1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
|
// Adapted from https://github.com/Alexhuszagh/rust-lexical.
//! Building-blocks for arbitrary-precision math.
//!
//! These algorithms assume little-endian order for the large integer
//! buffers, so for a `vec![0, 1, 2, 3]`, `3` is the most significant limb,
//! and `0` is the least significant limb.
use super::large_powers;
use super::num::*;
use super::small_powers::*;
use alloc::vec::Vec;
use core::{cmp, iter, mem};
// ALIASES
// -------
// Type for a single limb of the big integer.
//
// A limb is analogous to a digit in base10, except, it stores 32-bit
// or 64-bit numbers instead.
//
// This should be all-known 64-bit platforms supported by Rust.
// https://forge.rust-lang.org/platform-support.html
//
// Platforms where native 128-bit multiplication is explicitly supported:
// - x86_64 (Supported via `MUL`).
// - mips64 (Supported via `DMULTU`, which `HI` and `LO` can be read-from).
//
// Platforms where native 64-bit multiplication is supported and
// you can extract hi-lo for 64-bit multiplications.
// aarch64 (Requires `UMULH` and `MUL` to capture high and low bits).
// powerpc64 (Requires `MULHDU` and `MULLD` to capture high and low bits).
//
// Platforms where native 128-bit multiplication is not supported,
// requiring software emulation.
// sparc64 (`UMUL` only supported double-word arguments).
// 32-BIT LIMB
#[cfg(limb_width_32)]
pub type Limb = u32;
#[cfg(limb_width_32)]
pub const POW5_LIMB: &[Limb] = &POW5_32;
#[cfg(limb_width_32)]
pub const POW10_LIMB: &[Limb] = &POW10_32;
#[cfg(limb_width_32)]
type Wide = u64;
// 64-BIT LIMB
#[cfg(limb_width_64)]
pub type Limb = u64;
#[cfg(limb_width_64)]
pub const POW5_LIMB: &[Limb] = &POW5_64;
#[cfg(limb_width_64)]
pub const POW10_LIMB: &[Limb] = &POW10_64;
#[cfg(limb_width_64)]
type Wide = u128;
/// Cast to limb type.
#[inline]
pub(crate) fn as_limb<T: Integer>(t: T) -> Limb {
Limb::as_cast(t)
}
/// Cast to wide type.
#[inline]
fn as_wide<T: Integer>(t: T) -> Wide {
Wide::as_cast(t)
}
// SPLIT
// -----
/// Split u64 into limbs, in little-endian order.
#[inline]
#[cfg(limb_width_32)]
fn split_u64(x: u64) -> [Limb; 2] {
[as_limb(x), as_limb(x >> 32)]
}
/// Split u64 into limbs, in little-endian order.
#[inline]
#[cfg(limb_width_64)]
fn split_u64(x: u64) -> [Limb; 1] {
[as_limb(x)]
}
// HI64
// ----
// NONZERO
/// Check if any of the remaining bits are non-zero.
#[inline]
pub fn nonzero<T: Integer>(x: &[T], rindex: usize) -> bool {
let len = x.len();
let slc = &x[..len - rindex];
slc.iter().rev().any(|&x| x != T::ZERO)
}
/// Shift 64-bit integer to high 64-bits.
#[inline]
fn u64_to_hi64_1(r0: u64) -> (u64, bool) {
debug_assert!(r0 != 0);
let ls = r0.leading_zeros();
(r0 << ls, false)
}
/// Shift 2 64-bit integers to high 64-bits.
#[inline]
fn u64_to_hi64_2(r0: u64, r1: u64) -> (u64, bool) {
debug_assert!(r0 != 0);
let ls = r0.leading_zeros();
let rs = 64 - ls;
let v = match ls {
0 => r0,
_ => (r0 << ls) | (r1 >> rs),
};
let n = r1 << ls != 0;
(v, n)
}
/// Trait to export the high 64-bits from a little-endian slice.
trait Hi64<T>: AsRef<[T]> {
/// Get the hi64 bits from a 1-limb slice.
fn hi64_1(&self) -> (u64, bool);
/// Get the hi64 bits from a 2-limb slice.
fn hi64_2(&self) -> (u64, bool);
/// Get the hi64 bits from a 3-limb slice.
fn hi64_3(&self) -> (u64, bool);
/// High-level exporter to extract the high 64 bits from a little-endian slice.
