1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
use std::hash::Hasher;
use std::io;
use twox_hash::XxHash64;
use super::ringbuffer::RingBuffer;
pub struct Decodebuffer {
buffer: RingBuffer,
pub dict_content: Vec<u8>,
pub window_size: usize,
total_output_counter: u64,
pub hash: XxHash64,
}
#[derive(Debug, thiserror::Error)]
#[non_exhaustive]
pub enum DecodebufferError {
#[error("Need {need} bytes from the dictionary but it is only {got} bytes long")]
NotEnoughBytesInDictionary { got: usize, need: usize },
#[error("offset: {offset} bigger than buffer: {buf_len}")]
OffsetTooBig { offset: usize, buf_len: usize },
}
impl io::Read for Decodebuffer {
fn read(&mut self, target: &mut [u8]) -> io::Result<usize> {
let max_amount = self.can_drain_to_window_size().unwrap_or(0);
let amount = max_amount.min(target.len());
let mut written = 0;
self.drain_to(amount, |buf| {
target[written..][..buf.len()].copy_from_slice(buf);
written += buf.len();
(buf.len(), Ok(()))
})?;
Ok(amount)
}
}
impl Decodebuffer {
pub fn new(window_size: usize) -> Decodebuffer {
Decodebuffer {
buffer: RingBuffer::new(),
dict_content: Vec::new(),
window_size,
total_output_counter: 0,
hash: XxHash64::with_seed(0),
}
}
pub fn reset(&mut self, window_size: usize) {
self.window_size = window_size;
self.buffer.clear();
self.buffer.reserve(self.window_size);
self.dict_content.clear();
self.total_output_counter = 0;
self.hash = XxHash64::with_seed(0);
}
pub fn len(&self) -> usize {
self.buffer.len()
}
pub fn is_empty(&self) -> bool {
self.buffer.is_empty()
}
pub fn push(&mut self, data: &[u8]) {
self.buffer.extend(data);
self.total_output_counter += data.len() as u64;
}
pub fn repeat(&mut self, offset: usize, match_length: usize) -> Result<(), DecodebufferError> {
if offset > self.buffer.len() {
if self.total_output_counter <= self.window_size as u64 {
// at least part of that repeat is from the dictionary content
let bytes_from_dict = offset - self.buffer.len();
if bytes_from_dict > self.dict_content.len() {
return Err(DecodebufferError::NotEnoughBytesInDictionary {
got: self.dict_content.len(),
need: bytes_from_dict,
});
}
if bytes_from_dict < match_length {
let dict_slice =
&self.dict_content[self.dict_content.len() - bytes_from_dict..];
self.buffer.extend(dict_slice);
self.total_output_counter += bytes_from_dict as u64;
return self.repeat(self.buffer.len(), match_length - bytes_from_dict);
} else {
let low = self.dict_content.len() - bytes_from_dict;
let high = low + match_length;
let dict_slice = &self.dict_content[low..high];
self.buffer.extend(dict_slice);
}
} else {
return Err(DecodebufferError::OffsetTooBig {
offset,
buf_len: self.buffer.len(),
});
}
} else {
let buf_len = self.buffer.len();
let start_idx = buf_len - offset;
let end_idx = start_idx + match_length;
self.buffer.reserve(match_length);
if end_idx > buf_len {
// We need to copy in chunks.
// We have at max offset bytes in one chunk, the last one can be smaller
let mut start_idx = start_idx;
let mut copied_counter_left = match_length;
// TODO this can be optimized further I think.
