summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/src/nfa/compiler.rs
blob: d9b3945b3cc0cf62d66d330541b3e3588c85e2bc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
// This module provides an NFA compiler using Thompson's construction
// algorithm. The compiler takes a regex-syntax::Hir as input and emits an NFA
// graph as output. The NFA graph is structured in a way that permits it to be
// executed by a virtual machine and also used to efficiently build a DFA.
//
// The compiler deals with a slightly expanded set of NFA states that notably
// includes an empty node that has exactly one epsilon transition to the next
// state. In other words, it's a "goto" instruction if one views Thompson's NFA
// as a set of bytecode instructions. These goto instructions are removed in
// a subsequent phase before returning the NFA to the caller. The purpose of
// these empty nodes is that they make the construction algorithm substantially
// simpler to implement. We remove them before returning to the caller because
// they can represent substantial overhead when traversing the NFA graph
// (either while searching using the NFA directly or while building a DFA).
//
// In the future, it would be nice to provide a Glushkov compiler as well,
// as it would work well as a bit-parallel NFA for smaller regexes. But
// the Thompson construction is one I'm more familiar with and seems more
// straight-forward to deal with when it comes to large Unicode character
// classes.
//
// Internally, the compiler uses interior mutability to improve composition
// in the face of the borrow checker. In particular, we'd really like to be
// able to write things like this:
//
//     self.c_concat(exprs.iter().map(|e| self.c(e)))
//
// Which elegantly uses iterators to build up a sequence of compiled regex
// sub-expressions and then hands it off to the concatenating compiler
// routine. Without interior mutability, the borrow checker won't let us
// borrow `self` mutably both inside and outside the closure at the same
// time.

use std::cell::RefCell;
use std::mem;

use regex_syntax::hir::{self, Hir, HirKind};
use regex_syntax::utf8::{Utf8Range, Utf8Sequences};

use classes::ByteClassSet;
use error::{Error, Result};
use nfa::map::{Utf8BoundedMap, Utf8SuffixKey, Utf8SuffixMap};
use nfa::range_trie::RangeTrie;
use nfa::{State, StateID, Transition, NFA};

/// Config knobs for the NFA compiler. See the builder's methods for more
/// docs on each one.
#[derive(Clone, Copy, Debug)]
struct Config {
    anchored: bool,
    allow_invalid_utf8: bool,
    reverse: bool,
    shrink: bool,
}

impl Default for Config {
    fn default() -> Config {
        Config {
            anchored: false,
            allow_invalid_utf8: false,
            reverse: false,
            shrink: true,
        }
    }
}

/// A builder for compiling an NFA.
#[derive(Clone, Debug)]
pub struct Builder {
    config: Config,
}

impl Builder {
    /// Create a new NFA builder with its default configuration.
    pub fn new() -> Builder {
        Builder { config: Config::default() }
    }

    /// Compile the given high level intermediate representation of a regular
    /// expression into an NFA.
    ///
    /// If there was a problem building the NFA, then an error is returned.
    /// For example, if the regex uses unsupported features (such as zero-width
    /// assertions), then an error is returned.
    pub fn build(&self, expr: &Hir) -> Result<NFA> {
        let mut nfa = NFA::always_match();
        self.build_with(&mut Compiler::new(), &mut nfa, expr)?;
        Ok(nfa)
    }

    /// Compile the given high level intermediate representation of a regular
    /// expression into the NFA given using the given compiler. Callers may
    /// prefer this over `build` if they would like to reuse allocations while
    /// compiling many regular expressions.
    ///
    /// On success, the given NFA is completely overwritten with the NFA
    /// produced by the compiler.
    ///
    /// If there was a problem building the NFA, then an error is returned. For
    /// example, if the regex uses unsupported features (such as zero-width
    /// assertions), then an error is returned. When an error is returned,
    /// the contents of `nfa` are unspecified and should not be relied upon.
    /// However, it can still be reused in subsequent calls to this method.
    pub fn build_with(
        &self,
        compiler: &mut Compiler,
        nfa: &mut NFA,
        expr: &Hir,
    ) -> Result<()> {
        compiler.clear();
        compiler.configure(self.config);
        compiler.compile(nfa, expr)
    }

    /// Set whether matching must be anchored at the beginning of the input.
    ///
    /// When enabled, a match must begin at the start of the input. When
    /// disabled, the NFA will act as if the pattern started with a `.*?`,
    /// which enables a match to appear anywhere.
    ///
    /// By default this is disabled.
    pub fn anchored(&mut self, yes: bool) -> &mut Builder {
        self.config.anchored = yes;
        self
    }

    /// When enabled, the builder will permit the construction of an NFA that
    /// may match invalid UTF-8.
    ///
    /// When disabled (the default), the builder is guaranteed to produce a
    /// regex that will only ever match valid UTF-8 (otherwise, the builder
    /// will return an error).
    pub fn allow_invalid_utf8(&mut self, yes: bool) -> &mut Builder {
        self.config.allow_invalid_utf8 = yes;
        self
    }

