1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
//! Implements typical patterns for `ioctl` usage.
use super::{Ioctl, IoctlOutput, Opcode, RawOpcode};
use crate::backend::c;
use crate::io::Result;
use core::marker::PhantomData;
use core::ptr::addr_of_mut;
use core::{fmt, mem};
/// Implements an `ioctl` with no real arguments.
pub struct NoArg<Opcode> {
/// The opcode.
_opcode: PhantomData<Opcode>,
}
impl<Opcode: CompileTimeOpcode> fmt::Debug for NoArg<Opcode> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("NoArg").field(&Opcode::OPCODE).finish()
}
}
impl<Opcode: CompileTimeOpcode> NoArg<Opcode> {
/// Create a new no-argument `ioctl` object.
///
/// # Safety
///
/// - `Opcode` must provide a valid opcode.
#[inline]
pub unsafe fn new() -> Self {
Self {
_opcode: PhantomData,
}
}
}
unsafe impl<Opcode: CompileTimeOpcode> Ioctl for NoArg<Opcode> {
type Output = ();
const IS_MUTATING: bool = false;
const OPCODE: self::Opcode = Opcode::OPCODE;
fn as_ptr(&mut self) -> *mut c::c_void {
core::ptr::null_mut()
}
unsafe fn output_from_ptr(_: IoctlOutput, _: *mut c::c_void) -> Result<Self::Output> {
Ok(())
}
}
/// Implements the traditional “getter” pattern for `ioctl`s.
///
/// Some `ioctl`s just read data into the userspace. As this is a popular
/// pattern this structure implements it.
pub struct Getter<Opcode, Output> {
/// The output data.
output: mem::MaybeUninit<Output>,
/// The opcode.
_opcode: PhantomData<Opcode>,
}
impl<Opcode: CompileTimeOpcode, Output> fmt::Debug for Getter<Opcode, Output> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Getter").field(&Opcode::OPCODE).finish()
}
}
impl<Opcode: CompileTimeOpcode, Output> Getter<Opcode, Output> {
/// Create a new getter-style `ioctl` object.
///
/// # Safety
///
/// - `Opcode` must provide a valid opcode.
/// - For this opcode, `Output` must be the type that the kernel expects to
/// write into.
#[inline]
pub unsafe fn new() -> Self {
Self {
output: mem::MaybeUninit::uninit(),
_opcode: PhantomData,
}
}
}
unsafe impl<Opcode: CompileTimeOpcode, Output> Ioctl for Getter<Opcode, Output> {
type Output = Output;
const IS_MUTATING: bool = true;
const OPCODE: self::Opcode = Opcode::OPCODE;
fn as_ptr(&mut self) -> *mut c::c_void {
self.output.as_mut_ptr().cast()
}
unsafe fn output_from_ptr(_: IoctlOutput, ptr: *mut c::c_void) -> Result<Self::Output> {
Ok(ptr.cast::<Output>().read())
}
}
/// Implements the pattern for `ioctl`s where a pointer argument is given to
/// the `ioctl`.
///
/// The opcode must be read-only.
pub struct Setter<Opcode, Input> {
/// The input data.
input: Input,
/// The opcode.
_opcode: PhantomData<Opcode>,
}
impl<Opcode: CompileTimeOpcode, Input: fmt::Debug> fmt::Debug for Setter<Opcode, Input> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_tuple("Setter")
.field(&Opcode::OPCODE)
.field(&self.input)
.finish()
}
}
impl<Opcode: CompileTimeOpcode, Input> Setter<Opcode, Input> {
/// Create a new pointer setter-style `ioctl` object.
///
/// # Safety
///
/// - `Opcode` must provide a valid opcode.
/// - For this opcode, `Input` must be the type that the kernel expects to
/// get.
#[inline]
pub unsafe fn new(input: Input) -> Self {
Self {
input,
_opcode: PhantomData,
}
}
}
unsafe impl<Opcode: CompileTimeOpcode, Input> Ioctl for Setter<Opcode, Input> {
type Output = ();
const IS_MUTATING: bool = false;
const OPCODE: self::Opcode = Opcode::OPCODE;
fn as_ptr(&mut self) -> *mut c::c_void {
addr_of_mut!(self.input).cast::<c::c_void>()
}
unsafe fn output_from_ptr(_: IoctlOutput, _: *mut c::c_void) -> Result<Self::Output> {
Ok(())
}
}
/// Implements an “updater” pattern for `ioctl`s.
