1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
|
//! A lock-free concurrent object pool.
//!
//! See the [`Pool` type's documentation][pool] for details on the object pool API and how
//! it differs from the [`Slab`] API.
//!
//! [pool]: ../struct.Pool.html
//! [`Slab`]: ../struct.Slab.html
use crate::{
cfg::{self, CfgPrivate, DefaultConfig},
clear::Clear,
page, shard,
tid::Tid,
Pack, Shard,
};
use std::{fmt, marker::PhantomData, sync::Arc};
/// A lock-free concurrent object pool.
///
/// Slabs provide pre-allocated storage for many instances of a single type. But, when working with
/// heap allocated objects, the advantages of a slab are lost, as the memory allocated for the
/// object is freed when the object is removed from the slab. With a pool, we can instead reuse
/// this memory for objects being added to the pool in the future, therefore reducing memory
/// fragmentation and avoiding additional allocations.
///
/// This type implements a lock-free concurrent pool, indexed by `usize`s. The items stored in this
/// type need to implement [`Clear`] and `Default`.
///
/// The `Pool` type shares similar semantics to [`Slab`] when it comes to sharing across threads
/// and storing mutable shared data. The biggest difference is there are no [`Slab::insert`] and
/// [`Slab::take`] analouges for the `Pool` type. Instead new items are added to the pool by using
/// the [`Pool::create`] method, and marked for clearing by the [`Pool::clear`] method.
///
/// # Examples
///
/// Add an entry to the pool, returning an index:
/// ```
/// # use sharded_slab::Pool;
/// let pool: Pool<String> = Pool::new();
///
/// let key = pool.create_with(|item| item.push_str("hello world")).unwrap();
/// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
/// ```
///
/// Create a new pooled item, returning a guard that allows mutable access:
/// ```
/// # use sharded_slab::Pool;
/// let pool: Pool<String> = Pool::new();
///
/// let mut guard = pool.create().unwrap();
/// let key = guard.key();
/// guard.push_str("hello world");
///
/// drop(guard); // release the guard, allowing immutable access.
/// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
/// ```
///
/// Pool entries can be cleared by calling [`Pool::clear`]. This marks the entry to
/// be cleared when the guards referencing to it are dropped.
/// ```
/// # use sharded_slab::Pool;
/// let pool: Pool<String> = Pool::new();
///
/// let key = pool.create_with(|item| item.push_str("hello world")).unwrap();
///
/// // Mark this entry to be cleared.
/// pool.clear(key);
///
/// // The cleared entry is no longer available in the pool
/// assert!(pool.get(key).is_none());
/// ```
/// # Configuration
///
/// Both `Pool` and [`Slab`] share the same configuration mechanism. See [crate level documentation][config-doc]
/// for more details.
///
/// [`Slab::take`]: crate::Slab::take
/// [`Slab::insert`]: crate::Slab::insert
/// [`Pool::create`]: Pool::create
/// [`Pool::clear`]: Pool::clear
/// [config-doc]: crate#configuration
/// [`Clear`]: crate::Clear
/// [`Slab`]: crate::Slab
pub struct Pool<T, C = DefaultConfig>
where
T: Clear + Default,
C: cfg::Config,
{
shards: shard::Array<T, C>,
_cfg: PhantomData<C>,
}
/// A guard that allows access to an object in a pool.
///
/// While the guard exists, it indicates to the pool that the item the guard references is
/// currently being accessed. If the item is removed from the pool while the guard exists, the
/// removal will be deferred until all guards are dropped.
pub struct Ref<'a, T, C = DefaultConfig>
where
T: Clear + Default,
C: cfg::Config,
{
inner: page::slot::Guard<T, C>,
shard: &'a Shard<T, C>,
key: usize,
}
/// A guard that allows exclusive mutable access to an object in a pool.