// Each time we copy a chunk we have a repetiton of length 'offset', so we can copy offset * iteration many bytes from start_idx
while copied_counter_left > 0 {
let chunksize = usize::min(offset, copied_counter_left);
// SAFETY:
// we know that start_idx <= buf_len and start_idx + offset == buf_len and we reserverd match_length space
unsafe {
self.buffer
.extend_from_within_unchecked(start_idx, chunksize)
};
copied_counter_left -= chunksize;
start_idx += chunksize;
}
} else {
// can just copy parts of the existing buffer
// SAFETY:
// we know that start_idx and end_idx <= buf_len and we reserverd match_length space
unsafe {
self.buffer
.extend_from_within_unchecked(start_idx, match_length)
};
}
self.total_output_counter += match_length as u64;
}
Ok(())
}
// Check if and how many bytes can currently be drawn from the buffer
pub fn can_drain_to_window_size(&self) -> Option<usize> {
if self.buffer.len() > self.window_size {
Some(self.buffer.len() - self.window_size)
} else {
None
}
}
//How many bytes can be drained if the window_size does not have to be maintained
pub fn can_drain(&self) -> usize {
self.buffer.len()
}
//drain as much as possible while retaining enough so that decoding si still possible with the required window_size
//At best call only if can_drain_to_window_size reports a 'high' number of bytes to reduce allocations
pub fn drain_to_window_size(&mut self) -> Option<Vec<u8>> {
//TODO investigate if it is possible to return the std::vec::Drain iterator directly without collecting here
match self.can_drain_to_window_size() {
None => None,
Some(can_drain) => {
let mut vec = Vec::with_capacity(can_drain);
self.drain_to(can_drain, |buf| {
vec.extend_from_slice(buf);
(buf.len(), Ok(()))
})
.ok()?;
Some(vec)
}
}
}
pub fn drain_to_window_size_writer(&mut self, mut sink: impl io::Write) -> io::Result<usize> {
match self.can_drain_to_window_size() {
None => Ok(0),
Some(can_drain) => {
self.drain_to(can_drain, |buf| write_all_bytes(&mut sink, buf))?;
Ok(can_drain)
}
}
}
//drain the buffer completely
pub fn drain(&mut self) -> Vec<u8> {
let (slice1, slice2) = self.buffer.as_slices();
self.hash.write(slice1);
self.hash.write(slice2);
let mut vec = Vec::with_capacity(slice1.len() + slice2.len());
vec.extend_from_slice(slice1);
vec.extend_from_slice(slice2);
self.buffer.clear();
vec
}
pub fn drain_to_writer(&mut self, mut sink: impl io::Write) -> io::Result<usize> {
let len = self.buffer.len();
self.drain_to(len, |buf| write_all_bytes(&mut sink, buf))?;
Ok(len)
}
pub fn read_all(&mut self, target: &mut [u8]) -> io::Result<usize> {
let amount = self.buffer.len().min(target.len());
let mut written = 0;
self.drain_to(amount, |buf| {
target[written..][..buf.len()].copy_from_slice(buf);
written += buf.len();
(buf.len(), Ok(()))
})?;
Ok(amount)
}
/// Semantics of write_bytes:
/// Should dump as many of the provided bytes as possible to whatever sink until no bytes are left or an error is encountered
/// Return how many bytes have actually been dumped to the sink.
fn drain_to(
&mut self,
amount: usize,
mut write_bytes: impl FnMut(&[u8]) -> (usize, io::Result<()>),
) -> io::Result<()> {
if amount == 0 {
return Ok(());
}
struct DrainGuard<'a> {
buffer: &'a mut RingBuffer,
amount: usize,
}
impl<'a> Drop for DrainGuard<'a> {
fn drop(&mut self) {
if self.amount != 0 {
self.buffer.drop_first_n(self.amount);
}
}
}
let mut drain_guard = DrainGuard {
buffer: &mut self.buffer,
amount: 0,
};
let (slice1, slice2) = drain_guard.buffer.as_slices();
let n1 = slice1.len().min(amount);
let n2 = slice2.len().min(amount - n1);
if n1 != 0 {
let (written1, res1) = write_bytes(&slice1[..n1]);
self.hash.write(&slice1[..written1]);
drain_guard.amount += written1;
// Apparently this is what clippy thinks is the best way of expressing this
res1?;
// Only if the first call to write_bytes was not a partial write we can continue with slice2
// Partial writes SHOULD never happen without res1 being an error, but lets just protect against it anyways.
