1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
//! Vendored and stripped down version of triomphe
use std::{
alloc::{self, Layout},
cmp::Ordering,
hash::{Hash, Hasher},
marker::PhantomData,
mem::{self, ManuallyDrop},
ops::Deref,
ptr,
sync::atomic::{
self,
Ordering::{Acquire, Relaxed, Release},
},
};
use memoffset::offset_of;
/// A soft limit on the amount of references that may be made to an `Arc`.
///
/// Going above this limit will abort your program (although not
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
const MAX_REFCOUNT: usize = (isize::MAX) as usize;
/// The object allocated by an Arc<T>
#[repr(C)]
pub(crate) struct ArcInner<T: ?Sized> {
pub(crate) count: atomic::AtomicUsize,
pub(crate) data: T,
}
unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
/// An atomically reference counted shared pointer
///
/// See the documentation for [`Arc`] in the standard library. Unlike the
/// standard library `Arc`, this `Arc` does not support weak reference counting.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
#[repr(transparent)]
pub(crate) struct Arc<T: ?Sized> {
pub(crate) p: ptr::NonNull<ArcInner<T>>,
pub(crate) phantom: PhantomData<T>,
}
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
impl<T> Arc<T> {
/// Reconstruct the Arc<T> from a raw pointer obtained from into_raw()
///
/// Note: This raw pointer will be offset in the allocation and must be preceded
/// by the atomic count.
///
/// It is recommended to use OffsetArc for this
#[inline]
pub(crate) unsafe fn from_raw(ptr: *const T) -> Self {
// To find the corresponding pointer to the `ArcInner` we need
// to subtract the offset of the `data` field from the pointer.
let ptr = (ptr as *const u8).sub(offset_of!(ArcInner<T>, data));
Arc { p: ptr::NonNull::new_unchecked(ptr as *mut ArcInner<T>), phantom: PhantomData }
}
}
impl<T: ?Sized> Arc<T> {
#[inline]
fn inner(&self) -> &ArcInner<T> {
// This unsafety is ok because while this arc is alive we're guaranteed
// that the inner pointer is valid. Furthermore, we know that the
// `ArcInner` structure itself is `Sync` because the inner data is
// `Sync` as well, so we're ok loaning out an immutable pointer to these
// contents.
unsafe { &*self.ptr() }
}
// Non-inlined part of `drop`. Just invokes the destructor.
#[inline(never)]
unsafe fn drop_slow(&mut self) {
let _ = Box::from_raw(self.ptr());
}
/// Test pointer equality between the two Arcs, i.e. they must be the _same_
/// allocation
#[inline]
pub(crate) fn ptr_eq(this: &Self, other: &Self) -> bool {
this.ptr() == other.ptr()
}
pub(crate) fn ptr(&self) -> *mut ArcInner<T> {
self.p.as_ptr()
}
}
impl<T: ?Sized> Clone for Arc<T> {
#[inline]
fn clone(&self) -> Self {
// Using a relaxed ordering is alright here, as knowledge of the
// original reference prevents other threads from erroneously deleting
// the object.
//
// As explained in the [Boost documentation][1], Increasing the
// reference counter can always be done with memory_order_relaxed: New
// references to an object can only be formed from an existing
// reference, and passing an existing reference from one thread to
// another must already provide any required synchronization.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
let old_size = self.inner().count.fetch_add(1, Relaxed);
// However we need to guard against massive refcounts in case someone
// is `mem::forget`ing Arcs. If we don't do this the count can overflow
// and users will use-after free. We racily saturate to `isize::MAX` on
// the assumption that there aren't ~2 billion threads incrementing
// the reference count at once. This branch will never be taken in
// any realistic program.
//
// We abort because such a program is incredibly degenerate, and we
// don't care to support it.
if old_size > MAX_REFCOUNT {
std::process::abort();
}
unsafe { Arc { p: ptr::NonNull::new_unchecked(self.ptr()), phantom: PhantomData } }
}
}
impl<T: ?Sized> Deref for Arc<T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
&self.inner().data
}
}
impl<T: ?Sized> Arc<T> {
/// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
#[inline]
pub(crate) fn get_mut(this: &mut Self) -> Option<&mut T> {
if this.is_unique() {
unsafe {
// See make_mut() for documentation of the threadsafety here.
Some(&mut (*this.ptr()).data)
}
} else {
None
}
}
/// Whether or not the `Arc` is uniquely owned (is the refcount 1?).
pub(crate) fn is_unique(&self) -> bool {
// See the extensive discussion in [1] for why this needs to be Acquire.
//
// [1] https://github.com/servo/servo/issues/21186
self.inner().count.load(Acquire) == 1
}
}
impl<T: ?Sized> Drop for Arc<T> {
#[inline]
fn drop(&mut self) {
// Because `fetch_sub` is already atomic, we do not need to synchronize
// with other threads unless we are going to delete the object.
if self.inner().count.fetch_sub(1, Release) != 1 {
return;
}
// FIXME(bholley): Use the updated comment when [2] is merged.