///
/// While the guard exists, it indicates to the pool that the item the guard
/// references is currently being accessed. If the item is removed from the pool
/// while a guard exists, the removal will be deferred until the guard is
/// dropped. The slot cannot be accessed by other threads while it is accessed
/// mutably.
pub struct RefMut<'a, T, C = DefaultConfig>
where
T: Clear + Default,
C: cfg::Config,
{
inner: page::slot::InitGuard<T, C>,
shard: &'a Shard<T, C>,
key: usize,
}
/// An owned guard that allows shared immutable access to an object in a pool.
///
/// While the guard exists, it indicates to the pool that the item the guard references is
/// currently being accessed. If the item is removed from the pool while the guard exists, the
/// removal will be deferred until all guards are dropped.
///
/// Unlike [`Ref`], which borrows the pool, an `OwnedRef` clones the `Arc`
/// around the pool. Therefore, it keeps the pool from being dropped until all
/// such guards have been dropped. This means that an `OwnedRef` may be held for
/// an arbitrary lifetime.
///
///
/// # Examples
///
/// ```
/// # use sharded_slab::Pool;
/// use std::sync::Arc;
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
/// let key = pool.create_with(|item| item.push_str("hello world")).unwrap();
///
/// // Look up the created `Key`, returning an `OwnedRef`.
/// let value = pool.clone().get_owned(key).unwrap();
///
/// // Now, the original `Arc` clone of the pool may be dropped, but the
/// // returned `OwnedRef` can still access the value.
/// assert_eq!(value, String::from("hello world"));
/// ```
///
/// Unlike [`Ref`], an `OwnedRef` may be stored in a struct which must live
/// for the `'static` lifetime:
///
/// ```
/// # use sharded_slab::Pool;
/// use sharded_slab::pool::OwnedRef;
/// use std::sync::Arc;
///
/// pub struct MyStruct {
/// pool_ref: OwnedRef<String>,
/// // ... other fields ...
/// }
///
/// // Suppose this is some arbitrary function which requires a value that
/// // lives for the 'static lifetime...
/// fn function_requiring_static<T: 'static>(t: &T) {
/// // ... do something extremely important and interesting ...
/// }
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
/// let key = pool.create_with(|item| item.push_str("hello world")).unwrap();
///
/// // Look up the created `Key`, returning an `OwnedRef`.
/// let pool_ref = pool.clone().get_owned(key).unwrap();
/// let my_struct = MyStruct {
/// pool_ref,
/// // ...
/// };
///
/// // We can use `my_struct` anywhere where it is required to have the
/// // `'static` lifetime:
/// function_requiring_static(&my_struct);
/// ```
///
/// `OwnedRef`s may be sent between threads:
///
/// ```
/// # use sharded_slab::Pool;
/// use std::{thread, sync::Arc};
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
/// let key = pool.create_with(|item| item.push_str("hello world")).unwrap();
///
/// // Look up the created `Key`, returning an `OwnedRef`.
/// let value = pool.clone().get_owned(key).unwrap();
///
/// thread::spawn(move || {
/// assert_eq!(value, String::from("hello world"));
/// // ...
/// }).join().unwrap();
/// ```
///
/// [`Ref`]: crate::pool::Ref
pub struct OwnedRef<T, C = DefaultConfig>
where
T: Clear + Default,
C: cfg::Config,
{
inner: page::slot::Guard<T, C>,
pool: Arc<Pool<T, C>>,
key: usize,
}
/// An owned guard that allows exclusive, mutable access to an object in a pool.
///
/// An `OwnedRefMut<T>` functions more or less identically to an owned
/// `Box<T>`: it can be passed to functions, stored in structure fields, and
/// borrowed mutably or immutably, and can be owned for arbitrary lifetimes.
/// The difference is that, unlike a `Box<T>`, the memory allocation for the
/// `T` lives in the `Pool`; when an `OwnedRefMut` is created, it may reuse
/// memory that was allocated for a previous pooled object that has been
/// cleared. Additionally, the `OwnedRefMut` may be [downgraded] to an
/// [`OwnedRef`] which may be shared freely, essentially turning the `Box`
/// into an `Arc`.
