
            start,
            end,
            caller_state,
        )
    } else {
        find_overlapping_fwd_imp(
            None,
            dfa,
            pattern_id,
            bytes,
            start,
            end,
            caller_state,
        )
    }
}

/// This is marked as `inline(always)` specifically because it supports
/// multiple modes of searching. Namely, the 'pre' prefilter getting inlined
/// permits eliminating a few crucial branches and reduces code size when it is
/// not used.
#[inline(always)]
fn find_overlapping_fwd_imp<A: Automaton + ?Sized>(
    mut pre: Option<&mut prefilter::Scanner>,
    dfa: &A,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    mut start: usize,
    end: usize,
    caller_state: &mut OverlappingState,
) -> Result<Option<HalfMatch>, MatchError> {
    assert!(start <= end);
    assert!(start <= bytes.len());
    assert!(end <= bytes.len());

    let mut state = match caller_state.id() {
        None => init_fwd(dfa, pattern_id, bytes, start, end)?,
        Some(id) => {
            if let Some(last) = caller_state.last_match() {
                let match_count = dfa.match_count(id);
                if last.match_index < match_count {
                    let m = HalfMatch {
                        pattern: dfa.match_pattern(id, last.match_index),
                        offset: last.offset,
                    };
                    last.match_index += 1;
                    return Ok(Some(m));
                }
            }

            // This is a subtle but critical detail. If the caller provides a
            // non-None state ID, then it must be the case that the state ID
            // corresponds to one set by this function. The state ID therefore
            // corresponds to a match state, a dead state or some other state.
            // However, "some other" state _only_ occurs when the input has
            // been exhausted because the only way to stop before then is to
            // see a match or a dead/quit state.
            //
            // If the input is exhausted or if it's a dead state, then
            // incrementing the starting position has no relevance on
            // correctness, since the loop below will either not execute
            // at all or will immediately stop due to being in a dead state.
            // (Once in a dead state it is impossible to leave it.)
            //
            // Therefore, the only case we need to consider is when
            // caller_state is a match state. In this case, since our machines
            // support the ability to delay a match by a certain number of
            // bytes (to support look-around), it follows that we actually
            // consumed that many additional bytes on our previous search. When
            // the caller resumes their search to find subsequent matches, they
            // will use the ending location from the previous match as the next
            // starting point, which is `MATCH_OFFSET` bytes PRIOR to where
            // we scanned to on the previous search. Therefore, we need to
            // compensate by bumping `start` up by `MATCH_OFFSET` bytes.
            //
            // Incidentally, since MATCH_OFFSET is non-zero, this also makes
            // dealing with empty matches convenient. Namely, callers needn't
            // special case them when implementing an iterator. Instead, this
            // ensures that forward progress is always made.
            start += MATCH_OFFSET;
            id
        }
    };

    let mut at = start;
    while at < end {
        let byte = bytes[at];
        state = dfa.next_state(state, byte);
        at += 1;
        if dfa.is_special_state(state) {
            caller_state.set_id(state);
            if dfa.is_start_state(state) {
                if let Some(ref mut pre) = pre {
                    if pre.is_effective(at) {
                        match pre.next_candidate(bytes, at).into_option() {
                            None => return Ok(None),
                            Some(i) => {
                                at = i;
                            }
                        }
                    }
                } else if dfa.is_accel_state(state) {
                    let needles = dfa.accelerator(state);
                    at = accel::find_fwd(needles, bytes, at)
                        .unwrap_or(bytes.len());
                }
            } else if dfa.is_match_state(state) {
                let offset = at - MATCH_OFFSET;
                caller_state
                    .set_last_match(StateMatch { match_index: 1, offset });
                return Ok(Some(HalfMatch {
                    pattern: dfa.match_pattern(state, 0),
                    offset,
                }));
            } else if dfa.is_accel_state(state) {
                let needs = dfa.accelerator(state);
                at = accel::find_fwd(needs, bytes, at).unwrap_or(bytes.len());
            } else if dfa.is_dead_state(state) {
                return Ok(None);
            } else {
                debug_assert!(dfa.is_quit_state(state));
                return Err(MatchError::Quit { byte, offset: at - 1 });
            }
        }
    }

    let result = eoi_fwd(dfa, bytes, end, &mut state);
    caller_state.set_id(state);
    if let Ok(Some(ref last_match)) = result {
        caller_state.set_last_match(StateMatch {
            match_index: 1,
            offset: last_match.offset(),
        });
    }
    result
}

fn init_fwd<A: Automaton + ?Sized>(
    dfa: &A,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<StateID, MatchError> {
    let state = dfa.start_state_forward(pattern_id, bytes, start, end);
    // Start states can never be match states, since all matches are delayed
    // by 1 byte.
    assert!(!dfa.is_match_state(state));
    Ok(state)
}

fn init_rev<A: Automaton + ?Sized>(
    dfa: &A,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<StateID, MatchError> {
    let state = dfa.start_state_reverse(pattern_id, bytes, start, end);
    // Start states can never be match states, since all matches are delayed
    // by 1 byte.
    assert!(!dfa.is_match_state(state));
    Ok(state)
}

fn eoi_fwd<A: Automaton + ?Sized>(
    dfa: &A,
    bytes: &[u8],
    end: usize,
    state: &mut StateID,
) -> Result<Option<HalfMatch>, MatchError> {
    match bytes.get(end) {
        Some(&b) => {
            *state = dfa.next_state(*state, b);
            if dfa.is_match_state(*state) {
                Ok(Some(HalfMatch {
                    pattern: dfa.match_pattern(*state, 0),
                    offset: end,
                }))
            } else {
                Ok(None)
            }
        }
        None => {
            *state = dfa.next_eoi_state(*state);
            if dfa.is_match_state(*state) {
                Ok(Some(HalfMatch {
                    pattern: dfa.match_pattern(*state, 0),
                    offset: bytes.len(),
                }))
            } else {
                Ok(None)
            }
        }
    }
}

fn eoi_rev<A: Automaton + ?Sized>(
    dfa: &A,
    bytes: &[u8],
    start: usize,
    state: StateID,
) -> Result<Option<HalfMatch>, MatchError> {
    if start > 0 {
        let state = dfa.next_state(state, bytes[start - 1]);
        if dfa.is_match_state(state) {
            Ok(Some(HalfMatch {
                pattern: dfa.match_pattern(state, 0),
                offset: start,
            }))
        } else {
            Ok(None)
        }
    } else {
        let state = dfa.next_eoi_state(state);
        if dfa.is_match_state(state) {
            Ok(Some(HalfMatch {
                pattern: dfa.match_pattern(state, 0),
                offset: 0,
            }))
        } else {
            Ok(None)
        }
    }
}

// Currently unused, but is useful to keep around. This was originally used
// when the code above used raw pointers for its main loop.
// /// Returns the distance between the given pointer and the start of `bytes`.
// /// This assumes that the given pointer points to somewhere in the `bytes`
// /// slice given.
// fn offset(bytes: &[u8], p: *const u8) -> usize {
// debug_assert!(bytes.as_ptr() <= p);
// debug_assert!(bytes[bytes.len()..].as_ptr() >= p);
// ((p as isize) - (bytes.as_ptr() as isize)) as usize
// }