    /// Reverse the NFA.
    ///
    /// A NFA reversal is performed by reversing all of the concatenated
    /// sub-expressions in the original pattern, recursively. The resulting
    /// NFA can be used to match the pattern starting from the end of a string
    /// instead of the beginning of a string.
    ///
    /// Reversing the NFA is useful for building a reverse DFA, which is most
    /// useful for finding the start of a match.
    pub fn reverse(&mut self, yes: bool) -> &mut Builder {
        self.config.reverse = yes;
        self
    }

    /// Apply best effort heuristics to shrink the NFA at the expense of more
    /// time/memory.
    ///
    /// This is enabled by default. Generally speaking, if one is using an NFA
    /// to compile DFA, then the extra time used to shrink the NFA will be
    /// more than made up for during DFA construction (potentially by a lot).
    /// In other words, enabling this can substantially decrease the overall
    /// amount of time it takes to build a DFA.
    ///
    /// The only reason to disable this if you want to compile an NFA and start
    /// using it as quickly as possible without needing to build a DFA.
    pub fn shrink(&mut self, yes: bool) -> &mut Builder {
        self.config.shrink = yes;
        self
    }
}

/// A compiler that converts a regex abstract syntax to an NFA via Thompson's
/// construction. Namely, this compiler permits epsilon transitions between
/// states.
///
/// Users of this crate cannot use a compiler directly. Instead, all one can
/// do is create one and use it via the
/// [`Builder::build_with`](struct.Builder.html#method.build_with)
/// method. This permits callers to reuse compilers in order to amortize
/// allocations.
#[derive(Clone, Debug)]
pub struct Compiler {
    /// The set of compiled NFA states. Once a state is compiled, it is
    /// assigned a state ID equivalent to its index in this list. Subsequent
    /// compilation can modify previous states by adding new transitions.
    states: RefCell<Vec<CState>>,
    /// The configuration from the builder.
    config: Config,
    /// State used for compiling character classes to UTF-8 byte automata.
    /// State is not retained between character class compilations. This just
    /// serves to amortize allocation to the extent possible.
    utf8_state: RefCell<Utf8State>,
    /// State used for arranging character classes in reverse into a trie.
    trie_state: RefCell<RangeTrie>,
    /// State used for caching common suffixes when compiling reverse UTF-8
    /// automata (for Unicode character classes).
    utf8_suffix: RefCell<Utf8SuffixMap>,
    /// A map used to re-map state IDs when translating the compiler's internal
    /// NFA state representation to the external NFA representation.
    remap: RefCell<Vec<StateID>>,
    /// A set of compiler internal state IDs that correspond to states that are
    /// exclusively epsilon transitions, i.e., goto instructions, combined with
    /// the state that they point to. This is used to record said states while
    /// transforming the compiler's internal NFA representation to the external
    /// form.
    empties: RefCell<Vec<(StateID, StateID)>>,
}

/// A compiler intermediate state representation for an NFA that is only used
/// during compilation. Once compilation is done, `CState`s are converted to
/// `State`s, which have a much simpler representation.
#[derive(Clone, Debug, Eq, PartialEq)]
enum CState {
    /// An empty state whose only purpose is to forward the automaton to
    /// another state via en epsilon transition. These are useful during
    /// compilation but are otherwise removed at the end.
    Empty { next: StateID },
    /// A state that only transitions to `next` if the current input byte is
    /// in the range `[start, end]` (inclusive on both ends).
    Range { range: Transition },
    /// A state with possibly many transitions, represented in a sparse
    /// fashion. Transitions are ordered lexicographically by input range.
    /// As such, this may only be used when every transition has equal
    /// priority. (In practice, this is only used for encoding large UTF-8
    /// automata.)
    Sparse { ranges: Vec<Transition> },
    /// An alternation such that there exists an epsilon transition to all
    /// states in `alternates`, where matches found via earlier transitions
    /// are preferred over later transitions.
    Union { alternates: Vec<StateID> },
    /// An alternation such that there exists an epsilon transition to all
    /// states in `alternates`, where matches found via later transitions
    /// are preferred over earlier transitions.
    ///
    /// This "reverse" state exists for convenience during compilation that
    /// permits easy construction of non-greedy combinations of NFA states.
    /// At the end of compilation, Union and UnionReverse states are merged
    /// into one Union type of state, where the latter has its epsilon
    /// transitions reversed to reflect the priority inversion.
    UnionReverse { alternates: Vec<StateID> },
    /// A match state. There is exactly one such occurrence of this state in
    /// an NFA.
    Match,
}

/// A value that represents the result of compiling a sub-expression of a
/// regex's HIR. Specifically, this represents a sub-graph of the NFA that
/// has an initial state at `start` and a final state at `end`.
#[derive(Clone, Copy, Debug)]
pub struct ThompsonRef {
    start: StateID,
    end: StateID,
}

impl Compiler {
    /// Create a new compiler.
    pub fn new() -> Compiler {
        Compiler {
            states: RefCell::new(vec![]),
            config: Config::default(),
            utf8_state: RefCell::new(Utf8State::new()),
            trie_state: RefCell::new(RangeTrie::new()),
            utf8_suffix: RefCell::new(Utf8SuffixMap::new(1000)),
            remap: RefCell::new(vec![]),
            empties: RefCell::new(vec![]),
        }
    }