#[inline]
fn hi64(&self) -> (u64, bool) {
match self.as_ref().len() {
0 => (0, false),
1 => self.hi64_1(),
2 => self.hi64_2(),
_ => self.hi64_3(),
}
}
}
impl Hi64<u32> for [u32] {
#[inline]
fn hi64_1(&self) -> (u64, bool) {
debug_assert!(self.len() == 1);
let r0 = self[0] as u64;
u64_to_hi64_1(r0)
}
#[inline]
fn hi64_2(&self) -> (u64, bool) {
debug_assert!(self.len() == 2);
let r0 = (self[1] as u64) << 32;
let r1 = self[0] as u64;
u64_to_hi64_1(r0 | r1)
}
#[inline]
fn hi64_3(&self) -> (u64, bool) {
debug_assert!(self.len() >= 3);
let r0 = self[self.len() - 1] as u64;
let r1 = (self[self.len() - 2] as u64) << 32;
let r2 = self[self.len() - 3] as u64;
let (v, n) = u64_to_hi64_2(r0, r1 | r2);
(v, n || nonzero(self, 3))
}
}
impl Hi64<u64> for [u64] {
#[inline]
fn hi64_1(&self) -> (u64, bool) {
debug_assert!(self.len() == 1);
let r0 = self[0];
u64_to_hi64_1(r0)
}
#[inline]
fn hi64_2(&self) -> (u64, bool) {
debug_assert!(self.len() >= 2);
let r0 = self[self.len() - 1];
let r1 = self[self.len() - 2];
let (v, n) = u64_to_hi64_2(r0, r1);
(v, n || nonzero(self, 2))
}
#[inline]
fn hi64_3(&self) -> (u64, bool) {
self.hi64_2()
}
}
// SCALAR
// ------
// Scalar-to-scalar operations, for building-blocks for arbitrary-precision
// operations.
mod scalar {
use super::*;
// ADDITION
/// Add two small integers and return the resulting value and if overflow happens.
#[inline]
pub fn add(x: Limb, y: Limb) -> (Limb, bool) {
x.overflowing_add(y)
}
/// AddAssign two small integers and return if overflow happens.
#[inline]
pub fn iadd(x: &mut Limb, y: Limb) -> bool {
let t = add(*x, y);
*x = t.0;
t.1
}
// SUBTRACTION
/// Subtract two small integers and return the resulting value and if overflow happens.
#[inline]
pub fn sub(x: Limb, y: Limb) -> (Limb, bool) {
x.overflowing_sub(y)
}
/// SubAssign two small integers and return if overflow happens.
#[inline]
pub fn isub(x: &mut Limb, y: Limb) -> bool {
let t = sub(*x, y);
*x = t.0;
t.1
}
// MULTIPLICATION
/// Multiply two small integers (with carry) (and return the overflow contribution).
///
/// Returns the (low, high) components.
#[inline]
pub fn mul(x: Limb, y: Limb, carry: Limb) -> (Limb, Limb) {
// Cannot overflow, as long as wide is 2x as wide. This is because
// the following is always true:
// `Wide::max_value() - (Narrow::max_value() * Narrow::max_value()) >= Narrow::max_value()`
let z: Wide = as_wide(x) * as_wide(y) + as_wide(carry);
let bits = mem::size_of::<Limb>() * 8;
(as_limb(z), as_limb(z >> bits))
}
/// Multiply two small integers (with carry) (and return if overflow happens).
#[inline]
pub fn imul(x: &mut Limb, y: Limb, carry: Limb) -> Limb {
let t = mul(*x, y, carry);
*x = t.0;
t.1
}
} // scalar
// SMALL
// -----
// Large-to-small operations, to modify a big integer from a native scalar.
mod small {
use super::*;
// MULTIPLICATIION
/// ADDITION
/// Implied AddAssign implementation for adding a small integer to bigint.
///
/// Allows us to choose a start-index in x to store, to allow incrementing
/// from a non-zero start.
#[inline]
pub fn iadd_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) {
if x.len() <= xstart {
x.push(y);
} else {
// Initial add
let mut carry = scalar::iadd(&mut x[xstart], y);
// Increment until overflow stops occurring.
let mut size = xstart + 1;
while carry && size < x.len() {
carry = scalar::iadd(&mut x[size], 1);
size += 1;
}
// If we overflowed the buffer entirely, need to add 1 to the end
// of the buffer.
if carry {
x.push(1);
}
}
}
/// AddAssign small integer to bigint.
