1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
|
//! In this tutorial, we will write parser
//! and evaluator of arithmetic S-expressions,
//! which look like this:
//! ```
//! (+ (* 15 2) 62)
//! ```
//!
//! It's suggested to read the conceptual overview of the design
//! alongside this tutorial:
//! https://github.com/rust-analyzer/rust-analyzer/blob/master/docs/dev/syntax.md
/// Let's start with defining all kinds of tokens and
/// composite nodes.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
#[allow(non_camel_case_types)]
#[repr(u16)]
enum SyntaxKind {
L_PAREN = 0, // '('
R_PAREN, // ')'
WORD, // '+', '15'
WHITESPACE, // whitespaces is explicit
ERROR, // as well as errors
// composite nodes
LIST, // `(+ 2 3)`
ATOM, // `+`, `15`, wraps a WORD token
ROOT, // top-level node: a list of s-expressions
}
use SyntaxKind::*;
/// Some boilerplate is needed, as rowan settled on using its own
/// `struct SyntaxKind(u16)` internally, instead of accepting the
/// user's `enum SyntaxKind` as a type parameter.
///
/// First, to easily pass the enum variants into rowan via `.into()`:
impl From<SyntaxKind> for rowan::SyntaxKind {
fn from(kind: SyntaxKind) -> Self {
Self(kind as u16)
}
}
/// Second, implementing the `Language` trait teaches rowan to convert between
/// these two SyntaxKind types, allowing for a nicer SyntaxNode API where
/// "kinds" are values from our `enum SyntaxKind`, instead of plain u16 values.
#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord, Hash)]
enum Lang {}
impl rowan::Language for Lang {
type Kind = SyntaxKind;
fn kind_from_raw(raw: rowan::SyntaxKind) -> Self::Kind {
assert!(raw.0 <= ROOT as u16);
unsafe { std::mem::transmute::<u16, SyntaxKind>(raw.0) }
}
fn kind_to_raw(kind: Self::Kind) -> rowan::SyntaxKind {
kind.into()
}
}
/// GreenNode is an immutable tree, which is cheap to change,
/// but doesn't contain offsets and parent pointers.
use rowan::GreenNode;
/// You can construct GreenNodes by hand, but a builder
/// is helpful for top-down parsers: it maintains a stack
/// of currently in-progress nodes
use rowan::GreenNodeBuilder;
/// The parse results are stored as a "green tree".
/// We'll discuss working with the results later
struct Parse {
green_node: GreenNode,
#[allow(unused)]
errors: Vec<String>,
}
/// Now, let's write a parser.
/// Note that `parse` does not return a `Result`:
/// by design, syntax tree can be built even for
/// completely invalid source code.
fn parse(text: &str) -> Parse {
struct Parser {
/// input tokens, including whitespace,
/// in *reverse* order.
tokens: Vec<(SyntaxKind, String)>,
/// the in-progress tree.
builder: GreenNodeBuilder<'static>,
/// the list of syntax errors we've accumulated
/// so far.
errors: Vec<String>,
}
/// The outcome of parsing a single S-expression
enum SexpRes {
/// An S-expression (i.e. an atom, or a list) was successfully parsed
Ok,
/// Nothing was parsed, as no significant tokens remained
Eof,
/// An unexpected ')' was found
RParen,
}
impl Parser {
fn parse(mut self) -> Parse {
// Make sure that the root node covers all source
self.builder.start_node(ROOT.into());
// Parse zero or more S-expressions
loop {
match self.sexp() {
SexpRes::Eof => break,
SexpRes::RParen => {
self.builder.start_node(ERROR.into());
self.errors.push("unmatched `)`".to_string());
self.bump(); // be sure to chug along in case of error
self.builder.finish_node();
}
SexpRes::Ok => (),
}
}
// Don't forget to eat *trailing* whitespace
self.skip_ws();
// Close the root node.