    /// Clear any memory used by this compiler such that it is ready to compile
    /// a new regex.
    ///
    /// It is preferrable to reuse a compiler if possible in order to reuse
    /// allocations.
    fn clear(&self) {
        self.states.borrow_mut().clear();
        // We don't need to clear anything else since they are cleared on
        // their own and only when they are used.
    }

    /// Configure this compiler from the builder's knobs.
    ///
    /// The compiler is always reconfigured by the builder before using it to
    /// build an NFA.
    fn configure(&mut self, config: Config) {
        self.config = config;
    }

    /// Convert the current intermediate NFA to its final compiled form.
    fn compile(&self, nfa: &mut NFA, expr: &Hir) -> Result<()> {
        nfa.anchored = self.config.anchored;

        let mut start = self.add_empty();
        if !nfa.anchored {
            let compiled = if self.config.allow_invalid_utf8 {
                self.c_unanchored_prefix_invalid_utf8()?
            } else {
                self.c_unanchored_prefix_valid_utf8()?
            };
            self.patch(start, compiled.start);
            start = compiled.end;
        }
        let compiled = self.c(&expr)?;
        let match_id = self.add_match();
        self.patch(start, compiled.start);
        self.patch(compiled.end, match_id);
        self.finish(nfa);
        Ok(())
    }

    /// Finishes the compilation process and populates the provide NFA with
    /// the final graph.
    fn finish(&self, nfa: &mut NFA) {
        let mut bstates = self.states.borrow_mut();
        let mut remap = self.remap.borrow_mut();
        remap.resize(bstates.len(), 0);
        let mut empties = self.empties.borrow_mut();
        empties.clear();

        // We don't reuse allocations here becuase this is what we're
        // returning.
        nfa.states.clear();
        let mut byteset = ByteClassSet::new();

        // The idea here is to convert our intermediate states to their final
        // form. The only real complexity here is the process of converting
        // transitions, which are expressed in terms of state IDs. The new
        // set of states will be smaller because of partial epsilon removal,
        // so the state IDs will not be the same.
        for (id, bstate) in bstates.iter_mut().enumerate() {
            match *bstate {
                CState::Empty { next } => {
                    // Since we're removing empty states, we need to handle
                    // them later since we don't yet know which new state this
                    // empty state will be mapped to.
                    empties.push((id, next));
                }
                CState::Range { ref range } => {
                    remap[id] = nfa.states.len();
                    byteset.set_range(range.start, range.end);
                    nfa.states.push(State::Range { range: range.clone() });
                }
                CState::Sparse { ref mut ranges } => {
                    remap[id] = nfa.states.len();

                    let ranges = mem::replace(ranges, vec![]);
                    for r in &ranges {
                        byteset.set_range(r.start, r.end);
                    }
                    nfa.states.push(State::Sparse {
                        ranges: ranges.into_boxed_slice(),
                    });
                }
                CState::Union { ref mut alternates } => {
                    remap[id] = nfa.states.len();

                    let alternates = mem::replace(alternates, vec![]);
                    nfa.states.push(State::Union {
                        alternates: alternates.into_boxed_slice(),
                    });
                }
                CState::UnionReverse { ref mut alternates } => {
                    remap[id] = nfa.states.len();

                    let mut alternates = mem::replace(alternates, vec![]);
                    alternates.reverse();
                    nfa.states.push(State::Union {
                        alternates: alternates.into_boxed_slice(),
                    });
                }
                CState::Match => {
                    remap[id] = nfa.states.len();
                    nfa.states.push(State::Match);
                }
            }
        }
        for &(empty_id, mut empty_next) in empties.iter() {
            // empty states can point to other empty states, forming a chain.
            // So we must follow the chain until the end, which must end at
            // a non-empty state, and therefore, a state that is correctly
            // remapped. We are guaranteed to terminate because our compiler
            // never builds a loop among empty states.
            while let CState::Empty { next } = bstates[empty_next] {
                empty_next = next;
            }
            remap[empty_id] = remap[empty_next];
        }
        for state in &mut nfa.states {
            state.remap(&remap);
        }
        // The compiler always begins the NFA at the first state.
        nfa.start = remap[0];
        nfa.byte_classes = byteset.byte_classes();
    }