#[inline]
pub fn iadd(x: &mut Vec<Limb>, y: Limb) {
iadd_impl(x, y, 0);
}
// SUBTRACTION
/// SubAssign small integer to bigint.
/// Does not do overflowing subtraction.
#[inline]
pub fn isub_impl(x: &mut Vec<Limb>, y: Limb, xstart: usize) {
debug_assert!(x.len() > xstart && (x[xstart] >= y || x.len() > xstart + 1));
// Initial subtraction
let mut carry = scalar::isub(&mut x[xstart], y);
// Increment until overflow stops occurring.
let mut size = xstart + 1;
while carry && size < x.len() {
carry = scalar::isub(&mut x[size], 1);
size += 1;
}
normalize(x);
}
// MULTIPLICATION
/// MulAssign small integer to bigint.
#[inline]
pub fn imul(x: &mut Vec<Limb>, y: Limb) {
// Multiply iteratively over all elements, adding the carry each time.
let mut carry: Limb = 0;
for xi in x.iter_mut() {
carry = scalar::imul(xi, y, carry);
}
// Overflow of value, add to end.
if carry != 0 {
x.push(carry);
}
}
/// Mul small integer to bigint.
#[inline]
pub fn mul(x: &[Limb], y: Limb) -> Vec<Limb> {
let mut z = Vec::<Limb>::default();
z.extend_from_slice(x);
imul(&mut z, y);
z
}
/// MulAssign by a power.
///
/// Theoretically...
///
/// Use an exponentiation by squaring method, since it reduces the time
/// complexity of the multiplication to ~`O(log(n))` for the squaring,
/// and `O(n*m)` for the result. Since `m` is typically a lower-order
/// factor, this significantly reduces the number of multiplications
/// we need to do. Iteratively multiplying by small powers follows
/// the nth triangular number series, which scales as `O(p^2)`, but
/// where `p` is `n+m`. In short, it scales very poorly.
///
/// Practically....
///
/// Exponentiation by Squaring:
/// running 2 tests
/// test bigcomp_f32_lexical ... bench: 1,018 ns/iter (+/- 78)
/// test bigcomp_f64_lexical ... bench: 3,639 ns/iter (+/- 1,007)
///
/// Exponentiation by Iterative Small Powers:
/// running 2 tests
/// test bigcomp_f32_lexical ... bench: 518 ns/iter (+/- 31)
/// test bigcomp_f64_lexical ... bench: 583 ns/iter (+/- 47)
///
/// Exponentiation by Iterative Large Powers (of 2):
/// running 2 tests
/// test bigcomp_f32_lexical ... bench: 671 ns/iter (+/- 31)
/// test bigcomp_f64_lexical ... bench: 1,394 ns/iter (+/- 47)
///
/// Even using worst-case scenarios, exponentiation by squaring is
/// significantly slower for our workloads. Just multiply by small powers,
/// in simple cases, and use precalculated large powers in other cases.
pub fn imul_pow5(x: &mut Vec<Limb>, n: u32) {
use super::large::KARATSUBA_CUTOFF;
let small_powers = POW5_LIMB;
let large_powers = large_powers::POW5;
if n == 0 {
// No exponent, just return.
// The 0-index of the large powers is `2^0`, which is 1, so we want
// to make sure we don't take that path with a literal 0.
return;
}
// We want to use the asymptotically faster algorithm if we're going
// to be using Karabatsu multiplication sometime during the result,
// otherwise, just use exponentiation by squaring.
let bit_length = 32 - n.leading_zeros() as usize;
debug_assert!(bit_length != 0 && bit_length <= large_powers.len());
if x.len() + large_powers[bit_length - 1].len() < 2 * KARATSUBA_CUTOFF {
// We can use iterative small powers to make this faster for the
// easy cases.
// Multiply by the largest small power until n < step.
let step = small_powers.len() - 1;
let power = small_powers[step];
let mut n = n as usize;
while n >= step {
imul(x, power);
n -= step;
}
// Multiply by the remainder.
imul(x, small_powers[n]);
} else {
// In theory, this code should be asymptotically a lot faster,
// in practice, our small::imul seems to be the limiting step,
// and large imul is slow as well.
