summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/src/hybrid/search.rs
blob: 92760cee2c6f5e9bef701746a8a970ac2a2d86a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
use crate::{
    hybrid::{
        dfa::{Cache, DFA},
        id::{LazyStateID, OverlappingState, StateMatch},
    },
    nfa::thompson,
    util::{
        id::PatternID,
        matchtypes::{HalfMatch, MatchError},
        prefilter, MATCH_OFFSET,
    },
};

#[inline(never)]
pub(crate) fn find_earliest_fwd(
    pre: Option<&mut prefilter::Scanner>,
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    // Searching with a pattern ID is always anchored, so we should never use
    // a prefilter.
    if pre.is_some() && pattern_id.is_none() {
        find_fwd(pre, true, dfa, cache, pattern_id, bytes, start, end)
    } else {
        find_fwd(None, true, dfa, cache, pattern_id, bytes, start, end)
    }
}

#[inline(never)]
pub(crate) fn find_leftmost_fwd(
    pre: Option<&mut prefilter::Scanner>,
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    // Searching with a pattern ID is always anchored, so we should never use
    // a prefilter.
    if pre.is_some() && pattern_id.is_none() {
        find_fwd(pre, false, dfa, cache, pattern_id, bytes, start, end)
    } else {
        find_fwd(None, false, dfa, cache, pattern_id, bytes, start, end)
    }
}

#[inline(always)]
fn find_fwd(
    mut pre: Option<&mut prefilter::Scanner>,
    earliest: bool,
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    haystack: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    assert!(start <= end);
    assert!(start <= haystack.len());
    assert!(end <= haystack.len());

    // Why do this? This lets 'bytes[at]' work without bounds checks below.
    // It seems the assert on 'end <= haystack.len()' above is otherwise
    // not enough. Why not just make 'bytes' scoped this way anyway? Well,
    // 'eoi_fwd' (below) might actually want to try to access the byte at 'end'
    // for resolving look-ahead.
    let bytes = &haystack[..end];

