1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
// Adapted from https://github.com/Alexhuszagh/rust-lexical.
//! Utilities for Rust numbers.
use core::ops;
/// Precalculated values of radix**i for i in range [0, arr.len()-1].
/// Each value can be **exactly** represented as that type.
const F32_POW10: [f32; 11] = [
1.0,
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0,
];
/// Precalculated values of radix**i for i in range [0, arr.len()-1].
/// Each value can be **exactly** represented as that type.
const F64_POW10: [f64; 23] = [
1.0,
10.0,
100.0,
1000.0,
10000.0,
100000.0,
1000000.0,
10000000.0,
100000000.0,
1000000000.0,
10000000000.0,
100000000000.0,
1000000000000.0,
10000000000000.0,
100000000000000.0,
1000000000000000.0,
10000000000000000.0,
100000000000000000.0,
1000000000000000000.0,
10000000000000000000.0,
100000000000000000000.0,
1000000000000000000000.0,
10000000000000000000000.0,
];
/// Type that can be converted to primitive with `as`.
pub trait AsPrimitive: Sized + Copy + PartialOrd {
fn as_u32(self) -> u32;
fn as_u64(self) -> u64;
fn as_u128(self) -> u128;
fn as_usize(self) -> usize;
fn as_f32(self) -> f32;
fn as_f64(self) -> f64;
}
macro_rules! as_primitive_impl {
($($ty:ident)*) => {
$(
impl AsPrimitive for $ty {
#[inline]
fn as_u32(self) -> u32 {
self as u32
}
#[inline]
fn as_u64(self) -> u64 {
self as u64
}
#[inline]
fn as_u128(self) -> u128 {
self as u128
}
#[inline]
fn as_usize(self) -> usize {
self as usize
}
#[inline]
fn as_f32(self) -> f32 {
self as f32
}
#[inline]
fn as_f64(self) -> f64 {
self as f64
}
}
)*
};
}
as_primitive_impl! { u32 u64 u128 usize f32 f64 }
/// An interface for casting between machine scalars.
pub trait AsCast: AsPrimitive {
/// Creates a number from another value that can be converted into
/// a primitive via the `AsPrimitive` trait.
fn as_cast<N: AsPrimitive>(n: N) -> Self;
}
macro_rules! as_cast_impl {
($ty:ident, $method:ident) => {
impl AsCast for $ty {
#[inline]
fn as_cast<N: AsPrimitive>(n: N) -> Self {
n.$method()
}
}
};
}
as_cast_impl!(u32, as_u32);
as_cast_impl!(u64, as_u64);
as_cast_impl!(u128, as_u128);
as_cast_impl!(usize, as_usize);
as_cast_impl!(f32, as_f32);
as_cast_impl!(f64, as_f64);
/// Numerical type trait.
pub trait Number: AsCast + ops::Add<Output = Self> {}
macro_rules! number_impl {
($($ty:ident)*) => {
$(
impl Number for $ty {}
)*
};
}
number_impl! { u32 u64 u128 usize f32 f64 }
/// Defines a trait that supports integral operations.
pub trait Integer: Number + ops::BitAnd<Output = Self> + ops::Shr<i32, Output = Self> {
const ZERO: Self;
}
macro_rules! integer_impl {
($($ty:tt)*) => {
$(
impl Integer for $ty {
const ZERO: Self = 0;
}
)*
};
}
integer_impl! { u32 u64 u128 usize }
/// Type trait for the mantissa type.
pub trait Mantissa: Integer {
/// Mask to extract the high bits from the integer.
const HIMASK: Self;
/// Mask to extract the low bits from the integer.
const LOMASK: Self;
/// Full size of the integer, in bits.
const FULL: i32;
/// Half size of the integer, in bits.
const HALF: i32 = Self::FULL / 2;
}
impl Mantissa for u64 {
const HIMASK: u64 = 0xFFFFFFFF00000000;
const LOMASK: u64 = 0x00000000FFFFFFFF;
const FULL: i32 = 64;
}
/// Get exact exponent limit for radix.
pub trait Float: Number {
/// Unsigned type of the same size.
type Unsigned: Integer;
/// Literal zero.
const ZERO: Self;
/// Maximum number of digits that can contribute in the mantissa.