///
/// This is returned by [`Pool::create_owned`].
///
/// While the guard exists, it indicates to the pool that the item the guard
/// references is currently being accessed. If the item is removed from the pool
/// while the guard exists, theremoval will be deferred until all guards are
/// dropped.
///
/// Unlike [`RefMut`], which borrows the pool, an `OwnedRefMut` clones the `Arc`
/// around the pool. Therefore, it keeps the pool from being dropped until all
/// such guards have been dropped. This means that an `OwnedRefMut` may be held for
/// an arbitrary lifetime.
///
/// # Examples
///
/// ```rust
/// # use sharded_slab::Pool;
/// # use std::thread;
/// use std::sync::Arc;
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// // Create a new pooled item, returning an owned guard that allows mutable
/// // access to the new item.
/// let mut item = pool.clone().create_owned().unwrap();
/// // Return a key that allows indexing the created item once the guard
/// // has been dropped.
/// let key = item.key();
///
/// // Mutate the item.
/// item.push_str("Hello");
/// // Drop the guard, releasing mutable access to the new item.
/// drop(item);
///
/// /// Other threads may now (immutably) access the item using the returned key.
/// thread::spawn(move || {
/// assert_eq!(pool.get(key).unwrap(), String::from("Hello"));
/// }).join().unwrap();
/// ```
///
/// ```rust
/// # use sharded_slab::Pool;
/// use std::sync::Arc;
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// // Create a new item, returning an owned, mutable guard.
/// let mut value = pool.clone().create_owned().unwrap();
///
/// // Now, the original `Arc` clone of the pool may be dropped, but the
/// // returned `OwnedRefMut` can still access the value.
/// drop(pool);
///
/// value.push_str("hello world");
/// assert_eq!(value, String::from("hello world"));
/// ```
///
/// Unlike [`RefMut`], an `OwnedRefMut` may be stored in a struct which must live
/// for the `'static` lifetime:
///
/// ```
/// # use sharded_slab::Pool;
/// use sharded_slab::pool::OwnedRefMut;
/// use std::sync::Arc;
///
/// pub struct MyStruct {
/// pool_ref: OwnedRefMut<String>,
/// // ... other fields ...
/// }
///
/// // Suppose this is some arbitrary function which requires a value that
/// // lives for the 'static lifetime...
/// fn function_requiring_static<T: 'static>(t: &T) {
/// // ... do something extremely important and interesting ...
/// }
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// // Create a new item, returning a mutable owned reference.
/// let pool_ref = pool.clone().create_owned().unwrap();
///
/// let my_struct = MyStruct {
/// pool_ref,
/// // ...
/// };
///
/// // We can use `my_struct` anywhere where it is required to have the
/// // `'static` lifetime:
/// function_requiring_static(&my_struct);
/// ```
///
/// `OwnedRefMut`s may be sent between threads:
///
/// ```
/// # use sharded_slab::Pool;
/// use std::{thread, sync::Arc};
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// let mut value = pool.clone().create_owned().unwrap();
/// let key = value.key();
///
/// thread::spawn(move || {
/// value.push_str("hello world");
/// // ...
/// }).join().unwrap();
///
/// // Once the `OwnedRefMut` has been dropped by the other thread, we may
/// // now access the value immutably on this thread.
///
/// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
/// ```
///
/// Downgrading from a mutable to an immutable reference:
///
/// ```
/// # use sharded_slab::Pool;
/// use std::{thread, sync::Arc};
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// let mut value = pool.clone().create_owned().unwrap();
/// let key = value.key();
/// value.push_str("hello world");
///
/// // Downgrade the mutable owned ref to an immutable owned ref.
