1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
|
use crate::page::{
slot::{Generation, RefCount},
Addr,
};
use crate::Pack;
use std::{fmt, marker::PhantomData};
/// Configuration parameters which can be overridden to tune the behavior of a slab.
pub trait Config: Sized {
/// The maximum number of threads which can access the slab.
///
/// This value (rounded to a power of two) determines the number of shards
/// in the slab. If a thread is created, accesses the slab, and then terminates,
/// its shard may be reused and thus does not count against the maximum
/// number of threads once the thread has terminated.
const MAX_THREADS: usize = DefaultConfig::MAX_THREADS;
/// The maximum number of pages in each shard in the slab.
///
/// This value, in combination with `INITIAL_PAGE_SIZE`, determines how many
/// bits of each index are used to represent page addresses.
const MAX_PAGES: usize = DefaultConfig::MAX_PAGES;
/// The size of the first page in each shard.
///
/// When a page in a shard has been filled with values, a new page
/// will be allocated that is twice as large as the previous page. Thus, the
/// second page will be twice this size, and the third will be four times
/// this size, and so on.
///
/// Note that page sizes must be powers of two. If this value is not a power
/// of two, it will be rounded to the next power of two.
const INITIAL_PAGE_SIZE: usize = DefaultConfig::INITIAL_PAGE_SIZE;
/// Sets a number of high-order bits in each index which are reserved from
/// user code.
///
/// Note that these bits are taken from the generation counter; if the page
/// address and thread IDs are configured to use a large number of bits,
/// reserving additional bits will decrease the period of the generation
/// counter. These should thus be used relatively sparingly, to ensure that
/// generation counters are able to effectively prevent the ABA problem.
const RESERVED_BITS: usize = 0;
}
pub(crate) trait CfgPrivate: Config {
const USED_BITS: usize = Generation::<Self>::LEN + Generation::<Self>::SHIFT;
const INITIAL_SZ: usize = next_pow2(Self::INITIAL_PAGE_SIZE);
const MAX_SHARDS: usize = next_pow2(Self::MAX_THREADS - 1);
const ADDR_INDEX_SHIFT: usize = Self::INITIAL_SZ.trailing_zeros() as usize + 1;
fn page_size(n: usize) -> usize {
Self::INITIAL_SZ * 2usize.pow(n as _)
}
fn debug() -> DebugConfig<Self> {
DebugConfig { _cfg: PhantomData }
}
fn validate() {
assert!(
Self::INITIAL_SZ.is_power_of_two(),
"invalid Config: {:#?}",
Self::debug(),
);
assert!(
Self::INITIAL_SZ <= Addr::<Self>::BITS,
"invalid Config: {:#?}",
Self::debug()
);
assert!(
Generation::<Self>::BITS >= 3,
"invalid Config: {:#?}\ngeneration counter should be at least 3 bits!",
Self::debug()
);
assert!(
Self::USED_BITS <= WIDTH,
"invalid Config: {:#?}\ntotal number of bits per index is too large to fit in a word!",
Self::debug()
);
assert!(
WIDTH - Self::USED_BITS >= Self::RESERVED_BITS,
"invalid Config: {:#?}\nindices are too large to fit reserved bits!",
Self::debug()
);
assert!(
RefCount::<Self>::MAX > 1,
"invalid config: {:#?}\n maximum concurrent references would be {}",
Self::debug(),
RefCount::<Self>::MAX,
);
}
#[inline(always)]
fn unpack<A: Pack<Self>>(packed: usize) -> A {
A::from_packed(packed)
}
#[inline(always)]
fn unpack_addr(packed: usize) -> Addr<Self> {
Self::unpack(packed)
}
#[inline(always)]
fn unpack_tid(packed: usize) -> crate::Tid<Self> {
Self::unpack(packed)
}
#[inline(always)]
fn unpack_gen(packed: usize) -> Generation<Self> {
Self::unpack(packed)
}
}
impl<C: Config> CfgPrivate for C {}
/// Default slab configuration values.
#[derive(Copy, Clone)]
pub struct DefaultConfig {
_p: (),
}
pub(crate) struct DebugConfig<C: Config> {
_cfg: PhantomData<fn(C)>,
}
pub(crate) const WIDTH: usize = std::mem::size_of::<usize>() * 8;
pub(crate) const fn next_pow2(n: usize) -> usize {
let pow2 = n.count_ones() == 1;
let zeros = n.leading_zeros();
1 << (WIDTH - zeros as usize - pow2 as usize)
}
// === impl DefaultConfig ===
impl Config for DefaultConfig {
const INITIAL_PAGE_SIZE: usize = 32;
#[cfg(target_pointer_width = "64")]
const MAX_THREADS: usize = 4096;
#[cfg(target_pointer_width = "32")]
// TODO(eliza): can we find enough bits to give 32-bit platforms more threads?
const MAX_THREADS: usize = 128;
const MAX_PAGES: usize = WIDTH / 2;
}
impl fmt::Debug for DefaultConfig {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
Self::debug().fmt(f)
}
}
impl<C: Config> fmt::Debug for DebugConfig<C> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct(std::any::type_name::<C>())
.field("initial_page_size", &C::INITIAL_SZ)
.field("max_shards", &C::MAX_SHARDS)
.field("max_pages", &C::MAX_PAGES)
.field("used_bits", &C::USED_BITS)
.field("reserved_bits", &C::RESERVED_BITS)
.field("pointer_width", &WIDTH)
.field("max_concurrent_references", &RefCount::<C>::MAX)
.finish()
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::test_util;
use crate::Slab;
#[test]
#[cfg_attr(loom, ignore)]
#[should_panic]
fn validates_max_refs() {
struct GiantGenConfig;
// Configure the slab with a very large number of bits for the generation
// counter. This will only leave 1 bit to use for the slot reference
// counter, which will fail to validate.
impl Config for GiantGenConfig {
const INITIAL_PAGE_SIZE: usize = 1;
const MAX_THREADS: usize = 1;
const MAX_PAGES: usize = 1;
}
let _slab = Slab::<usize>::new_with_config::<GiantGenConfig>();
}
#[test]
#[cfg_attr(loom, ignore)]
fn big() {
let slab = Slab::new();
for i in 0..10000 {
println!("{:?}", i);
let k = slab.insert(i).expect("insert");
assert_eq!(slab.get(k).expect("get"), i);
}
}
#[test]
#[cfg_attr(loom, ignore)]
fn custom_page_sz() {
let slab = Slab::new_with_config::<test_util::TinyConfig>();
for i in 0..4096 {
println!("{}", i);
let k = slab.insert(i).expect("insert");
assert_eq!(slab.get(k).expect("get"), i);
}
}
}
|