///
/// We can exactly represent a float in radix `b` from radix 2 if
/// `b` is divisible by 2. This function calculates the exact number of
/// digits required to exactly represent that float.
///
/// According to the "Handbook of Floating Point Arithmetic",
/// for IEEE754, with emin being the min exponent, p2 being the
/// precision, and b being the radix, the number of digits follows as:
///
/// `−emin + p2 + ⌊(emin + 1) log(2, b) − log(1 − 2^(−p2), b)⌋`
///
/// For f32, this follows as:
/// emin = -126
/// p2 = 24
///
/// For f64, this follows as:
/// emin = -1022
/// p2 = 53
///
/// In Python:
/// `-emin + p2 + math.floor((emin+1)*math.log(2, b) - math.log(1-2**(-p2), b))`
///
/// This was used to calculate the maximum number of digits for [2, 36].
const MAX_DIGITS: usize;
// MASKS
/// Bitmask for the sign bit.
const SIGN_MASK: Self::Unsigned;
/// Bitmask for the exponent, including the hidden bit.
const EXPONENT_MASK: Self::Unsigned;
/// Bitmask for the hidden bit in exponent, which is an implicit 1 in the fraction.
const HIDDEN_BIT_MASK: Self::Unsigned;
/// Bitmask for the mantissa (fraction), excluding the hidden bit.
const MANTISSA_MASK: Self::Unsigned;
// PROPERTIES
/// Positive infinity as bits.
const INFINITY_BITS: Self::Unsigned;
/// Positive infinity as bits.
const NEGATIVE_INFINITY_BITS: Self::Unsigned;
/// Size of the significand (mantissa) without hidden bit.
const MANTISSA_SIZE: i32;
/// Bias of the exponet
const EXPONENT_BIAS: i32;
/// Exponent portion of a denormal float.
const DENORMAL_EXPONENT: i32;
/// Maximum exponent value in float.
const MAX_EXPONENT: i32;
// ROUNDING
/// Default number of bits to shift (or 64 - mantissa size - 1).
const DEFAULT_SHIFT: i32;
/// Mask to determine if a full-carry occurred (1 in bit above hidden bit).
const CARRY_MASK: u64;
/// Get min and max exponent limits (exact) from radix.
fn exponent_limit() -> (i32, i32);
/// Get the number of digits that can be shifted from exponent to mantissa.
fn mantissa_limit() -> i32;
// Re-exported methods from std.
fn pow10(self, n: i32) -> Self;
fn from_bits(u: Self::Unsigned) -> Self;
fn to_bits(self) -> Self::Unsigned;
fn is_sign_positive(self) -> bool;
fn is_sign_negative(self) -> bool;
/// Returns true if the float is a denormal.
#[inline]
fn is_denormal(self) -> bool {
self.to_bits() & Self::EXPONENT_MASK == Self::Unsigned::ZERO
}
/// Returns true if the float is a NaN or Infinite.
#[inline]
fn is_special(self) -> bool {
self.to_bits() & Self::EXPONENT_MASK == Self::EXPONENT_MASK
}
/// Returns true if the float is infinite.
#[inline]
fn is_inf(self) -> bool {
self.is_special() && (self.to_bits() & Self::MANTISSA_MASK) == Self::Unsigned::ZERO
}
/// Get exponent component from the float.
#[inline]
fn exponent(self) -> i32 {
if self.is_denormal() {
return Self::DENORMAL_EXPONENT;
}
let bits = self.to_bits();
let biased_e = ((bits & Self::EXPONENT_MASK) >> Self::MANTISSA_SIZE).as_u32();
biased_e as i32 - Self::EXPONENT_BIAS
}
/// Get mantissa (significand) component from float.
#[inline]
fn mantissa(self) -> Self::Unsigned {
let bits = self.to_bits();
let s = bits & Self::MANTISSA_MASK;
if !self.is_denormal() {
s + Self::HIDDEN_BIT_MASK
} else {
s
}
}
/// Get next greater float for a positive float.
/// Value must be >= 0.0 and < INFINITY.
#[inline]
fn next_positive(self) -> Self {
debug_assert!(self.is_sign_positive() && !self.is_inf());
Self::from_bits(self.to_bits() + Self::Unsigned::as_cast(1u32))
}
/// Round a positive number to even.