/// let value = value.downgrade();
///
/// // Once the `OwnedRefMut` has been downgraded, other threads may
/// // immutably access the pooled value:
/// thread::spawn(move || {
/// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
/// }).join().unwrap();
///
/// // This thread can still access the pooled value through the
/// // immutable owned ref:
/// assert_eq!(value, String::from("hello world"));
/// ```
///
/// [`Pool::create_owned`]: crate::Pool::create_owned
/// [`RefMut`]: crate::pool::RefMut
/// [`OwnedRefMut`]: crate::pool::OwnedRefMut
/// [downgraded]: crate::pool::OwnedRefMut::downgrade
pub struct OwnedRefMut<T, C = DefaultConfig>
where
T: Clear + Default,
C: cfg::Config,
{
inner: page::slot::InitGuard<T, C>,
pool: Arc<Pool<T, C>>,
key: usize,
}
impl<T> Pool<T>
where
T: Clear + Default,
{
/// Returns a new `Pool` with the default configuration parameters.
pub fn new() -> Self {
Self::new_with_config()
}
/// Returns a new `Pool` with the provided configuration parameters.
pub fn new_with_config<C: cfg::Config>() -> Pool<T, C> {
C::validate();
Pool {
shards: shard::Array::new(),
_cfg: PhantomData,
}
}
}
impl<T, C> Pool<T, C>
where
T: Clear + Default,
C: cfg::Config,
{
/// The number of bits in each index which are used by the pool.
///
/// If other data is packed into the `usize` indices returned by
/// [`Pool::create`], user code is free to use any bits higher than the
/// `USED_BITS`-th bit freely.
///
/// This is determined by the [`Config`] type that configures the pool's
/// parameters. By default, all bits are used; this can be changed by
/// overriding the [`Config::RESERVED_BITS`][res] constant.
///
/// [`Config`]: trait.Config.html
/// [res]: trait.Config.html#associatedconstant.RESERVED_BITS
/// [`Slab::insert`]: struct.Slab.html#method.insert
pub const USED_BITS: usize = C::USED_BITS;
/// Creates a new object in the pool, returning an [`RefMut`] guard that
/// may be used to mutate the new object.
///
/// If this function returns `None`, then the shard for the current thread is full and no items
/// can be added until some are removed, or the maximum number of shards has been reached.
///
/// # Examples
/// ```rust
/// # use sharded_slab::Pool;
/// # use std::thread;
/// let pool: Pool<String> = Pool::new();
///
/// // Create a new pooled item, returning a guard that allows mutable
/// // access to the new item.
/// let mut item = pool.create().unwrap();
/// // Return a key that allows indexing the created item once the guard
/// // has been dropped.
/// let key = item.key();
///
/// // Mutate the item.
/// item.push_str("Hello");
/// // Drop the guard, releasing mutable access to the new item.
/// drop(item);
///
/// /// Other threads may now (immutably) access the item using the returned key.
/// thread::spawn(move || {
/// assert_eq!(pool.get(key).unwrap(), String::from("Hello"));
/// }).join().unwrap();
/// ```
///
/// [`RefMut`]: crate::pool::RefMut
pub fn create(&self) -> Option<RefMut<'_, T, C>> {
let (tid, shard) = self.shards.current();
test_println!("pool: create {:?}", tid);
let (key, inner) = shard.init_with(|idx, slot| {
let guard = slot.init()?;
let gen = guard.generation();
Some((gen.pack(idx), guard))
})?;
Some(RefMut {
inner,
key: tid.pack(key),
shard,
})
}
/// Creates a new object in the pool, returning an [`OwnedRefMut`] guard that
/// may be used to mutate the new object.
///
/// If this function returns `None`, then the shard for the current thread
/// is full and no items can be added until some are removed, or the maximum
/// number of shards has been reached.
///
/// Unlike [`create`], which borrows the pool, this method _clones_ the `Arc`
/// around the pool if a value exists for the given key. This means that the
/// returned [`OwnedRefMut`] can be held for an arbitrary lifetime. However,
/// this method requires that the pool itself be wrapped in an `Arc`.