    fn c(&self, expr: &Hir) -> Result<ThompsonRef> {
        match *expr.kind() {
            HirKind::Empty => {
                let id = self.add_empty();
                Ok(ThompsonRef { start: id, end: id })
            }
            HirKind::Literal(hir::Literal::Unicode(ch)) => {
                let mut buf = [0; 4];
                let it = ch
                    .encode_utf8(&mut buf)
                    .as_bytes()
                    .iter()
                    .map(|&b| Ok(self.c_range(b, b)));
                self.c_concat(it)
            }
            HirKind::Literal(hir::Literal::Byte(b)) => Ok(self.c_range(b, b)),
            HirKind::Class(hir::Class::Bytes(ref cls)) => {
                self.c_byte_class(cls)
            }
            HirKind::Class(hir::Class::Unicode(ref cls)) => {
                self.c_unicode_class(cls)
            }
            HirKind::Repetition(ref rep) => self.c_repetition(rep),
            HirKind::Group(ref group) => self.c(&*group.hir),
            HirKind::Concat(ref exprs) => {
                self.c_concat(exprs.iter().map(|e| self.c(e)))
            }
            HirKind::Alternation(ref exprs) => {
                self.c_alternation(exprs.iter().map(|e| self.c(e)))
            }
            HirKind::Anchor(_) => Err(Error::unsupported_anchor()),
            HirKind::WordBoundary(_) => Err(Error::unsupported_word()),
        }
    }

    fn c_concat<I>(&self, mut it: I) -> Result<ThompsonRef>
    where
        I: DoubleEndedIterator<Item = Result<ThompsonRef>>,
    {
        let first =
            if self.config.reverse { it.next_back() } else { it.next() };
        let ThompsonRef { start, mut end } = match first {
            Some(result) => result?,
            None => return Ok(self.c_empty()),
        };
        loop {
            let next =
                if self.config.reverse { it.next_back() } else { it.next() };
            let compiled = match next {
                Some(result) => result?,
                None => break,
            };
            self.patch(end, compiled.start);
            end = compiled.end;
        }
        Ok(ThompsonRef { start, end })
    }

    fn c_alternation<I>(&self, mut it: I) -> Result<ThompsonRef>
    where
        I: Iterator<Item = Result<ThompsonRef>>,
    {
        let first = it.next().expect("alternations must be non-empty")?;
        let second = match it.next() {
            None => return Ok(first),
            Some(result) => result?,
        };

        let union = self.add_union();
        let end = self.add_empty();
        self.patch(union, first.start);
        self.patch(first.end, end);
        self.patch(union, second.start);
        self.patch(second.end, end);
        for result in it {
            let compiled = result?;
            self.patch(union, compiled.start);
            self.patch(compiled.end, end);
        }
        Ok(ThompsonRef { start: union, end })
    }

    fn c_repetition(&self, rep: &hir::Repetition) -> Result<ThompsonRef> {
        match rep.kind {
            hir::RepetitionKind::ZeroOrOne => {
                self.c_zero_or_one(&rep.hir, rep.greedy)
            }
            hir::RepetitionKind::ZeroOrMore => {
                self.c_at_least(&rep.hir, rep.greedy, 0)
            }
            hir::RepetitionKind::OneOrMore => {
                self.c_at_least(&rep.hir, rep.greedy, 1)
            }
            hir::RepetitionKind::Range(ref rng) => match *rng {
                hir::RepetitionRange::Exactly(count) => {
                    self.c_exactly(&rep.hir, count)
                }
                hir::RepetitionRange::AtLeast(m) => {
                    self.c_at_least(&rep.hir, rep.greedy, m)
                }
                hir::RepetitionRange::Bounded(min, max) => {
                    self.c_bounded(&rep.hir, rep.greedy, min, max)
                }
            },
        }
    }

    fn c_bounded(
        &self,
        expr: &Hir,
        greedy: bool,
        min: u32,
        max: u32,
    ) -> Result<ThompsonRef> {
        let prefix = self.c_exactly(expr, min)?;
        if min == max {
            return Ok(prefix);
        }

        // It is tempting here to compile the rest here as a concatenation
        // of zero-or-one matches. i.e., for `a{2,5}`, compile it as if it
        // were `aaa?a?a?`. The problem here is that it leads to this program:
        //
        //     >000000: 61 => 01
        //     000001: 61 => 02
        //     000002: alt(03, 04)
        //     000003: 61 => 04
        //     000004: alt(05, 06)
        //     000005: 61 => 06
        //     000006: alt(07, 08)
        //     000007: 61 => 08
        //     000008: MATCH
        //
        // And effectively, once you hit state 2, the epsilon closure will
        // include states 3, 5, 5, 6, 7 and 8, which is quite a bit. It is
        // better to instead compile it like so:
        //
        //     >000000: 61 => 01
        //      000001: 61 => 02
        //      000002: alt(03, 08)
        //      000003: 61 => 04
        //      000004: alt(05, 08)
        //      000005: 61 => 06
        //      000006: alt(07, 08)
        //      000007: 61 => 08
        //      000008: MATCH
        //
        // So that the epsilon closure of state 2 is now just 3 and 8.
        let empty = self.add_empty();
        let mut prev_end = prefix.end;
        for _ in min..max {
            let union = if greedy {
                self.add_union()
            } else {
                self.add_reverse_union()
            };
            let compiled = self.c(expr)?;
            self.patch(prev_end, union);
            self.patch(union, compiled.start);
            self.patch(union, empty);
            prev_end = compiled.end;
        }
        self.patch(prev_end, empty);
        Ok(ThompsonRef { start: prefix.start, end: empty })
    }