#[inline]
fn round_positive_even(self) -> Self {
if self.mantissa() & Self::Unsigned::as_cast(1u32) == Self::Unsigned::as_cast(1u32) {
self.next_positive()
} else {
self
}
}
}
impl Float for f32 {
type Unsigned = u32;
const ZERO: f32 = 0.0;
const MAX_DIGITS: usize = 114;
const SIGN_MASK: u32 = 0x80000000;
const EXPONENT_MASK: u32 = 0x7F800000;
const HIDDEN_BIT_MASK: u32 = 0x00800000;
const MANTISSA_MASK: u32 = 0x007FFFFF;
const INFINITY_BITS: u32 = 0x7F800000;
const NEGATIVE_INFINITY_BITS: u32 = Self::INFINITY_BITS | Self::SIGN_MASK;
const MANTISSA_SIZE: i32 = 23;
const EXPONENT_BIAS: i32 = 127 + Self::MANTISSA_SIZE;
const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
const MAX_EXPONENT: i32 = 0xFF - Self::EXPONENT_BIAS;
const DEFAULT_SHIFT: i32 = u64::FULL - f32::MANTISSA_SIZE - 1;
const CARRY_MASK: u64 = 0x1000000;
#[inline]
fn exponent_limit() -> (i32, i32) {
(-10, 10)
}
#[inline]
fn mantissa_limit() -> i32 {
7
}
#[inline]
fn pow10(self, n: i32) -> f32 {
// Check the exponent is within bounds in debug builds.
debug_assert!({
let (min, max) = Self::exponent_limit();
n >= min && n <= max
});
if n > 0 {
self * F32_POW10[n as usize]
} else {
self / F32_POW10[-n as usize]
}
}
#[inline]
fn from_bits(u: u32) -> f32 {
f32::from_bits(u)
}
#[inline]
fn to_bits(self) -> u32 {
f32::to_bits(self)
}
#[inline]
fn is_sign_positive(self) -> bool {
f32::is_sign_positive(self)
}
#[inline]
fn is_sign_negative(self) -> bool {
f32::is_sign_negative(self)
}
}
impl Float for f64 {
type Unsigned = u64;
const ZERO: f64 = 0.0;
const MAX_DIGITS: usize = 769;
const SIGN_MASK: u64 = 0x8000000000000000;
const EXPONENT_MASK: u64 = 0x7FF0000000000000;
const HIDDEN_BIT_MASK: u64 = 0x0010000000000000;
const MANTISSA_MASK: u64 = 0x000FFFFFFFFFFFFF;
const INFINITY_BITS: u64 = 0x7FF0000000000000;
const NEGATIVE_INFINITY_BITS: u64 = Self::INFINITY_BITS | Self::SIGN_MASK;
const MANTISSA_SIZE: i32 = 52;
const EXPONENT_BIAS: i32 = 1023 + Self::MANTISSA_SIZE;
const DENORMAL_EXPONENT: i32 = 1 - Self::EXPONENT_BIAS;
const MAX_EXPONENT: i32 = 0x7FF - Self::EXPONENT_BIAS;
const DEFAULT_SHIFT: i32 = u64::FULL - f64::MANTISSA_SIZE - 1;
const CARRY_MASK: u64 = 0x20000000000000;
#[inline]
fn exponent_limit() -> (i32, i32) {
(-22, 22)
}
#[inline]
fn mantissa_limit() -> i32 {
15
}
#[inline]
fn pow10(self, n: i32) -> f64 {
// Check the exponent is within bounds in debug builds.
debug_assert!({
let (min, max) = Self::exponent_limit();
n >= min && n <= max
});
if n > 0 {
self * F64_POW10[n as usize]
} else {
self / F64_POW10[-n as usize]
}
}
#[inline]
fn from_bits(u: u64) -> f64 {
f64::from_bits(u)
}
#[inline]
fn to_bits(self) -> u64 {
f64::to_bits(self)
}
#[inline]
fn is_sign_positive(self) -> bool {
f64::is_sign_positive(self)
}
#[inline]
fn is_sign_negative(self) -> bool {
f64::is_sign_negative(self)
}
}
|