    let mut sid = init_fwd(dfa, cache, pattern_id, haystack, start, end)?;
    let mut last_match = None;
    let mut at = start;
    if let Some(ref mut pre) = pre {
        // If a prefilter doesn't report false positives, then we don't need to
        // touch the DFA at all. However, since all matches include the pattern
        // ID, and the prefilter infrastructure doesn't report pattern IDs, we
        // limit this optimization to cases where there is exactly one pattern.
        // In that case, any match must be the 0th pattern.
        if dfa.pattern_count() == 1 && !pre.reports_false_positives() {
            return Ok(pre.next_candidate(bytes, at).into_option().map(
                |offset| HalfMatch { pattern: PatternID::ZERO, offset },
            ));
        } else if pre.is_effective(at) {
            match pre.next_candidate(bytes, at).into_option() {
                None => return Ok(None),
                Some(i) => {
                    at = i;
                }
            }
        }
    }
    while at < end {
        if sid.is_tagged() {
            sid = dfa
                .next_state(cache, sid, bytes[at])
                .map_err(|_| gave_up(at))?;
            at += 1;
        } else {
            // SAFETY: There are two safety invariants we need to uphold
            // here in the loop below: that 'sid' is a valid state ID for
            // this DFA, and that 'at' is a valid index into 'bytes'. For
            // the former, we rely on the invariant that next_state* and
            // start_state_forward always returns a valid state ID (given a
            // valid state ID in the former case), and that we are only at this
            // place in the code if 'sid' is untagged. Moreover, every call to
            // next_state_untagged_unchecked below is guarded by a check that
            // sid is untagged. For the latter safety invariant, we always
            // guard unchecked access with a check that 'at' is less than
            // 'end', where 'end == bytes.len()'.
            //
            // For justification, this gives us a ~10% bump in search time.
            // This was used for a benchmark:
            //
            //     regex-cli find hybrid regex @/some/big/file '(?m)^.+$' -UBb
            //
            // With bounds checked: ~881.4ms. Without: ~775ms. For input, I
            // used OpenSubtitles2018.raw.sample.medium.en.
            let mut prev_sid = sid;
            while at < end {
                prev_sid = sid;
                sid = unsafe {
                    dfa.next_state_untagged_unchecked(
                        cache,
                        sid,
                        *bytes.get_unchecked(at),
                    )
                };
                at += 1;
                if sid.is_tagged() {
                    break;
                }
                // SAFETY: we make four unguarded accesses to 'bytes[at]'
                // below, and each are safe because we know that 'at + 4' is
                // in bounds. Moreover, while we don't check whether 'sid' is
                // untagged directly, we know it is because of the check above.
                // And the unrolled loop below quits when the next state is not
                // equal to the previous state.
                //
                // PERF: For justification for eliminating bounds checks,
                // see above. For justification for the unrolling, we use
                // two tests. The one above with regex '(?m)^.+$', and also
                // '(?m)^.{40}$'. The former is kinda the best case for
                // unrolling, and gives a 1.67 boost primarily because the DFA
                // spends most of its time munching through the input in the
                // same state. But the latter pattern rarely spends time in the
                // same state through subsequent transitions, so unrolling is
                // pretty much always ineffective in that it craps out on the
                // first 'sid != next' check below. However, without unrolling,
                // search is only 1.03 times faster than with unrolling on the
                // latter pattern, which we deem to be an acceptable loss in
                // favor of optimizing the more common case of having a "hot"
                // state somewhere in the DFA.
                while at + 4 < end {
                    let next = unsafe {
                        dfa.next_state_untagged_unchecked(
                            cache,
                            sid,
                            *bytes.get_unchecked(at),
                        )
                    };
                    if sid != next {
                        break;
                    }
                    at += 1;
                    let next = unsafe {
                        dfa.next_state_untagged_unchecked(
                            cache,
                            sid,
                            *bytes.get_unchecked(at),
                        )
                    };
                    if sid != next {
                        break;
                    }
                    at += 1;
                    let next = unsafe {
                        dfa.next_state_untagged_unchecked(
                            cache,
                            sid,
                            *bytes.get_unchecked(at),
                        )
                    };
                    if sid != next {
                        break;
                    }
                    at += 1;
                    let next = unsafe {
                        dfa.next_state_untagged_unchecked(
                            cache,
                            sid,
                            *bytes.get_unchecked(at),
                        )
                    };
                    if sid != next {
                        break;
                    }
                    at += 1;
                }
            }
            if sid.is_unknown() {
                sid = dfa
                    .next_state(cache, prev_sid, bytes[at - 1])
                    .map_err(|_| gave_up(at - 1))?;
            }
        }
        if sid.is_tagged() {
            if sid.is_start() {
                if let Some(ref mut pre) = pre {
                    if pre.is_effective(at) {
                        match pre.next_candidate(bytes, at).into_option() {
                            None => return Ok(None),
                            Some(i) => {
                                at = i;
                            }
                        }
                    }
                }
            } else if sid.is_match() {
                last_match = Some(HalfMatch {
                    pattern: dfa.match_pattern(cache, sid, 0),
                    offset: at - MATCH_OFFSET,
                });
                if earliest {
                    return Ok(last_match);
                }
            } else if sid.is_dead() {
                return Ok(last_match);
            } else if sid.is_quit() {
                if last_match.is_some() {
                    return Ok(last_match);
                }
                let offset = at - 1;
                return Err(MatchError::Quit { byte: bytes[offset], offset });
            } else {
                debug_assert!(sid.is_unknown());
                unreachable!("sid being unknown is a bug");
            }
        }
    }
    // We are careful to use 'haystack' here, which contains the full context
    // that we might want to inspect.
    Ok(eoi_fwd(dfa, cache, haystack, end, &mut sid)?.or(last_match))
}

#[inline(never)]
pub(crate) fn find_earliest_rev(
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    find_rev(true, dfa, cache, pattern_id, bytes, start, end)
}

#[inline(never)]
pub(crate) fn find_leftmost_rev(
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    find_rev(false, dfa, cache, pattern_id, bytes, start, end)
}

#[inline(always)]
fn find_rev(
    earliest: bool,
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    haystack: &[u8],
    start: usize,
    end: usize,
) -> Result<Option<HalfMatch>, MatchError> {
    assert!(start <= end);
    assert!(start <= haystack.len());
    assert!(end <= haystack.len());

    // Why do this? This lets 'bytes[at]' work without bounds checks below.
    // It seems the assert on 'end <= haystack.len()' above is otherwise
    // not enough. Why not just make 'bytes' scoped this way anyway? Well,
    // 'eoi_fwd' (below) might actually want to try to access the byte at 'end'
    // for resolving look-ahead.
    let bytes = &haystack[start..];

