summaryrefslogtreecommitdiffstats
path: root/vendor/regex-automata/tests/dfa/suite.rs
blob: 426ae346d074dd4bac2563adaee551175ab249e4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
use regex_automata::{
    dfa::{self, dense, regex::Regex, sparse, Automaton},
    nfa::thompson,
    MatchKind, SyntaxConfig,
};
use regex_syntax as syntax;

use regex_test::{
    bstr::{BString, ByteSlice},
    CompiledRegex, Match, MatchKind as TestMatchKind, RegexTest, RegexTests,
    SearchKind as TestSearchKind, TestResult, TestRunner,
};

use crate::{suite, Result};

/// Runs the test suite with the default configuration.
#[test]
fn unminimized_default() -> Result<()> {
    let builder = Regex::builder();
    TestRunner::new()?
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite with byte classes disabled.
#[test]
fn unminimized_no_byte_class() -> Result<()> {
    let mut builder = Regex::builder();
    builder.dense(dense::Config::new().byte_classes(false));

    TestRunner::new()?
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite with NFA shrinking disabled.
#[test]
fn unminimized_no_nfa_shrink() -> Result<()> {
    let mut builder = Regex::builder();
    builder.thompson(thompson::Config::new().shrink(false));

    TestRunner::new()?
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite on a minimized DFA with an otherwise default
/// configuration.
#[test]
fn minimized_default() -> Result<()> {
    let mut builder = Regex::builder();
    builder.dense(dense::Config::new().minimize(true));
    TestRunner::new()?
        // These regexes tend to be too big. Minimization takes... forever.
        .blacklist("expensive")
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite on a minimized DFA with byte classes disabled.
#[test]
fn minimized_no_byte_class() -> Result<()> {
    let mut builder = Regex::builder();
    builder.dense(dense::Config::new().minimize(true).byte_classes(false));

    TestRunner::new()?
        // These regexes tend to be too big. Minimization takes... forever.
        .blacklist("expensive")
        .test_iter(suite()?.iter(), dense_compiler(builder))
        .assert();
    Ok(())
}

/// Runs the test suite on a sparse unminimized DFA.
#[test]
fn sparse_unminimized_default() -> Result<()> {
    let builder = Regex::builder();
    TestRunner::new()?
        .test_iter(suite()?.iter(), sparse_compiler(builder))
        .assert();
    Ok(())
}

/// Another basic sanity test that checks we can serialize and then deserialize
/// a regex, and that the resulting regex can be used for searching correctly.
#[test]
fn serialization_unminimized_default() -> Result<()> {
    let builder = Regex::builder();
    let my_compiler = |builder| {
        compiler(builder, |builder, re| {
            let builder = builder.clone();
            let (fwd_bytes, _) = re.forward().to_bytes_native_endian();
            let (rev_bytes, _) = re.reverse().to_bytes_native_endian();
            Ok(CompiledRegex::compiled(move |test| -> Vec<TestResult> {
                let fwd: dense::DFA<&[u32]> =
                    dense::DFA::from_bytes(&fwd_bytes).unwrap().0;
                let rev: dense::DFA<&[u32]> =
                    dense::DFA::from_bytes(&rev_bytes).unwrap().0;
                let re = builder.build_from_dfas(fwd, rev);

                run_test(&re, test)
            }))
        })
    };
    TestRunner::new()?
        .test_iter(suite()?.iter(), my_compiler(builder))
        .assert();
    Ok(())
}

/// A basic sanity test that checks we can serialize and then deserialize a
/// regex using sparse DFAs, and that the resulting regex can be used for
/// searching correctly.
#[test]
fn sparse_serialization_unminimized_default() -> Result<()> {
    let builder = Regex::builder();
    let my_compiler = |builder| {
        compiler(builder, |builder, re| {
            let builder = builder.clone();
            let fwd_bytes = re.forward().to_sparse()?.to_bytes_native_endian();
            let rev_bytes = re.reverse().to_sparse()?.to_bytes_native_endian();
            Ok(CompiledRegex::compiled(move |test| -> Vec<TestResult> {
                let fwd: sparse::DFA<&[u8]> =
                    sparse::DFA::from_bytes(&fwd_bytes).unwrap().0;
                let rev: sparse::DFA<&[u8]> =
                    sparse::DFA::from_bytes(&rev_bytes).unwrap().0;
                let re = builder.build_from_dfas(fwd, rev);
                run_test(&re, test)
            }))
        })
    };
    TestRunner::new()?
        .test_iter(suite()?.iter(), my_compiler(builder))
        .assert();
    Ok(())
}