if written1 == n1 && n2 != 0 {
let (written2, res2) = write_bytes(&slice2[..n2]);
self.hash.write(&slice2[..written2]);
drain_guard.amount += written2;
// Apparently this is what clippy thinks is the best way of expressing this
res2?;
}
}
// Make sure we don't accidentally drop `DrainGuard` earlier.
drop(drain_guard);
Ok(())
}
}
/// Like Write::write_all but returns partial write length even on error
fn write_all_bytes(mut sink: impl io::Write, buf: &[u8]) -> (usize, io::Result<()>) {
let mut written = 0;
while written < buf.len() {
match sink.write(&buf[written..]) {
Ok(w) => written += w,
Err(e) => return (written, Err(e)),
}
}
(written, Ok(()))
}
#[cfg(test)]
mod tests {
use super::Decodebuffer;
use std::io::Write;
#[test]
fn short_writer() {
struct ShortWriter {
buf: Vec<u8>,
write_len: usize,
}
impl Write for ShortWriter {
fn write(&mut self, buf: &[u8]) -> std::result::Result<usize, std::io::Error> {
if buf.len() > self.write_len {
self.buf.extend_from_slice(&buf[..self.write_len]);
Ok(self.write_len)
} else {
self.buf.extend_from_slice(buf);
Ok(buf.len())
}
}
fn flush(&mut self) -> std::result::Result<(), std::io::Error> {
Ok(())
}
}
let mut short_writer = ShortWriter {
buf: vec![],
write_len: 10,
};
let mut decode_buf = Decodebuffer::new(100);
decode_buf.push(b"0123456789");
decode_buf.repeat(10, 90).unwrap();
let repeats = 1000;
for _ in 0..repeats {
assert_eq!(decode_buf.len(), 100);
decode_buf.repeat(10, 50).unwrap();
assert_eq!(decode_buf.len(), 150);
decode_buf
.drain_to_window_size_writer(&mut short_writer)
.unwrap();
assert_eq!(decode_buf.len(), 100);
}
assert_eq!(short_writer.buf.len(), repeats * 50);
decode_buf.drain_to_writer(&mut short_writer).unwrap();
assert_eq!(short_writer.buf.len(), repeats * 50 + 100);
}
#[test]
fn wouldblock_writer() {
struct WouldblockWriter {
buf: Vec<u8>,
last_blocked: usize,
block_every: usize,
}
impl Write for WouldblockWriter {
fn write(&mut self, buf: &[u8]) -> std::result::Result<usize, std::io::Error> {
if self.last_blocked < self.block_every {
self.buf.extend_from_slice(buf);
self.last_blocked += 1;
Ok(buf.len())
} else {
self.last_blocked = 0;
Err(std::io::Error::from(std::io::ErrorKind::WouldBlock))
}
}
fn flush(&mut self) -> std::result::Result<(), std::io::Error> {
Ok(())
}
}
let mut short_writer = WouldblockWriter {
buf: vec![],
last_blocked: 0,
block_every: 5,
};
let mut decode_buf = Decodebuffer::new(100);
decode_buf.push(b"0123456789");
decode_buf.repeat(10, 90).unwrap();
let repeats = 1000;
for _ in 0..repeats {
assert_eq!(decode_buf.len(), 100);
decode_buf.repeat(10, 50).unwrap();
assert_eq!(decode_buf.len(), 150);
loop {
match decode_buf.drain_to_window_size_writer(&mut short_writer) {
Ok(written) => {
if written == 0 {
break;
}
}
Err(e) => {
if e.kind() == std::io::ErrorKind::WouldBlock {
continue;
} else {
panic!("Unexpected error {:?}", e);
}
}
}
}
assert_eq!(decode_buf.len(), 100);
}
assert_eq!(short_writer.buf.len(), repeats * 50);
loop {
match decode_buf.drain_to_writer(&mut short_writer) {
Ok(written) => {
if written == 0 {
break;
}
}
Err(e) => {
if e.kind() == std::io::ErrorKind::WouldBlock {
continue;
} else {
panic!("Unexpected error {:?}", e);
}
}
}
}
assert_eq!(short_writer.buf.len(), repeats * 50 + 100);
}
}
|