    fn c_at_least(
        &self,
        expr: &Hir,
        greedy: bool,
        n: u32,
    ) -> Result<ThompsonRef> {
        if n == 0 {
            let union = if greedy {
                self.add_union()
            } else {
                self.add_reverse_union()
            };
            let compiled = self.c(expr)?;
            self.patch(union, compiled.start);
            self.patch(compiled.end, union);
            Ok(ThompsonRef { start: union, end: union })
        } else if n == 1 {
            let compiled = self.c(expr)?;
            let union = if greedy {
                self.add_union()
            } else {
                self.add_reverse_union()
            };
            self.patch(compiled.end, union);
            self.patch(union, compiled.start);
            Ok(ThompsonRef { start: compiled.start, end: union })
        } else {
            let prefix = self.c_exactly(expr, n - 1)?;
            let last = self.c(expr)?;
            let union = if greedy {
                self.add_union()
            } else {
                self.add_reverse_union()
            };
            self.patch(prefix.end, last.start);
            self.patch(last.end, union);
            self.patch(union, last.start);
            Ok(ThompsonRef { start: prefix.start, end: union })
        }
    }

    fn c_zero_or_one(&self, expr: &Hir, greedy: bool) -> Result<ThompsonRef> {
        let union =
            if greedy { self.add_union() } else { self.add_reverse_union() };
        let compiled = self.c(expr)?;
        let empty = self.add_empty();
        self.patch(union, compiled.start);
        self.patch(union, empty);
        self.patch(compiled.end, empty);
        Ok(ThompsonRef { start: union, end: empty })
    }

    fn c_exactly(&self, expr: &Hir, n: u32) -> Result<ThompsonRef> {
        let it = (0..n).map(|_| self.c(expr));
        self.c_concat(it)
    }

    fn c_byte_class(&self, cls: &hir::ClassBytes) -> Result<ThompsonRef> {
        let end = self.add_empty();
        let mut trans = Vec::with_capacity(cls.ranges().len());
        for r in cls.iter() {
            trans.push(Transition {
                start: r.start(),
                end: r.end(),
                next: end,
            });
        }
        Ok(ThompsonRef { start: self.add_sparse(trans), end })
    }

    fn c_unicode_class(&self, cls: &hir::ClassUnicode) -> Result<ThompsonRef> {
        // If all we have are ASCII ranges wrapped in a Unicode package, then
        // there is zero reason to bring out the big guns. We can fit all ASCII
        // ranges within a single sparse transition.
        if cls.is_all_ascii() {
            let end = self.add_empty();
            let mut trans = Vec::with_capacity(cls.ranges().len());
            for r in cls.iter() {
                assert!(r.start() <= '\x7F');
                assert!(r.end() <= '\x7F');
                trans.push(Transition {
                    start: r.start() as u8,
                    end: r.end() as u8,
                    next: end,
                });
            }
            Ok(ThompsonRef { start: self.add_sparse(trans), end })
        } else if self.config.reverse {
            if !self.config.shrink {
                // When we don't want to spend the extra time shrinking, we
                // compile the UTF-8 automaton in reverse using something like
                // the "naive" approach, but will attempt to re-use common
                // suffixes.
                self.c_unicode_class_reverse_with_suffix(cls)
            } else {
                // When we want to shrink our NFA for reverse UTF-8 automata,
                // we cannot feed UTF-8 sequences directly to the UTF-8
                // compiler, since the UTF-8 compiler requires all sequences
                // to be lexicographically sorted. Instead, we organize our
                // sequences into a range trie, which can then output our
                // sequences in the correct order. Unfortunately, building the
                // range trie is fairly expensive (but not nearly as expensive
                // as building a DFA). Hence the reason why the 'shrink' option
                // exists, so that this path can be toggled off.
                let mut trie = self.trie_state.borrow_mut();
                trie.clear();

                for rng in cls.iter() {
                    for mut seq in Utf8Sequences::new(rng.start(), rng.end()) {
                        seq.reverse();
                        trie.insert(seq.as_slice());
                    }
                }
                let mut utf8_state = self.utf8_state.borrow_mut();
                let mut utf8c = Utf8Compiler::new(self, &mut *utf8_state);
                trie.iter(|seq| {
                    utf8c.add(&seq);
                });
                Ok(utf8c.finish())
            }
        } else {
            // In the forward direction, we always shrink our UTF-8 automata
            // because we can stream it right into the UTF-8 compiler. There
            // is almost no downside (in either memory or time) to using this
            // approach.
            let mut utf8_state = self.utf8_state.borrow_mut();
            let mut utf8c = Utf8Compiler::new(self, &mut *utf8_state);
            for rng in cls.iter() {
                for seq in Utf8Sequences::new(rng.start(), rng.end()) {
                    utf8c.add(seq.as_slice());
                }
            }
            Ok(utf8c.finish())
        }