fn dense_compiler(
    builder: dfa::regex::Builder,
) -> impl FnMut(&RegexTest, &[BString]) -> Result<CompiledRegex> {
    compiler(builder, |_, re| {
        Ok(CompiledRegex::compiled(move |test| -> Vec<TestResult> {
            run_test(&re, test)
        }))
    })
}

fn sparse_compiler(
    builder: dfa::regex::Builder,
) -> impl FnMut(&RegexTest, &[BString]) -> Result<CompiledRegex> {
    compiler(builder, |builder, re| {
        let fwd = re.forward().to_sparse()?;
        let rev = re.reverse().to_sparse()?;
        let re = builder.build_from_dfas(fwd, rev);
        Ok(CompiledRegex::compiled(move |test| -> Vec<TestResult> {
            run_test(&re, test)
        }))
    })
}

fn compiler(
    mut builder: dfa::regex::Builder,
    mut create_matcher: impl FnMut(
        &dfa::regex::Builder,
        Regex,
    ) -> Result<CompiledRegex>,
) -> impl FnMut(&RegexTest, &[BString]) -> Result<CompiledRegex> {
    move |test, regexes| {
        let regexes = regexes
            .iter()
            .map(|r| r.to_str().map(|s| s.to_string()))
            .collect::<std::result::Result<Vec<String>, _>>()?;

        // Check if our regex contains things that aren't supported by DFAs.
        // That is, Unicode word boundaries when searching non-ASCII text.
        let mut thompson = thompson::Builder::new();
        thompson.configure(config_thompson(test));
        // TODO: Modify Hir to report facts like this, instead of needing to
        // build an NFA to do it.
        if let Ok(nfa) = thompson.build_many(&regexes) {
            let non_ascii = test.input().iter().any(|&b| !b.is_ascii());
            if nfa.has_word_boundary_unicode() && non_ascii {
                return Ok(CompiledRegex::skip());
            }
        }
        if !configure_regex_builder(test, &mut builder) {
            return Ok(CompiledRegex::skip());
        }
        create_matcher(&builder, builder.build_many(&regexes)?)
    }
}

fn run_test<A: Automaton>(re: &Regex<A>, test: &RegexTest) -> Vec<TestResult> {
    let is_match = if re.is_match(test.input()) {
        TestResult::matched()
    } else {
        TestResult::no_match()
    };
    let is_match = is_match.name("is_match");

    let find_matches = match test.search_kind() {
        TestSearchKind::Earliest => {
            let it = re
                .find_earliest_iter(test.input())
                .take(test.match_limit().unwrap_or(std::usize::MAX))
                .map(|m| Match {
                    id: m.pattern().as_usize(),
                    start: m.start(),
                    end: m.end(),
                });
            TestResult::matches(it).name("find_earliest_iter")
        }
        TestSearchKind::Leftmost => {
            let it = re
                .find_leftmost_iter(test.input())
                .take(test.match_limit().unwrap_or(std::usize::MAX))
                .map(|m| Match {
                    id: m.pattern().as_usize(),
                    start: m.start(),
                    end: m.end(),
                });
            TestResult::matches(it).name("find_leftmost_iter")
        }
        TestSearchKind::Overlapping => {
            let it = re
                .find_overlapping_iter(test.input())
                .take(test.match_limit().unwrap_or(std::usize::MAX))
                .map(|m| Match {
                    id: m.pattern().as_usize(),
                    start: m.start(),
                    end: m.end(),
                });
            TestResult::matches(it).name("find_overlapping_iter")
        }
    };

    vec![is_match, find_matches]
}

/// Configures the given regex builder with all relevant settings on the given
/// regex test.
///
/// If the regex test has a setting that is unsupported, then this returns
/// false (implying the test should be skipped).
fn configure_regex_builder(
    test: &RegexTest,
    builder: &mut dfa::regex::Builder,
) -> bool {
    let match_kind = match test.match_kind() {
        TestMatchKind::All => MatchKind::All,
        TestMatchKind::LeftmostFirst => MatchKind::LeftmostFirst,
        TestMatchKind::LeftmostLongest => return false,
    };

    let syntax_config = SyntaxConfig::new()
        .case_insensitive(test.case_insensitive())
        .unicode(test.unicode())
        .utf8(test.utf8());
    let dense_config = dense::Config::new()
        .anchored(test.anchored())
        .match_kind(match_kind)
        .unicode_word_boundary(true);
    let regex_config = Regex::config().utf8(test.utf8());

    builder
        .configure(regex_config)
        .syntax(syntax_config)
        .thompson(config_thompson(test))
        .dense(dense_config);
    true
}

/// Configuration of a Thompson NFA compiler from a regex test.
fn config_thompson(test: &RegexTest) -> thompson::Config {
    thompson::Config::new().utf8(test.utf8())
}