self.builder.finish_node();
// Turn the builder into a GreenNode
Parse { green_node: self.builder.finish(), errors: self.errors }
}
fn list(&mut self) {
assert_eq!(self.current(), Some(L_PAREN));
// Start the list node
self.builder.start_node(LIST.into());
self.bump(); // '('
loop {
match self.sexp() {
SexpRes::Eof => {
self.errors.push("expected `)`".to_string());
break;
}
SexpRes::RParen => {
self.bump();
break;
}
SexpRes::Ok => (),
}
}
// close the list node
self.builder.finish_node();
}
fn sexp(&mut self) -> SexpRes {
// Eat leading whitespace
self.skip_ws();
// Either a list, an atom, a closing paren,
// or an eof.
let t = match self.current() {
None => return SexpRes::Eof,
Some(R_PAREN) => return SexpRes::RParen,
Some(t) => t,
};
match t {
L_PAREN => self.list(),
WORD => {
self.builder.start_node(ATOM.into());
self.bump();
self.builder.finish_node();
}
ERROR => self.bump(),
_ => unreachable!(),
}
SexpRes::Ok
}
/// Advance one token, adding it to the current branch of the tree builder.
fn bump(&mut self) {
let (kind, text) = self.tokens.pop().unwrap();
self.builder.token(kind.into(), text.as_str());
}
/// Peek at the first unprocessed token
fn current(&self) -> Option<SyntaxKind> {
self.tokens.last().map(|(kind, _)| *kind)
}
fn skip_ws(&mut self) {
while self.current() == Some(WHITESPACE) {
self.bump()
}
}
}
let mut tokens = lex(text);
tokens.reverse();
Parser { tokens, builder: GreenNodeBuilder::new(), errors: Vec::new() }.parse()
}
/// To work with the parse results we need a view into the
/// green tree - the Syntax tree.
/// It is also immutable, like a GreenNode,
/// but it contains parent pointers, offsets, and
/// has identity semantics.
type SyntaxNode = rowan::SyntaxNode<Lang>;
#[allow(unused)]
type SyntaxToken = rowan::SyntaxToken<Lang>;
#[allow(unused)]
type SyntaxElement = rowan::NodeOrToken<SyntaxNode, SyntaxToken>;
impl Parse {
fn syntax(&self) -> SyntaxNode {
SyntaxNode::new_root(self.green_node.clone())
}
}
/// Let's check that the parser works as expected
#[test]
fn test_parser() {
let text = "(+ (* 15 2) 62)";
let node = parse(text).syntax();
assert_eq!(
format!("{:?}", node),
"ROOT@0..15", // root node, spanning 15 bytes
);
assert_eq!(node.children().count(), 1);
let list = node.children().next().unwrap();
let children = list
.children_with_tokens()
.map(|child| format!("{:?}@{:?}", child.kind(), child.text_range()))
.collect::<Vec<_>>();
assert_eq!(
children,
vec![
"L_PAREN@0..1".to_string(),
"ATOM@1..2".to_string(),
"WHITESPACE@2..3".to_string(), // note, explicit whitespace!
"LIST@3..11".to_string(),
"WHITESPACE@11..12".to_string(),
"ATOM@12..14".to_string(),
"R_PAREN@14..15".to_string(),
]
);
}
/// So far, we've been working with a homogeneous untyped tree.
/// It's nice to provide generic tree operations, like traversals,
/// but it's a bad fit for semantic analysis.
/// This crate itself does not provide AST facilities directly,
/// but it is possible to layer AST on top of `SyntaxNode` API.
/// Let's write a function to evaluate S-expression.
///
/// For that, let's define AST nodes.
/// It'll be quite a bunch of repetitive code, so we'll use a macro.
///
/// For a real language, you'd want to generate an AST. I find a
/// combination of `serde`, `ron` and `tera` crates invaluable for that!
macro_rules! ast_node {
($ast:ident, $kind:ident) => {
#[derive(PartialEq, Eq, Hash)]
#[repr(transparent)]
struct $ast(SyntaxNode);
impl $ast {
#[allow(unused)]
fn cast(node: SyntaxNode) -> Option<Self> {
if node.kind() == $kind {
Some(Self(node))
} else {
None
}
}
}
};
}
ast_node!(Root, ROOT);
ast_node!(Atom, ATOM);
ast_node!(List, LIST);
// Sexp is slightly different, so let's do it by hand.
