1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
|
//! Working with abstract syntax trees.
//!
//! In rowan, syntax trees are transient objects. That means that we create
//! trees when we need them, and tear them down to save memory. In this
//! architecture, hanging on to a particular syntax node for a long time is
//! ill-advisable, as that keeps the whole tree resident.
//!
//! Instead, we provide a [`SyntaxNodePtr`] type, which stores information about
//! the _location_ of a particular syntax node in a tree. It's a small type
//! which can be cheaply stored, and which can be resolved to a real
//! [`SyntaxNode`] when necessary.
//!
//! We also provide an [`AstNode`] trait for typed AST wrapper APIs over rowan
//! nodes.
use std::{
fmt,
hash::{Hash, Hasher},
iter::successors,
marker::PhantomData,
};
use crate::{Language, SyntaxNode, SyntaxNodeChildren, TextRange};
/// The main trait to go from untyped [`SyntaxNode`] to a typed AST. The
/// conversion itself has zero runtime cost: AST and syntax nodes have exactly
/// the same representation: a pointer to the tree root and a pointer to the
/// node itself.
pub trait AstNode {
type Language: Language;
fn can_cast(kind: <Self::Language as Language>::Kind) -> bool
where
Self: Sized;
fn cast(node: SyntaxNode<Self::Language>) -> Option<Self>
where
Self: Sized;
fn syntax(&self) -> &SyntaxNode<Self::Language>;
fn clone_for_update(&self) -> Self
where
Self: Sized,
{
Self::cast(self.syntax().clone_for_update()).unwrap()
}
fn clone_subtree(&self) -> Self
where
Self: Sized,
{
Self::cast(self.syntax().clone_subtree()).unwrap()
}
}
/// A "pointer" to a [`SyntaxNode`], via location in the source code.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct SyntaxNodePtr<L: Language> {
kind: L::Kind,
range: TextRange,
}
impl<L: Language> SyntaxNodePtr<L> {
/// Returns a [`SyntaxNodePtr`] for the node.
pub fn new(node: &SyntaxNode<L>) -> Self {
Self { kind: node.kind(), range: node.text_range() }
}
/// Like [`Self::try_to_node`] but panics instead of returning `None` on
/// failure.
pub fn to_node(&self, root: &SyntaxNode<L>) -> SyntaxNode<L> {
self.try_to_node(root).unwrap_or_else(|| panic!("can't resolve {self:?} with {root:?}"))
}
/// "Dereferences" the pointer to get the [`SyntaxNode`] it points to.
///
/// Returns `None` if the node is not found, so make sure that the `root`
/// syntax tree is equivalent to (i.e. is build from the same text from) the
/// tree which was originally used to get this [`SyntaxNodePtr`].
///
/// Also returns `None` if `root` is not actually a root (i.e. it has a
/// parent).
///
/// The complexity is linear in the depth of the tree and logarithmic in
/// tree width. As most trees are shallow, thinking about this as
/// `O(log(N))` in the size of the tree is not too wrong!
pub fn try_to_node(&self, root: &SyntaxNode<L>) -> Option<SyntaxNode<L>> {
if root.parent().is_some() {
return None;
}
successors(Some(root.clone()), |node| node.child_or_token_at_range(self.range)?.into_node())
.find(|it| it.text_range() == self.range && it.kind() == self.kind)
}
/// Casts this to an [`AstPtr`] to the given node type if possible.
pub fn cast<N: AstNode<Language = L>>(self) -> Option<AstPtr<N>> {
if !N::can_cast(self.kind) {
return None;
}
Some(AstPtr { raw: self })
}
/// Returns the kind of the syntax node this points to.
pub fn kind(&self) -> L::Kind {
self.kind
}
/// Returns the range of the syntax node this points to.
pub fn text_range(&self) -> TextRange {
self.range
}
}
/// Like [`SyntaxNodePtr`], but remembers the type of node.
pub struct AstPtr<N: AstNode> {
raw: SyntaxNodePtr<N::Language>,
}
impl<N: AstNode> AstPtr<N> {
/// Returns an [`AstPtr`] for the node.
pub fn new(node: &N) -> Self {
Self { raw: SyntaxNodePtr::new(node.syntax()) }
}
/// Like `Self::try_to_node` but panics on failure.
pub fn to_node(&self, root: &SyntaxNode<N::Language>) -> N {
self.try_to_node(root).unwrap_or_else(|| panic!("can't resolve {self:?} with {root:?}"))
}
/// Given the root node containing the node `n` that `self` is a pointer to,
/// returns `n` if possible. See [`SyntaxNodePtr::try_to_node`].
pub fn try_to_node(&self, root: &SyntaxNode<N::Language>) -> Option<N> {
N::cast(self.raw.try_to_node(root)?)
}
/// Returns the underlying [`SyntaxNodePtr`].
pub fn syntax_node_ptr(&self) -> SyntaxNodePtr<N::Language> {
self.raw.clone()
}
/// Casts this to an [`AstPtr`] to the given node type if possible.
pub fn cast<U: AstNode<Language = N::Language>>(self) -> Option<AstPtr<U>> {
if !U::can_cast(self.raw.kind) {
return None;
}
Some(AstPtr { raw: self.raw })
}
}
impl<N: AstNode> fmt::Debug for AstPtr<N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("AstPtr").field("raw", &self.raw).finish()
}
}
impl<N: AstNode> Clone for AstPtr<N> {
fn clone(&self) -> Self {
Self { raw: self.raw.clone() }
}
}
impl<N: AstNode> PartialEq for AstPtr<N> {
fn eq(&self, other: &AstPtr<N>) -> bool {
self.raw == other.raw
}
}
impl<N: AstNode> Eq for AstPtr<N> {}
impl<N: AstNode> Hash for AstPtr<N> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.raw.hash(state)
}
}
impl<N: AstNode> From<AstPtr<N>> for SyntaxNodePtr<N::Language> {
fn from(ptr: AstPtr<N>) -> SyntaxNodePtr<N::Language> {
ptr.raw
}
}
#[derive(Debug, Clone)]
pub struct AstChildren<N: AstNode> {
inner: SyntaxNodeChildren<N::Language>,
ph: PhantomData<N>,
}
impl<N: AstNode> AstChildren<N> {
fn new(parent: &SyntaxNode<N::Language>) -> Self {
AstChildren { inner: parent.children(), ph: PhantomData }
}
}
impl<N: AstNode> Iterator for AstChildren<N> {
type Item = N;
fn next(&mut self) -> Option<N> {
self.inner.find_map(N::cast)
}
}
pub mod support {
use super::{AstChildren, AstNode};
use crate::{Language, SyntaxNode, SyntaxToken};
pub fn child<N: AstNode>(parent: &SyntaxNode<N::Language>) -> Option<N> {
parent.children().find_map(N::cast)
}
pub fn children<N: AstNode>(parent: &SyntaxNode<N::Language>) -> AstChildren<N> {
AstChildren::new(parent)
}
pub fn token<L: Language>(parent: &SyntaxNode<L>, kind: L::Kind) -> Option<SyntaxToken<L>> {
parent.children_with_tokens().filter_map(|it| it.into_token()).find(|it| it.kind() == kind)
}
}
|