    let mut sid = init_rev(dfa, cache, pattern_id, haystack, start, end)?;
    let mut last_match = None;
    let mut at = end - start;
    while at > 0 {
        if sid.is_tagged() {
            at -= 1;
            sid = dfa
                .next_state(cache, sid, bytes[at])
                .map_err(|_| gave_up(at))?;
        } else {
            // SAFETY: See comments in 'find_fwd' for both a safety argument
            // and a justification from a performance perspective as to 1) why
            // we elide bounds checks and 2) why we do a specialized version of
            // unrolling below.
            let mut prev_sid = sid;
            while at > 0 && !sid.is_tagged() {
                prev_sid = sid;
                at -= 1;
                while at > 3 {
                    let next = unsafe {
                        dfa.next_state_untagged_unchecked(
                            cache,
                            sid,
                            *bytes.get_unchecked(at),
                        )
                    };
                    if sid != next {
                        break;
                    }
                    at -= 1;
                    let next = unsafe {
                        dfa.next_state_untagged_unchecked(
                            cache,
                            sid,
                            *bytes.get_unchecked(at),
                        )
                    };
                    if sid != next {
                        break;
                    }
                    at -= 1;
                    let next = unsafe {
                        dfa.next_state_untagged_unchecked(
                            cache,
                            sid,
                            *bytes.get_unchecked(at),
                        )
                    };
                    if sid != next {
                        break;
                    }
                    at -= 1;
                    let next = unsafe {
                        dfa.next_state_untagged_unchecked(
                            cache,
                            sid,
                            *bytes.get_unchecked(at),
                        )
                    };
                    if sid != next {
                        break;
                    }
                    at -= 1;
                }
                sid = unsafe {
                    dfa.next_state_untagged_unchecked(
                        cache,
                        sid,
                        *bytes.get_unchecked(at),
                    )
                };
            }
            if sid.is_unknown() {
                sid = dfa
                    .next_state(cache, prev_sid, bytes[at])
                    .map_err(|_| gave_up(at))?;
            }
        }
        if sid.is_tagged() {
            if sid.is_start() {
                continue;
            } else if sid.is_match() {
                last_match = Some(HalfMatch {
                    pattern: dfa.match_pattern(cache, sid, 0),
                    offset: start + at + MATCH_OFFSET,
                });
                if earliest {
                    return Ok(last_match);
                }
            } else if sid.is_dead() {
                return Ok(last_match);
            } else {
                debug_assert!(sid.is_quit());
                if last_match.is_some() {
                    return Ok(last_match);
                }
                return Err(MatchError::Quit { byte: bytes[at], offset: at });
            }
        }
    }
    Ok(eoi_rev(dfa, cache, haystack, start, sid)?.or(last_match))
}

#[inline(never)]
pub(crate) fn find_overlapping_fwd(
    pre: Option<&mut prefilter::Scanner>,
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
    caller_state: &mut OverlappingState,
) -> Result<Option<HalfMatch>, MatchError> {
    // Searching with a pattern ID is always anchored, so we should only ever
    // use a prefilter when no pattern ID is given.
    if pre.is_some() && pattern_id.is_none() {
        find_overlapping_fwd_imp(
            pre,
            dfa,
            cache,
            pattern_id,
            bytes,
            start,
            end,
            caller_state,
        )
    } else {
        find_overlapping_fwd_imp(
            None,
            dfa,
            cache,
            pattern_id,
            bytes,
            start,
            end,
            caller_state,
        )
    }
}

#[inline(always)]
fn find_overlapping_fwd_imp(
    mut pre: Option<&mut prefilter::Scanner>,
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    mut start: usize,
    end: usize,
    caller_state: &mut OverlappingState,
) -> Result<Option<HalfMatch>, MatchError> {
    assert!(start <= end);
    assert!(start <= bytes.len());
    assert!(end <= bytes.len());

    let mut sid = match caller_state.id() {
        None => init_fwd(dfa, cache, pattern_id, bytes, start, end)?,
        Some(sid) => {
            if let Some(last) = caller_state.last_match() {
                let match_count = dfa.match_count(cache, sid);
                if last.match_index < match_count {
                    let m = HalfMatch {
                        pattern: dfa.match_pattern(
                            cache,
                            sid,
                            last.match_index,
                        ),
                        offset: last.offset,
                    };
                    last.match_index += 1;
                    return Ok(Some(m));
                }
            }

            // This is a subtle but critical detail. If the caller provides a
            // non-None state ID, then it must be the case that the state ID
            // corresponds to one set by this function. The state ID therefore
            // corresponds to a match state, a dead state or some other state.
            // However, "some other" state _only_ occurs when the input has
            // been exhausted because the only way to stop before then is to
            // see a match or a dead/quit state.
            //
            // If the input is exhausted or if it's a dead state, then
            // incrementing the starting position has no relevance on
            // correctness, since the loop below will either not execute
            // at all or will immediately stop due to being in a dead state.
            // (Once in a dead state it is impossible to leave it.)
            //
            // Therefore, the only case we need to consider is when
            // caller_state is a match state. In this case, since our machines
            // support the ability to delay a match by a certain number of
            // bytes (to support look-around), it follows that we actually
            // consumed that many additional bytes on our previous search. When
            // the caller resumes their search to find subsequent matches, they
            // will use the ending location from the previous match as the next
            // starting point, which is `match_offset` bytes PRIOR to where
            // we scanned to on the previous search. Therefore, we need to
            // compensate by bumping `start` up by `MATCH_OFFSET` bytes.
            //
            // Incidentally, since MATCH_OFFSET is non-zero, this also makes
            // dealing with empty matches convenient. Namely, callers needn't
            // special case them when implementing an iterator. Instead, this
            // ensures that forward progress is always made.
            start += MATCH_OFFSET;
            sid
        }
    };