// Multiply by higher order powers.
let mut idx: usize = 0;
let mut bit: usize = 1;
let mut n = n as usize;
while n != 0 {
if n & bit != 0 {
debug_assert!(idx < large_powers.len());
large::imul(x, large_powers[idx]);
n ^= bit;
}
idx += 1;
bit <<= 1;
}
}
}
// BIT LENGTH
/// Get number of leading zero bits in the storage.
#[inline]
pub fn leading_zeros(x: &[Limb]) -> usize {
x.last().map_or(0, |x| x.leading_zeros() as usize)
}
/// Calculate the bit-length of the big-integer.
#[inline]
pub fn bit_length(x: &[Limb]) -> usize {
let bits = mem::size_of::<Limb>() * 8;
// Avoid overflowing, calculate via total number of bits
// minus leading zero bits.
let nlz = leading_zeros(x);
bits.checked_mul(x.len())
.map_or_else(usize::max_value, |v| v - nlz)
}
// SHL
/// Shift-left bits inside a buffer.
///
/// Assumes `n < Limb::BITS`, IE, internally shifting bits.
#[inline]
pub fn ishl_bits(x: &mut Vec<Limb>, n: usize) {
// Need to shift by the number of `bits % Limb::BITS)`.
let bits = mem::size_of::<Limb>() * 8;
debug_assert!(n < bits);
if n == 0 {
return;
}
// Internally, for each item, we shift left by n, and add the previous
// right shifted limb-bits.
// For example, we transform (for u8) shifted left 2, to:
// b10100100 b01000010
// b10 b10010001 b00001000
let rshift = bits - n;
let lshift = n;
let mut prev: Limb = 0;
for xi in x.iter_mut() {
let tmp = *xi;
*xi <<= lshift;
*xi |= prev >> rshift;
prev = tmp;
}
// Always push the carry, even if it creates a non-normal result.
let carry = prev >> rshift;
if carry != 0 {
x.push(carry);
}
}
/// Shift-left `n` digits inside a buffer.
///
/// Assumes `n` is not 0.
#[inline]
pub fn ishl_limbs(x: &mut Vec<Limb>, n: usize) {
debug_assert!(n != 0);
if !x.is_empty() {
x.reserve(n);
x.splice(..0, iter::repeat(0).take(n));
}
}
/// Shift-left buffer by n bits.
#[inline]
pub fn ishl(x: &mut Vec<Limb>, n: usize) {
let bits = mem::size_of::<Limb>() * 8;
// Need to pad with zeros for the number of `bits / Limb::BITS`,
// and shift-left with carry for `bits % Limb::BITS`.
let rem = n % bits;
let div = n / bits;
ishl_bits(x, rem);
if div != 0 {
ishl_limbs(x, div);
}
}
// NORMALIZE
/// Normalize the container by popping any leading zeros.
#[inline]
pub fn normalize(x: &mut Vec<Limb>) {
// Remove leading zero if we cause underflow. Since we're dividing
// by a small power, we have at max 1 int removed.
while x.last() == Some(&0) {
x.pop();
}
}
} // small
// LARGE
// -----
// Large-to-large operations, to modify a big integer from a native scalar.
mod large {
use super::*;
// RELATIVE OPERATORS
/// Compare `x` to `y`, in little-endian order.
#[inline]
pub fn compare(x: &[Limb], y: &[Limb]) -> cmp::Ordering {
if x.len() > y.len() {
cmp::Ordering::Greater
} else if x.len() < y.len() {
cmp::Ordering::Less
} else {
let iter = x.iter().rev().zip(y.iter().rev());
for (&xi, &yi) in iter {
if xi > yi {
return cmp::Ordering::Greater;
} else if xi < yi {
return cmp::Ordering::Less;
}
}
// Equal case.
cmp::Ordering::Equal
}
}
/// Check if x is less than y.
#[inline]
pub fn less(x: &[Limb], y: &[Limb]) -> bool {
compare(x, y) == cmp::Ordering::Less
}
/// Check if x is greater than or equal to y.
#[inline]
pub fn greater_equal(x: &[Limb], y: &[Limb]) -> bool {
!less(x, y)
}
// ADDITION
/// Implied AddAssign implementation for bigints.