///
/// An `OwnedRefMut<T>` functions more or less identically to an owned
/// `Box<T>`: it can be passed to functions, stored in structure fields, and
/// borrowed mutably or immutably, and can be owned for arbitrary lifetimes.
/// The difference is that, unlike a `Box<T>`, the memory allocation for the
/// `T` lives in the `Pool`; when an `OwnedRefMut` is created, it may reuse
/// memory that was allocated for a previous pooled object that has been
/// cleared. Additionally, the `OwnedRefMut` may be [downgraded] to an
/// [`OwnedRef`] which may be shared freely, essentially turning the `Box`
/// into an `Arc`.
///
/// # Examples
///
/// ```rust
/// # use sharded_slab::Pool;
/// # use std::thread;
/// use std::sync::Arc;
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// // Create a new pooled item, returning an owned guard that allows mutable
/// // access to the new item.
/// let mut item = pool.clone().create_owned().unwrap();
/// // Return a key that allows indexing the created item once the guard
/// // has been dropped.
/// let key = item.key();
///
/// // Mutate the item.
/// item.push_str("Hello");
/// // Drop the guard, releasing mutable access to the new item.
/// drop(item);
///
/// /// Other threads may now (immutably) access the item using the returned key.
/// thread::spawn(move || {
/// assert_eq!(pool.get(key).unwrap(), String::from("Hello"));
/// }).join().unwrap();
/// ```
///
/// ```rust
/// # use sharded_slab::Pool;
/// use std::sync::Arc;
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// // Create a new item, returning an owned, mutable guard.
/// let mut value = pool.clone().create_owned().unwrap();
///
/// // Now, the original `Arc` clone of the pool may be dropped, but the
/// // returned `OwnedRefMut` can still access the value.
/// drop(pool);
///
/// value.push_str("hello world");
/// assert_eq!(value, String::from("hello world"));
/// ```
///
/// Unlike [`RefMut`], an `OwnedRefMut` may be stored in a struct which must live
/// for the `'static` lifetime:
///
/// ```
/// # use sharded_slab::Pool;
/// use sharded_slab::pool::OwnedRefMut;
/// use std::sync::Arc;
///
/// pub struct MyStruct {
/// pool_ref: OwnedRefMut<String>,
/// // ... other fields ...
/// }
///
/// // Suppose this is some arbitrary function which requires a value that
/// // lives for the 'static lifetime...
/// fn function_requiring_static<T: 'static>(t: &T) {
/// // ... do something extremely important and interesting ...
/// }
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// // Create a new item, returning a mutable owned reference.
/// let pool_ref = pool.clone().create_owned().unwrap();
///
/// let my_struct = MyStruct {
/// pool_ref,
/// // ...
/// };
///
/// // We can use `my_struct` anywhere where it is required to have the
/// // `'static` lifetime:
/// function_requiring_static(&my_struct);
/// ```
///
/// `OwnedRefMut`s may be sent between threads:
///
/// ```
/// # use sharded_slab::Pool;
/// use std::{thread, sync::Arc};
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// let mut value = pool.clone().create_owned().unwrap();
/// let key = value.key();
///
/// thread::spawn(move || {
/// value.push_str("hello world");
/// // ...
/// }).join().unwrap();
///
/// // Once the `OwnedRefMut` has been dropped by the other thread, we may
/// // now access the value immutably on this thread.
///
/// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
/// ```
///
/// Downgrading from a mutable to an immutable reference:
///
/// ```
/// # use sharded_slab::Pool;
/// use std::{thread, sync::Arc};
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
///
/// let mut value = pool.clone().create_owned().unwrap();
/// let key = value.key();
/// value.push_str("hello world");
///
/// // Downgrade the mutable owned ref to an immutable owned ref.