///
/// The ioctl takes a reference to a struct that it reads its input from,
/// then writes output to the same struct.
pub struct Updater<'a, Opcode, Value> {
/// Reference to input/output data.
value: &'a mut Value,
/// The opcode.
_opcode: PhantomData<Opcode>,
}
impl<'a, Opcode: CompileTimeOpcode, Value> Updater<'a, Opcode, Value> {
/// Create a new pointer updater-style `ioctl` object.
///
/// # Safety
///
/// - `Opcode` must provide a valid opcode.
/// - For this opcode, `Value` must be the type that the kernel expects to
/// get.
#[inline]
pub unsafe fn new(value: &'a mut Value) -> Self {
Self {
value,
_opcode: PhantomData,
}
}
}
unsafe impl<'a, Opcode: CompileTimeOpcode, T> Ioctl for Updater<'a, Opcode, T> {
type Output = ();
const IS_MUTATING: bool = true;
const OPCODE: self::Opcode = Opcode::OPCODE;
fn as_ptr(&mut self) -> *mut c::c_void {
(self.value as *mut T).cast()
}
unsafe fn output_from_ptr(_output: IoctlOutput, _ptr: *mut c::c_void) -> Result<()> {
Ok(())
}
}
/// Trait for something that provides an `ioctl` opcode at compile time.
pub trait CompileTimeOpcode {
/// The opcode.
const OPCODE: Opcode;
}
/// Provides a bad opcode at compile time.
pub struct BadOpcode<const OPCODE: RawOpcode>;
impl<const OPCODE: RawOpcode> CompileTimeOpcode for BadOpcode<OPCODE> {
const OPCODE: Opcode = Opcode::old(OPCODE);
}
/// Provides a read code at compile time.
///
/// This corresponds to the C macro `_IOR(GROUP, NUM, Data)`.
#[cfg(any(linux_kernel, bsd))]
pub struct ReadOpcode<const GROUP: u8, const NUM: u8, Data>(Data);
#[cfg(any(linux_kernel, bsd))]
impl<const GROUP: u8, const NUM: u8, Data> CompileTimeOpcode for ReadOpcode<GROUP, NUM, Data> {
const OPCODE: Opcode = Opcode::read::<Data>(GROUP, NUM);
}
/// Provides a write code at compile time.
///
/// This corresponds to the C macro `_IOW(GROUP, NUM, Data)`.
#[cfg(any(linux_kernel, bsd))]
pub struct WriteOpcode<const GROUP: u8, const NUM: u8, Data>(Data);
#[cfg(any(linux_kernel, bsd))]
impl<const GROUP: u8, const NUM: u8, Data> CompileTimeOpcode for WriteOpcode<GROUP, NUM, Data> {
const OPCODE: Opcode = Opcode::write::<Data>(GROUP, NUM);
}
/// Provides a read/write code at compile time.
///
/// This corresponds to the C macro `_IOWR(GROUP, NUM, Data)`.
#[cfg(any(linux_kernel, bsd))]
pub struct ReadWriteOpcode<const GROUP: u8, const NUM: u8, Data>(Data);
#[cfg(any(linux_kernel, bsd))]
impl<const GROUP: u8, const NUM: u8, Data> CompileTimeOpcode for ReadWriteOpcode<GROUP, NUM, Data> {
const OPCODE: Opcode = Opcode::read_write::<Data>(GROUP, NUM);
}
/// Provides a `None` code at compile time.
///
/// This corresponds to the C macro `_IO(GROUP, NUM)` when `Data` is zero
/// sized.
#[cfg(any(linux_kernel, bsd))]
pub struct NoneOpcode<const GROUP: u8, const NUM: u8, Data>(Data);
#[cfg(any(linux_kernel, bsd))]
impl<const GROUP: u8, const NUM: u8, Data> CompileTimeOpcode for NoneOpcode<GROUP, NUM, Data> {
const OPCODE: Opcode = Opcode::none::<Data>(GROUP, NUM);
}
|