#[derive(PartialEq, Eq, Hash)]
#[repr(transparent)]
struct Sexp(SyntaxNode);
enum SexpKind {
Atom(Atom),
List(List),
}
impl Sexp {
fn cast(node: SyntaxNode) -> Option<Self> {
if Atom::cast(node.clone()).is_some() || List::cast(node.clone()).is_some() {
Some(Sexp(node))
} else {
None
}
}
fn kind(&self) -> SexpKind {
Atom::cast(self.0.clone())
.map(SexpKind::Atom)
.or_else(|| List::cast(self.0.clone()).map(SexpKind::List))
.unwrap()
}
}
// Let's enhance AST nodes with ancillary functions and
// eval.
impl Root {
fn sexps(&self) -> impl Iterator<Item = Sexp> + '_ {
self.0.children().filter_map(Sexp::cast)
}
}
enum Op {
Add,
Sub,
Div,
Mul,
}
impl Atom {
fn eval(&self) -> Option<i64> {
self.text().parse().ok()
}
fn as_op(&self) -> Option<Op> {
let op = match self.text().as_str() {
"+" => Op::Add,
"-" => Op::Sub,
"*" => Op::Mul,
"/" => Op::Div,
_ => return None,
};
Some(op)
}
fn text(&self) -> String {
match self.0.green().children().next() {
Some(rowan::NodeOrToken::Token(token)) => token.text().to_string(),
_ => unreachable!(),
}
}
}
impl List {
fn sexps(&self) -> impl Iterator<Item = Sexp> + '_ {
self.0.children().filter_map(Sexp::cast)
}
fn eval(&self) -> Option<i64> {
let op = match self.sexps().nth(0)?.kind() {
SexpKind::Atom(atom) => atom.as_op()?,
_ => return None,
};
let arg1 = self.sexps().nth(1)?.eval()?;
let arg2 = self.sexps().nth(2)?.eval()?;
let res = match op {
Op::Add => arg1 + arg2,
Op::Sub => arg1 - arg2,
Op::Mul => arg1 * arg2,
Op::Div if arg2 == 0 => return None,
Op::Div => arg1 / arg2,
};
Some(res)
}
}
impl Sexp {
fn eval(&self) -> Option<i64> {
match self.kind() {
SexpKind::Atom(atom) => atom.eval(),
SexpKind::List(list) => list.eval(),
}
}
}
impl Parse {
fn root(&self) -> Root {
Root::cast(self.syntax()).unwrap()
}
}
/// Let's test the eval!
fn main() {
let sexps = "
92
(+ 62 30)
(/ 92 0)
nan
(+ (* 15 2) 62)
";
let root = parse(sexps).root();
let res = root.sexps().map(|it| it.eval()).collect::<Vec<_>>();
eprintln!("{:?}", res);
assert_eq!(res, vec![Some(92), Some(92), None, None, Some(92),])
}
/// Split the input string into a flat list of tokens
/// (such as L_PAREN, WORD, and WHITESPACE)
fn lex(text: &str) -> Vec<(SyntaxKind, String)> {
fn tok(t: SyntaxKind) -> m_lexer::TokenKind {
m_lexer::TokenKind(rowan::SyntaxKind::from(t).0)
}
fn kind(t: m_lexer::TokenKind) -> SyntaxKind {
match t.0 {
0 => L_PAREN,
1 => R_PAREN,
2 => WORD,
3 => WHITESPACE,
4 => ERROR,
_ => unreachable!(),
}
}
let lexer = m_lexer::LexerBuilder::new()
.error_token(tok(ERROR))
.tokens(&[
(tok(L_PAREN), r"\("),
(tok(R_PAREN), r"\)"),
(tok(WORD), r"[^\s()]+"),
(tok(WHITESPACE), r"\s+"),
])
.build();
lexer
.tokenize(text)
.into_iter()
.map(|t| (t.len, kind(t.kind)))
.scan(0usize, |start_offset, (len, kind)| {
let s: String = text[*start_offset..*start_offset + len].into();
*start_offset += len;
Some((kind, s))
})
.collect()
}
|