        // For reference, the code below is the "naive" version of compiling a
        // UTF-8 automaton. It is deliciously simple (and works for both the
        // forward and reverse cases), but will unfortunately produce very
        // large NFAs. When compiling a forward automaton, the size difference
        // can sometimes be an order of magnitude. For example, the '\w' regex
        // will generate about ~3000 NFA states using the naive approach below,
        // but only 283 states when using the approach above. This is because
        // the approach above actually compiles a *minimal* (or near minimal,
        // because of the bounded hashmap) UTF-8 automaton.
        //
        // The code below is kept as a reference point in order to make it
        // easier to understand the higher level goal here.
        /*
        let it = cls
            .iter()
            .flat_map(|rng| Utf8Sequences::new(rng.start(), rng.end()))
            .map(|seq| {
                let it = seq
                    .as_slice()
                    .iter()
                    .map(|rng| Ok(self.c_range(rng.start, rng.end)));
                self.c_concat(it)
            });
        self.c_alternation(it);
        */
    }

    fn c_unicode_class_reverse_with_suffix(
        &self,
        cls: &hir::ClassUnicode,
    ) -> Result<ThompsonRef> {
        // N.B. It would likely be better to cache common *prefixes* in the
        // reverse direction, but it's not quite clear how to do that. The
        // advantage of caching suffixes is that it does give us a win, and
        // has a very small additional overhead.
        let mut cache = self.utf8_suffix.borrow_mut();
        cache.clear();

        let union = self.add_union();
        let alt_end = self.add_empty();
        for urng in cls.iter() {
            for seq in Utf8Sequences::new(urng.start(), urng.end()) {
                let mut end = alt_end;
                for brng in seq.as_slice() {
                    let key = Utf8SuffixKey {
                        from: end,
                        start: brng.start,
                        end: brng.end,
                    };
                    let hash = cache.hash(&key);
                    if let Some(id) = cache.get(&key, hash) {
                        end = id;
                        continue;
                    }

                    let compiled = self.c_range(brng.start, brng.end);
                    self.patch(compiled.end, end);
                    end = compiled.start;
                    cache.set(key, hash, end);
                }
                self.patch(union, end);
            }
        }
        Ok(ThompsonRef { start: union, end: alt_end })
    }

    fn c_range(&self, start: u8, end: u8) -> ThompsonRef {
        let id = self.add_range(start, end);
        ThompsonRef { start: id, end: id }
    }

    fn c_empty(&self) -> ThompsonRef {
        let id = self.add_empty();
        ThompsonRef { start: id, end: id }
    }

    fn c_unanchored_prefix_valid_utf8(&self) -> Result<ThompsonRef> {
        self.c(&Hir::repetition(hir::Repetition {
            kind: hir::RepetitionKind::ZeroOrMore,
            greedy: false,
            hir: Box::new(Hir::any(false)),
        }))
    }

    fn c_unanchored_prefix_invalid_utf8(&self) -> Result<ThompsonRef> {
        self.c(&Hir::repetition(hir::Repetition {
            kind: hir::RepetitionKind::ZeroOrMore,
            greedy: false,
            hir: Box::new(Hir::any(true)),
        }))
    }

    fn patch(&self, from: StateID, to: StateID) {
        match self.states.borrow_mut()[from] {
            CState::Empty { ref mut next } => {
                *next = to;
            }
            CState::Range { ref mut range } => {
                range.next = to;
            }
            CState::Sparse { .. } => {
                panic!("cannot patch from a sparse NFA state")
            }
            CState::Union { ref mut alternates } => {
                alternates.push(to);
            }
            CState::UnionReverse { ref mut alternates } => {
                alternates.push(to);
            }
            CState::Match => {}
        }
    }

    fn add_empty(&self) -> StateID {
        let id = self.states.borrow().len();
        self.states.borrow_mut().push(CState::Empty { next: 0 });
        id
    }

    fn add_range(&self, start: u8, end: u8) -> StateID {
        let id = self.states.borrow().len();
        let trans = Transition { start, end, next: 0 };
        let state = CState::Range { range: trans };
        self.states.borrow_mut().push(state);
        id
    }

    fn add_sparse(&self, ranges: Vec<Transition>) -> StateID {
        if ranges.len() == 1 {
            let id = self.states.borrow().len();
            let state = CState::Range { range: ranges[0] };
            self.states.borrow_mut().push(state);
            return id;
        }
        let id = self.states.borrow().len();
        let state = CState::Sparse { ranges };
        self.states.borrow_mut().push(state);
        id
    }

    fn add_union(&self) -> StateID {
        let id = self.states.borrow().len();
        let state = CState::Union { alternates: vec![] };
        self.states.borrow_mut().push(state);
        id
    }

    fn add_reverse_union(&self) -> StateID {
        let id = self.states.borrow().len();
        let state = CState::UnionReverse { alternates: vec![] };
        self.states.borrow_mut().push(state);
        id
    }

    fn add_match(&self) -> StateID {
        let id = self.states.borrow().len();
        self.states.borrow_mut().push(CState::Match);
        id
    }
}

#[derive(Debug)]
struct Utf8Compiler<'a> {
    nfac: &'a Compiler,
    state: &'a mut Utf8State,
    target: StateID,
}

#[derive(Clone, Debug)]
struct Utf8State {
    compiled: Utf8BoundedMap,
    uncompiled: Vec<Utf8Node>,
}