/// let value = value.downgrade();
///
/// // Once the `OwnedRefMut` has been downgraded, other threads may
/// // immutably access the pooled value:
/// thread::spawn(move || {
/// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
/// }).join().unwrap();
///
/// // This thread can still access the pooled value through the
/// // immutable owned ref:
/// assert_eq!(value, String::from("hello world"));
/// ```
///
/// [`create`]: Pool::create
/// [`OwnedRef`]: crate::pool::OwnedRef
/// [`RefMut`]: crate::pool::RefMut
/// [`OwnedRefMut`]: crate::pool::OwnedRefMut
/// [downgraded]: crate::pool::OwnedRefMut::downgrade
pub fn create_owned(self: Arc<Self>) -> Option<OwnedRefMut<T, C>> {
let (tid, shard) = self.shards.current();
test_println!("pool: create_owned {:?}", tid);
let (inner, key) = shard.init_with(|idx, slot| {
let inner = slot.init()?;
let gen = inner.generation();
Some((inner, tid.pack(gen.pack(idx))))
})?;
Some(OwnedRefMut {
inner,
pool: self,
key,
})
}
/// Creates a new object in the pool with the provided initializer,
/// returning a key that may be used to access the new object.
///
/// If this function returns `None`, then the shard for the current thread is full and no items
/// can be added until some are removed, or the maximum number of shards has been reached.
///
/// # Examples
/// ```rust
/// # use sharded_slab::Pool;
/// # use std::thread;
/// let pool: Pool<String> = Pool::new();
///
/// // Create a new pooled item, returning its integer key.
/// let key = pool.create_with(|s| s.push_str("Hello")).unwrap();
///
/// /// Other threads may now (immutably) access the item using the key.
/// thread::spawn(move || {
/// assert_eq!(pool.get(key).unwrap(), String::from("Hello"));
/// }).join().unwrap();
/// ```
pub fn create_with(&self, init: impl FnOnce(&mut T)) -> Option<usize> {
test_println!("pool: create_with");
let mut guard = self.create()?;
init(&mut guard);
Some(guard.key())
}
/// Return a borrowed reference to the value associated with the given key.
///
/// If the pool does not contain a value for the given key, `None` is returned instead.
///
/// # Examples
///
/// ```rust
/// # use sharded_slab::Pool;
/// let pool: Pool<String> = Pool::new();
/// let key = pool.create_with(|item| item.push_str("hello world")).unwrap();
///
/// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
/// assert!(pool.get(12345).is_none());
/// ```
pub fn get(&self, key: usize) -> Option<Ref<'_, T, C>> {
let tid = C::unpack_tid(key);
test_println!("pool: get{:?}; current={:?}", tid, Tid::<C>::current());
let shard = self.shards.get(tid.as_usize())?;
let inner = shard.with_slot(key, |slot| slot.get(C::unpack_gen(key)))?;
Some(Ref { inner, shard, key })
}
/// Return an owned reference to the value associated with the given key.
///
/// If the pool does not contain a value for the given key, `None` is
/// returned instead.
///
/// Unlike [`get`], which borrows the pool, this method _clones_ the `Arc`
/// around the pool if a value exists for the given key. This means that the
/// returned [`OwnedRef`] can be held for an arbitrary lifetime. However,
/// this method requires that the pool itself be wrapped in an `Arc`.
///
/// # Examples
///
/// ```rust
/// # use sharded_slab::Pool;
/// use std::sync::Arc;
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
/// let key = pool.create_with(|item| item.push_str("hello world")).unwrap();
///
/// // Look up the created `Key`, returning an `OwnedRef`.
/// let value = pool.clone().get_owned(key).unwrap();
///
/// // Now, the original `Arc` clone of the pool may be dropped, but the
/// // returned `OwnedRef` can still access the value.
/// assert_eq!(value, String::from("hello world"));
/// ```
///
/// Unlike [`Ref`], an `OwnedRef` may be stored in a struct which must live
/// for the `'static` lifetime:
///
/// ```
/// # use sharded_slab::Pool;
/// use sharded_slab::pool::OwnedRef;
/// use std::sync::Arc;
///
/// pub struct MyStruct {
/// pool_ref: OwnedRef<String>,
/// // ... other fields ...