//
// This load is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` load. This
// means that use of the data happens before decreasing the reference
// count, which happens before this load, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
// [2]: https://github.com/rust-lang/rust/pull/41714
self.inner().count.load(Acquire);
unsafe {
self.drop_slow();
}
}
}
impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
fn eq(&self, other: &Arc<T>) -> bool {
Self::ptr_eq(self, other) || *(*self) == *(*other)
}
fn ne(&self, other: &Arc<T>) -> bool {
!Self::ptr_eq(self, other) && *(*self) != *(*other)
}
}
impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
fn lt(&self, other: &Arc<T>) -> bool {
*(*self) < *(*other)
}
fn le(&self, other: &Arc<T>) -> bool {
*(*self) <= *(*other)
}
fn gt(&self, other: &Arc<T>) -> bool {
*(*self) > *(*other)
}
fn ge(&self, other: &Arc<T>) -> bool {
*(*self) >= *(*other)
}
}
impl<T: ?Sized + Ord> Ord for Arc<T> {
fn cmp(&self, other: &Arc<T>) -> Ordering {
(**self).cmp(&**other)
}
}
impl<T: ?Sized + Eq> Eq for Arc<T> {}
impl<T: ?Sized + Hash> Hash for Arc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
#[derive(Debug, Eq, PartialEq, Hash, PartialOrd)]
#[repr(C)]
pub(crate) struct HeaderSlice<H, T: ?Sized> {
pub(crate) header: H,
length: usize,
slice: T,
}
impl<H, T> HeaderSlice<H, [T]> {
pub(crate) fn slice(&self) -> &[T] {
&self.slice
}
}
impl<H, T> Deref for HeaderSlice<H, [T; 0]> {
type Target = HeaderSlice<H, [T]>;
fn deref(&self) -> &Self::Target {
unsafe {
let len = self.length;
let fake_slice: *const [T] =
ptr::slice_from_raw_parts(self as *const _ as *const T, len);
&*(fake_slice as *const HeaderSlice<H, [T]>)
}
}
}
/// A "thin" `Arc` containing dynamically sized data
///
/// This is functionally equivalent to `Arc<(H, [T])>`
///
/// When you create an `Arc` containing a dynamically sized type
/// like `HeaderSlice<H, [T]>`, the `Arc` is represented on the stack
/// as a "fat pointer", where the length of the slice is stored
/// alongside the `Arc`'s pointer. In some situations you may wish to
/// have a thin pointer instead, perhaps for FFI compatibility
/// or space efficiency.
///
/// Note that we use `[T; 0]` in order to have the right alignment for `T`.
///
/// `ThinArc` solves this by storing the length in the allocation itself,
/// via `HeaderSlice`.
#[repr(transparent)]
pub(crate) struct ThinArc<H, T> {
ptr: ptr::NonNull<ArcInner<HeaderSlice<H, [T; 0]>>>,
phantom: PhantomData<(H, T)>,
}
unsafe impl<H: Sync + Send, T: Sync + Send> Send for ThinArc<H, T> {}
unsafe impl<H: Sync + Send, T: Sync + Send> Sync for ThinArc<H, T> {}
// Synthesize a fat pointer from a thin pointer.
fn thin_to_thick<H, T>(
thin: *mut ArcInner<HeaderSlice<H, [T; 0]>>,
) -> *mut ArcInner<HeaderSlice<H, [T]>> {
let len = unsafe { (*thin).data.length };
let fake_slice: *mut [T] = ptr::slice_from_raw_parts_mut(thin as *mut T, len);
// Transplants metadata.
fake_slice as *mut ArcInner<HeaderSlice<H, [T]>>
}
impl<H, T> ThinArc<H, T> {
/// Temporarily converts |self| into a bonafide Arc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline]
pub(crate) fn with_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&Arc<HeaderSlice<H, [T]>>) -> U,
{
// Synthesize transient Arc, which never touches the refcount of the ArcInner.
let transient = unsafe {
ManuallyDrop::new(Arc {
p: ptr::NonNull::new_unchecked(thin_to_thick(self.ptr.as_ptr())),
phantom: PhantomData,
})
};
// Expose the transient Arc to the callback, which may clone it if it wants.
let result = f(&transient);
// Forward the result.
result
}
/// Creates a `ThinArc` for a HeaderSlice using the given header struct and
/// iterator to generate the slice.
pub(crate) fn from_header_and_iter<I>(header: H, mut items: I) -> Self
where
I: Iterator<Item = T> + ExactSizeIterator,
{
assert_ne!(mem::size_of::<T>(), 0, "Need to think about ZST");
let num_items = items.len();
// Offset of the start of the slice in the allocation.