///
/// Allows us to choose a start-index in x to store, so we can avoid
/// padding the buffer with zeros when not needed, optimized for vectors.
pub fn iadd_impl(x: &mut Vec<Limb>, y: &[Limb], xstart: usize) {
// The effective x buffer is from `xstart..x.len()`, so we need to treat
// that as the current range. If the effective y buffer is longer, need
// to resize to that, + the start index.
if y.len() > x.len() - xstart {
x.resize(y.len() + xstart, 0);
}
// Iteratively add elements from y to x.
let mut carry = false;
for (xi, yi) in x[xstart..].iter_mut().zip(y.iter()) {
// Only one op of the two can overflow, since we added at max
// Limb::max_value() + Limb::max_value(). Add the previous carry,
// and store the current carry for the next.
let mut tmp = scalar::iadd(xi, *yi);
if carry {
tmp |= scalar::iadd(xi, 1);
}
carry = tmp;
}
// Overflow from the previous bit.
if carry {
small::iadd_impl(x, 1, y.len() + xstart);
}
}
/// AddAssign bigint to bigint.
#[inline]
pub fn iadd(x: &mut Vec<Limb>, y: &[Limb]) {
iadd_impl(x, y, 0);
}
/// Add bigint to bigint.
#[inline]
pub fn add(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
let mut z = Vec::<Limb>::default();
z.extend_from_slice(x);
iadd(&mut z, y);
z
}
// SUBTRACTION
/// SubAssign bigint to bigint.
pub fn isub(x: &mut Vec<Limb>, y: &[Limb]) {
// Basic underflow checks.
debug_assert!(greater_equal(x, y));
// Iteratively add elements from y to x.
let mut carry = false;
for (xi, yi) in x.iter_mut().zip(y.iter()) {
// Only one op of the two can overflow, since we added at max
// Limb::max_value() + Limb::max_value(). Add the previous carry,
// and store the current carry for the next.
let mut tmp = scalar::isub(xi, *yi);
if carry {
tmp |= scalar::isub(xi, 1);
}
carry = tmp;
}
if carry {
small::isub_impl(x, 1, y.len());
} else {
small::normalize(x);
}
}
// MULTIPLICATION
/// Number of digits to bottom-out to asymptotically slow algorithms.
///
/// Karatsuba tends to out-perform long-multiplication at ~320-640 bits,
/// so we go halfway, while Newton division tends to out-perform
/// Algorithm D at ~1024 bits. We can toggle this for optimal performance.
pub const KARATSUBA_CUTOFF: usize = 32;
/// Grade-school multiplication algorithm.
///
/// Slow, naive algorithm, using limb-bit bases and just shifting left for
/// each iteration. This could be optimized with numerous other algorithms,
/// but it's extremely simple, and works in O(n*m) time, which is fine
/// by me. Each iteration, of which there are `m` iterations, requires
/// `n` multiplications, and `n` additions, or grade-school multiplication.
fn long_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
// Using the immutable value, multiply by all the scalars in y, using
// the algorithm defined above. Use a single buffer to avoid
// frequent reallocations. Handle the first case to avoid a redundant
// addition, since we know y.len() >= 1.
let mut z: Vec<Limb> = small::mul(x, y[0]);
z.resize(x.len() + y.len(), 0);
// Handle the iterative cases.
for (i, &yi) in y[1..].iter().enumerate() {
let zi: Vec<Limb> = small::mul(x, yi);
iadd_impl(&mut z, &zi, i + 1);
}
small::normalize(&mut z);
z
}
/// Split two buffers into halfway, into (lo, hi).
#[inline]
pub fn karatsuba_split(z: &[Limb], m: usize) -> (&[Limb], &[Limb]) {
(&z[..m], &z[m..])
}
/// Karatsuba multiplication algorithm with roughly equal input sizes.
///
/// Assumes `y.len() >= x.len()`.
fn karatsuba_mul(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
if y.len() <= KARATSUBA_CUTOFF {
// Bottom-out to long division for small cases.
long_mul(x, y)
} else if x.len() < y.len() / 2 {
karatsuba_uneven_mul(x, y)
} else {
// Do our 3 multiplications.
let m = y.len() / 2;
let (xl, xh) = karatsuba_split(x, m);
let (yl, yh) = karatsuba_split(y, m);
let sumx = add(xl, xh);
let sumy = add(yl, yh);
let z0 = karatsuba_mul(xl, yl);
let mut z1 = karatsuba_mul(&sumx, &sumy);
let z2 = karatsuba_mul(xh, yh);
// Properly scale z1, which is `z1 - z2 - zo`.
isub(&mut z1, &z2);
isub(&mut z1, &z0);
// Create our result, which is equal to, in little-endian order:
// [z0, z1 - z2 - z0, z2]
// z1 must be shifted m digits (2^(32m)) over.