#[derive(Clone, Debug)]
struct Utf8Node {
    trans: Vec<Transition>,
    last: Option<Utf8LastTransition>,
}

#[derive(Clone, Debug)]
struct Utf8LastTransition {
    start: u8,
    end: u8,
}

impl Utf8State {
    fn new() -> Utf8State {
        Utf8State { compiled: Utf8BoundedMap::new(5000), uncompiled: vec![] }
    }

    fn clear(&mut self) {
        self.compiled.clear();
        self.uncompiled.clear();
    }
}

impl<'a> Utf8Compiler<'a> {
    fn new(nfac: &'a Compiler, state: &'a mut Utf8State) -> Utf8Compiler<'a> {
        let target = nfac.add_empty();
        state.clear();
        let mut utf8c = Utf8Compiler { nfac, state, target };
        utf8c.add_empty();
        utf8c
    }

    fn finish(&mut self) -> ThompsonRef {
        self.compile_from(0);
        let node = self.pop_root();
        let start = self.compile(node);
        ThompsonRef { start, end: self.target }
    }

    fn add(&mut self, ranges: &[Utf8Range]) {
        let prefix_len = ranges
            .iter()
            .zip(&self.state.uncompiled)
            .take_while(|&(range, node)| {
                node.last.as_ref().map_or(false, |t| {
                    (t.start, t.end) == (range.start, range.end)
                })
            })
            .count();
        assert!(prefix_len < ranges.len());
        self.compile_from(prefix_len);
        self.add_suffix(&ranges[prefix_len..]);
    }

    fn compile_from(&mut self, from: usize) {
        let mut next = self.target;
        while from + 1 < self.state.uncompiled.len() {
            let node = self.pop_freeze(next);
            next = self.compile(node);
        }
        self.top_last_freeze(next);
    }

    fn compile(&mut self, node: Vec<Transition>) -> StateID {
        let hash = self.state.compiled.hash(&node);
        if let Some(id) = self.state.compiled.get(&node, hash) {
            return id;
        }
        let id = self.nfac.add_sparse(node.clone());
        self.state.compiled.set(node, hash, id);
        id
    }

    fn add_suffix(&mut self, ranges: &[Utf8Range]) {
        assert!(!ranges.is_empty());
        let last = self
            .state
            .uncompiled
            .len()
            .checked_sub(1)
            .expect("non-empty nodes");
        assert!(self.state.uncompiled[last].last.is_none());
        self.state.uncompiled[last].last = Some(Utf8LastTransition {
            start: ranges[0].start,
            end: ranges[0].end,
        });
        for r in &ranges[1..] {
            self.state.uncompiled.push(Utf8Node {
                trans: vec![],
                last: Some(Utf8LastTransition { start: r.start, end: r.end }),
            });
        }
    }

    fn add_empty(&mut self) {
        self.state.uncompiled.push(Utf8Node { trans: vec![], last: None });
    }

    fn pop_freeze(&mut self, next: StateID) -> Vec<Transition> {
        let mut uncompiled = self.state.uncompiled.pop().unwrap();
        uncompiled.set_last_transition(next);
        uncompiled.trans
    }

    fn pop_root(&mut self) -> Vec<Transition> {
        assert_eq!(self.state.uncompiled.len(), 1);
        assert!(self.state.uncompiled[0].last.is_none());
        self.state.uncompiled.pop().expect("non-empty nodes").trans
    }

    fn top_last_freeze(&mut self, next: StateID) {
        let last = self
            .state
            .uncompiled
            .len()
            .checked_sub(1)
            .expect("non-empty nodes");
        self.state.uncompiled[last].set_last_transition(next);
    }
}

impl Utf8Node {
    fn set_last_transition(&mut self, next: StateID) {
        if let Some(last) = self.last.take() {
            self.trans.push(Transition {
                start: last.start,
                end: last.end,
                next,
            });
        }
    }
}

#[cfg(test)]
mod tests {
    use regex_syntax::hir::Hir;
    use regex_syntax::ParserBuilder;

    use super::{Builder, State, StateID, Transition, NFA};

    fn parse(pattern: &str) -> Hir {
        ParserBuilder::new().build().parse(pattern).unwrap()
    }

    fn build(pattern: &str) -> NFA {
        Builder::new().anchored(true).build(&parse(pattern)).unwrap()
    }

    fn s_byte(byte: u8, next: StateID) -> State {
        let trans = Transition { start: byte, end: byte, next };
        State::Range { range: trans }
    }

    fn s_range(start: u8, end: u8, next: StateID) -> State {
        let trans = Transition { start, end, next };
        State::Range { range: trans }
    }

    fn s_sparse(ranges: &[(u8, u8, StateID)]) -> State {
        let ranges = ranges
            .iter()
            .map(|&(start, end, next)| Transition { start, end, next })
            .collect();
        State::Sparse { ranges }
    }

    fn s_union(alts: &[StateID]) -> State {
        State::Union { alternates: alts.to_vec().into_boxed_slice() }
    }

    fn s_match() -> State {
        State::Match
    }

    #[test]
    fn errors() {
        // unsupported anchors
        assert!(Builder::new().build(&parse(r"^")).is_err());
        assert!(Builder::new().build(&parse(r"$")).is_err());
        assert!(Builder::new().build(&parse(r"\A")).is_err());
        assert!(Builder::new().build(&parse(r"\z")).is_err());