    let mut at = start;
    while at < end {
        let byte = bytes[at];
        sid = dfa.next_state(cache, sid, byte).map_err(|_| gave_up(at))?;
        at += 1;
        if sid.is_tagged() {
            caller_state.set_id(sid);
            if sid.is_start() {
                if let Some(ref mut pre) = pre {
                    if pre.is_effective(at) {
                        match pre.next_candidate(bytes, at).into_option() {
                            None => return Ok(None),
                            Some(i) => {
                                at = i;
                            }
                        }
                    }
                }
            } else if sid.is_match() {
                let offset = at - MATCH_OFFSET;
                caller_state
                    .set_last_match(StateMatch { match_index: 1, offset });
                return Ok(Some(HalfMatch {
                    pattern: dfa.match_pattern(cache, sid, 0),
                    offset,
                }));
            } else if sid.is_dead() {
                return Ok(None);
            } else {
                debug_assert!(sid.is_quit());
                return Err(MatchError::Quit { byte, offset: at - 1 });
            }
        }
    }

    let result = eoi_fwd(dfa, cache, bytes, end, &mut sid);
    caller_state.set_id(sid);
    if let Ok(Some(ref last_match)) = result {
        caller_state.set_last_match(StateMatch {
            // '1' is always correct here since if we get to this point, this
            // always corresponds to the first (index '0') match discovered at
            // this position. So the next match to report at this position (if
            // it exists) is at index '1'.
            match_index: 1,
            offset: last_match.offset(),
        });
    }
    result
}

#[inline(always)]
fn init_fwd(
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<LazyStateID, MatchError> {
    let sid = dfa
        .start_state_forward(cache, pattern_id, bytes, start, end)
        .map_err(|_| gave_up(start))?;
    // Start states can never be match states, since all matches are delayed
    // by 1 byte.
    assert!(!sid.is_match());
    Ok(sid)
}

#[inline(always)]
fn init_rev(
    dfa: &DFA,
    cache: &mut Cache,
    pattern_id: Option<PatternID>,
    bytes: &[u8],
    start: usize,
    end: usize,
) -> Result<LazyStateID, MatchError> {
    let sid = dfa
        .start_state_reverse(cache, pattern_id, bytes, start, end)
        .map_err(|_| gave_up(end))?;
    // Start states can never be match states, since all matches are delayed
    // by 1 byte.
    assert!(!sid.is_match());
    Ok(sid)
}

#[inline(always)]
fn eoi_fwd(
    dfa: &DFA,
    cache: &mut Cache,
    bytes: &[u8],
    end: usize,
    sid: &mut LazyStateID,
) -> Result<Option<HalfMatch>, MatchError> {
    match bytes.get(end) {
        Some(&b) => {
            *sid = dfa.next_state(cache, *sid, b).map_err(|_| gave_up(end))?;
            if sid.is_match() {
                Ok(Some(HalfMatch {
                    pattern: dfa.match_pattern(cache, *sid, 0),
                    offset: end,
                }))
            } else {
                Ok(None)
            }
        }
        None => {
            *sid = dfa
                .next_eoi_state(cache, *sid)
                .map_err(|_| gave_up(bytes.len()))?;
            if sid.is_match() {
                Ok(Some(HalfMatch {
                    pattern: dfa.match_pattern(cache, *sid, 0),
                    offset: bytes.len(),
                }))
            } else {
                Ok(None)
            }
        }
    }
}

#[inline(always)]
fn eoi_rev(
    dfa: &DFA,
    cache: &mut Cache,
    bytes: &[u8],
    start: usize,
    state: LazyStateID,
) -> Result<Option<HalfMatch>, MatchError> {
    if start > 0 {
        let sid = dfa
            .next_state(cache, state, bytes[start - 1])
            .map_err(|_| gave_up(start))?;
        if sid.is_match() {
            Ok(Some(HalfMatch {
                pattern: dfa.match_pattern(cache, sid, 0),
                offset: start,
            }))
        } else {
            Ok(None)
        }
    } else {
        let sid =
            dfa.next_eoi_state(cache, state).map_err(|_| gave_up(start))?;
        if sid.is_match() {
            Ok(Some(HalfMatch {
                pattern: dfa.match_pattern(cache, sid, 0),
                offset: 0,
            }))
        } else {
            Ok(None)
        }
    }
}

/// A convenience routine for constructing a "gave up" match error.
#[inline(always)]
fn gave_up(offset: usize) -> MatchError {
    MatchError::GaveUp { offset }
}