// z2 must be shifted 2*m digits (2^(64m)) over.
let len = z0.len().max(m + z1.len()).max(2 * m + z2.len());
let mut result = z0;
result.reserve_exact(len - result.len());
iadd_impl(&mut result, &z1, m);
iadd_impl(&mut result, &z2, 2 * m);
result
}
}
/// Karatsuba multiplication algorithm where y is substantially larger than x.
///
/// Assumes `y.len() >= x.len()`.
fn karatsuba_uneven_mul(x: &[Limb], mut y: &[Limb]) -> Vec<Limb> {
let mut result = Vec::<Limb>::default();
result.resize(x.len() + y.len(), 0);
// This effectively is like grade-school multiplication between
// two numbers, except we're using splits on `y`, and the intermediate
// step is a Karatsuba multiplication.
let mut start = 0;
while !y.is_empty() {
let m = x.len().min(y.len());
let (yl, yh) = karatsuba_split(y, m);
let prod = karatsuba_mul(x, yl);
iadd_impl(&mut result, &prod, start);
y = yh;
start += m;
}
small::normalize(&mut result);
result
}
/// Forwarder to the proper Karatsuba algorithm.
#[inline]
fn karatsuba_mul_fwd(x: &[Limb], y: &[Limb]) -> Vec<Limb> {
if x.len() < y.len() {
karatsuba_mul(x, y)
} else {
karatsuba_mul(y, x)
}
}
/// MulAssign bigint to bigint.
#[inline]
pub fn imul(x: &mut Vec<Limb>, y: &[Limb]) {
if y.len() == 1 {
small::imul(x, y[0]);
} else {
// We're not really in a condition where using Karatsuba
// multiplication makes sense, so we're just going to use long
// division. ~20% speedup compared to:
// *x = karatsuba_mul_fwd(x, y);
*x = karatsuba_mul_fwd(x, y);
}
}
} // large
// TRAITS
// ------
/// Traits for shared operations for big integers.
///
/// None of these are implemented using normal traits, since these
/// are very expensive operations, and we want to deliberately
/// and explicitly use these functions.
pub(crate) trait Math: Clone + Sized + Default {
// DATA
/// Get access to the underlying data
fn data(&self) -> &Vec<Limb>;
/// Get access to the underlying data
fn data_mut(&mut self) -> &mut Vec<Limb>;
// RELATIVE OPERATIONS
/// Compare self to y.
#[inline]
fn compare(&self, y: &Self) -> cmp::Ordering {
large::compare(self.data(), y.data())
}
// PROPERTIES
/// Get the high 64-bits from the bigint and if there are remaining bits.
#[inline]
fn hi64(&self) -> (u64, bool) {
self.data().as_slice().hi64()
}
/// Calculate the bit-length of the big-integer.
/// Returns usize::max_value() if the value overflows,
/// IE, if `self.data().len() > usize::max_value() / 8`.
#[inline]
fn bit_length(&self) -> usize {
small::bit_length(self.data())
}
// INTEGER CONVERSIONS
/// Create new big integer from u64.
#[inline]
fn from_u64(x: u64) -> Self {
let mut v = Self::default();
let slc = split_u64(x);
v.data_mut().extend_from_slice(&slc);
v.normalize();
v
}
// NORMALIZE
/// Normalize the integer, so any leading zero values are removed.
#[inline]
fn normalize(&mut self) {
small::normalize(self.data_mut());
}
// ADDITION
/// AddAssign small integer.
#[inline]
fn iadd_small(&mut self, y: Limb) {
small::iadd(self.data_mut(), y);
}
// MULTIPLICATION
/// MulAssign small integer.
#[inline]
fn imul_small(&mut self, y: Limb) {
small::imul(self.data_mut(), y);
}
/// Multiply by a power of 2.
#[inline]
fn imul_pow2(&mut self, n: u32) {
self.ishl(n as usize);
}
/// Multiply by a power of 5.
#[inline]
fn imul_pow5(&mut self, n: u32) {
small::imul_pow5(self.data_mut(), n);
}
/// MulAssign by a power of 10.
#[inline]
fn imul_pow10(&mut self, n: u32) {
self.imul_pow5(n);
self.imul_pow2(n);
}
// SHIFTS
/// Shift-left the entire buffer n bits.
#[inline]
fn ishl(&mut self, n: usize) {
small::ishl(self.data_mut(), n);
}
}
|