        // unsupported word boundaries
        assert!(Builder::new().build(&parse(r"\b")).is_err());
        assert!(Builder::new().build(&parse(r"\B")).is_err());
        assert!(Builder::new().build(&parse(r"(?-u)\b")).is_err());
    }

    // Test that building an unanchored NFA has an appropriate `.*?` prefix.
    #[test]
    fn compile_unanchored_prefix() {
        // When the machine can only match valid UTF-8.
        let nfa = Builder::new().anchored(false).build(&parse(r"a")).unwrap();
        // There should be many states since the `.` in `.*?` matches any
        // Unicode scalar value.
        assert_eq!(11, nfa.len());
        assert_eq!(nfa.states[10], s_match());
        assert_eq!(nfa.states[9], s_byte(b'a', 10));

        // When the machine can match invalid UTF-8.
        let nfa = Builder::new()
            .anchored(false)
            .allow_invalid_utf8(true)
            .build(&parse(r"a"))
            .unwrap();
        assert_eq!(
            nfa.states,
            &[
                s_union(&[2, 1]),
                s_range(0, 255, 0),
                s_byte(b'a', 3),
                s_match(),
            ]
        );
    }

    #[test]
    fn compile_empty() {
        assert_eq!(build("").states, &[s_match(),]);
    }

    #[test]
    fn compile_literal() {
        assert_eq!(build("a").states, &[s_byte(b'a', 1), s_match(),]);
        assert_eq!(
            build("ab").states,
            &[s_byte(b'a', 1), s_byte(b'b', 2), s_match(),]
        );
        assert_eq!(
            build("☃").states,
            &[s_byte(0xE2, 1), s_byte(0x98, 2), s_byte(0x83, 3), s_match(),]
        );

        // Check that non-UTF-8 literals work.
        let hir = ParserBuilder::new()
            .allow_invalid_utf8(true)
            .build()
            .parse(r"(?-u)\xFF")
            .unwrap();
        let nfa = Builder::new()
            .anchored(true)
            .allow_invalid_utf8(true)
            .build(&hir)
            .unwrap();
        assert_eq!(nfa.states, &[s_byte(b'\xFF', 1), s_match(),]);
    }

    #[test]
    fn compile_class() {
        assert_eq!(
            build(r"[a-z]").states,
            &[s_range(b'a', b'z', 1), s_match(),]
        );
        assert_eq!(
            build(r"[x-za-c]").states,
            &[s_sparse(&[(b'a', b'c', 1), (b'x', b'z', 1)]), s_match()]
        );
        assert_eq!(
            build(r"[\u03B1-\u03B4]").states,
            &[s_range(0xB1, 0xB4, 2), s_byte(0xCE, 0), s_match()]
        );
        assert_eq!(
            build(r"[\u03B1-\u03B4\u{1F919}-\u{1F91E}]").states,
            &[
                s_range(0xB1, 0xB4, 5),
                s_range(0x99, 0x9E, 5),
                s_byte(0xA4, 1),
                s_byte(0x9F, 2),
                s_sparse(&[(0xCE, 0xCE, 0), (0xF0, 0xF0, 3)]),
                s_match(),
            ]
        );
        assert_eq!(
            build(r"[a-z☃]").states,
            &[
                s_byte(0x83, 3),
                s_byte(0x98, 0),
                s_sparse(&[(b'a', b'z', 3), (0xE2, 0xE2, 1)]),
                s_match(),
            ]
        );
    }

    #[test]
    fn compile_repetition() {
        assert_eq!(
            build(r"a?").states,
            &[s_union(&[1, 2]), s_byte(b'a', 2), s_match(),]
        );
        assert_eq!(
            build(r"a??").states,
            &[s_union(&[2, 1]), s_byte(b'a', 2), s_match(),]
        );
    }

    #[test]
    fn compile_group() {
        assert_eq!(
            build(r"ab+").states,
            &[s_byte(b'a', 1), s_byte(b'b', 2), s_union(&[1, 3]), s_match(),]
        );
        assert_eq!(
            build(r"(ab)").states,
            &[s_byte(b'a', 1), s_byte(b'b', 2), s_match(),]
        );
        assert_eq!(
            build(r"(ab)+").states,
            &[s_byte(b'a', 1), s_byte(b'b', 2), s_union(&[0, 3]), s_match(),]
        );
    }

    #[test]
    fn compile_alternation() {
        assert_eq!(
            build(r"a|b").states,
            &[s_byte(b'a', 3), s_byte(b'b', 3), s_union(&[0, 1]), s_match(),]
        );
        assert_eq!(
            build(r"|b").states,
            &[s_byte(b'b', 2), s_union(&[2, 0]), s_match(),]
        );
        assert_eq!(
            build(r"a|").states,
            &[s_byte(b'a', 2), s_union(&[0, 2]), s_match(),]
        );
    }
}