let inner_to_data_offset = offset_of!(ArcInner<HeaderSlice<H, [T; 0]>>, data);
let data_to_slice_offset = offset_of!(HeaderSlice<H, [T; 0]>, slice);
let slice_offset = inner_to_data_offset + data_to_slice_offset;
// Compute the size of the real payload.
let slice_size = mem::size_of::<T>().checked_mul(num_items).expect("size overflows");
let usable_size = slice_offset.checked_add(slice_size).expect("size overflows");
// Round up size to alignment.
let align = mem::align_of::<ArcInner<HeaderSlice<H, [T; 0]>>>();
let size = usable_size.wrapping_add(align - 1) & !(align - 1);
assert!(size >= usable_size, "size overflows");
let layout = Layout::from_size_align(size, align).expect("invalid layout");
let ptr: *mut ArcInner<HeaderSlice<H, [T; 0]>>;
unsafe {
let buffer = alloc::alloc(layout);
if buffer.is_null() {
alloc::handle_alloc_error(layout);
}
// // Synthesize the fat pointer. We do this by claiming we have a direct
// // pointer to a [T], and then changing the type of the borrow. The key
// // point here is that the length portion of the fat pointer applies
// // only to the number of elements in the dynamically-sized portion of
// // the type, so the value will be the same whether it points to a [T]
// // or something else with a [T] as its last member.
// let fake_slice: &mut [T] = slice::from_raw_parts_mut(buffer as *mut T, num_items);
// ptr = fake_slice as *mut [T] as *mut ArcInner<HeaderSlice<H, [T]>>;
ptr = buffer as *mut _;
let count = atomic::AtomicUsize::new(1);
// Write the data.
//
// Note that any panics here (i.e. from the iterator) are safe, since
// we'll just leak the uninitialized memory.
ptr::write(ptr::addr_of_mut!((*ptr).count), count);
ptr::write(ptr::addr_of_mut!((*ptr).data.header), header);
ptr::write(ptr::addr_of_mut!((*ptr).data.length), num_items);
if num_items != 0 {
let mut current = ptr::addr_of_mut!((*ptr).data.slice) as *mut T;
debug_assert_eq!(current as usize - buffer as usize, slice_offset);
for _ in 0..num_items {
ptr::write(
current,
items.next().expect("ExactSizeIterator over-reported length"),
);
current = current.offset(1);
}
assert!(items.next().is_none(), "ExactSizeIterator under-reported length");
// We should have consumed the buffer exactly.
debug_assert_eq!(current as *mut u8, buffer.add(usable_size));
}
assert!(items.next().is_none(), "ExactSizeIterator under-reported length");
}
ThinArc { ptr: unsafe { ptr::NonNull::new_unchecked(ptr) }, phantom: PhantomData }
}
}
impl<H, T> Deref for ThinArc<H, T> {
type Target = HeaderSlice<H, [T]>;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { &(*thin_to_thick(self.ptr.as_ptr())).data }
}
}
impl<H, T> Clone for ThinArc<H, T> {
#[inline]
fn clone(&self) -> Self {
ThinArc::with_arc(self, |a| Arc::into_thin(a.clone()))
}
}
impl<H, T> Drop for ThinArc<H, T> {
#[inline]
fn drop(&mut self) {
let _ = Arc::from_thin(ThinArc { ptr: self.ptr, phantom: PhantomData });
}
}
impl<H, T> Arc<HeaderSlice<H, [T]>> {
/// Converts an `Arc` into a `ThinArc`. This consumes the `Arc`, so the refcount
/// is not modified.
#[inline]
pub(crate) fn into_thin(a: Self) -> ThinArc<H, T> {
assert_eq!(a.length, a.slice.len(), "Length needs to be correct for ThinArc to work");
let fat_ptr: *mut ArcInner<HeaderSlice<H, [T]>> = a.ptr();
mem::forget(a);
let thin_ptr = fat_ptr as *mut [usize] as *mut usize;
ThinArc {
ptr: unsafe {
ptr::NonNull::new_unchecked(thin_ptr as *mut ArcInner<HeaderSlice<H, [T; 0]>>)
},
phantom: PhantomData,
}
}
/// Converts a `ThinArc` into an `Arc`. This consumes the `ThinArc`, so the refcount
/// is not modified.
#[inline]
pub(crate) fn from_thin(a: ThinArc<H, T>) -> Self {
let ptr = thin_to_thick(a.ptr.as_ptr());
mem::forget(a);
unsafe { Arc { p: ptr::NonNull::new_unchecked(ptr), phantom: PhantomData } }
}
}
impl<H: PartialEq, T: PartialEq> PartialEq for ThinArc<H, T> {
#[inline]
fn eq(&self, other: &ThinArc<H, T>) -> bool {
**self == **other
}
}
impl<H: Eq, T: Eq> Eq for ThinArc<H, T> {}
impl<H: Hash, T: Hash> Hash for ThinArc<H, T> {
fn hash<HSR: Hasher>(&self, state: &mut HSR) {
(**self).hash(state)
}
}
|