/// }
///
/// // Suppose this is some arbitrary function which requires a value that
/// // lives for the 'static lifetime...
/// fn function_requiring_static<T: 'static>(t: &T) {
/// // ... do something extremely important and interesting ...
/// }
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
/// let key = pool.create_with(|item| item.push_str("hello world")).unwrap();
///
/// // Look up the created `Key`, returning an `OwnedRef`.
/// let pool_ref = pool.clone().get_owned(key).unwrap();
/// let my_struct = MyStruct {
/// pool_ref,
/// // ...
/// };
///
/// // We can use `my_struct` anywhere where it is required to have the
/// // `'static` lifetime:
/// function_requiring_static(&my_struct);
/// ```
///
/// `OwnedRef`s may be sent between threads:
///
/// ```
/// # use sharded_slab::Pool;
/// use std::{thread, sync::Arc};
///
/// let pool: Arc<Pool<String>> = Arc::new(Pool::new());
/// let key = pool.create_with(|item| item.push_str("hello world")).unwrap();
///
/// // Look up the created `Key`, returning an `OwnedRef`.
/// let value = pool.clone().get_owned(key).unwrap();
///
/// thread::spawn(move || {
/// assert_eq!(value, String::from("hello world"));
/// // ...
/// }).join().unwrap();
/// ```
///
/// [`get`]: Pool::get
/// [`OwnedRef`]: crate::pool::OwnedRef
/// [`Ref`]: crate::pool::Ref
pub fn get_owned(self: Arc<Self>, key: usize) -> Option<OwnedRef<T, C>> {
let tid = C::unpack_tid(key);
test_println!("pool: get{:?}; current={:?}", tid, Tid::<C>::current());
let shard = self.shards.get(tid.as_usize())?;
let inner = shard.with_slot(key, |slot| slot.get(C::unpack_gen(key)))?;
Some(OwnedRef {
inner,
pool: self.clone(),
key,
})
}
/// Remove the value using the storage associated with the given key from the pool, returning
/// `true` if the value was removed.
///
/// This method does _not_ block the current thread until the value can be
/// cleared. Instead, if another thread is currently accessing that value, this marks it to be
/// cleared by that thread when it is done accessing that value.
///
/// # Examples
///
/// ```rust
/// # use sharded_slab::Pool;
/// let pool: Pool<String> = Pool::new();
///
/// // Check out an item from the pool.
/// let mut item = pool.create().unwrap();
/// let key = item.key();
/// item.push_str("hello world");
/// drop(item);
///
/// assert_eq!(pool.get(key).unwrap(), String::from("hello world"));
///
/// pool.clear(key);
/// assert!(pool.get(key).is_none());
/// ```
///
/// ```
/// # use sharded_slab::Pool;
/// let pool: Pool<String> = Pool::new();
///
/// let key = pool.create_with(|item| item.push_str("Hello world!")).unwrap();
///
/// // Clearing a key that doesn't exist in the `Pool` will return `false`
/// assert_eq!(pool.clear(key + 69420), false);
///
/// // Clearing a key that does exist returns `true`
/// assert!(pool.clear(key));
///
/// // Clearing a key that has previously been cleared will return `false`
/// assert_eq!(pool.clear(key), false);
/// ```
/// [`clear`]: #method.clear
pub fn clear(&self, key: usize) -> bool {
let tid = C::unpack_tid(key);
let shard = self.shards.get(tid.as_usize());
if tid.is_current() {
shard
.map(|shard| shard.mark_clear_local(key))
.unwrap_or(false)
} else {
shard
.map(|shard| shard.mark_clear_remote(key))
.unwrap_or(false)
}
}
}
unsafe impl<T, C> Send for Pool<T, C>
where
T: Send + Clear + Default,
C: cfg::Config,
{
}
unsafe impl<T, C> Sync for Pool<T, C>
where
T: Sync + Clear + Default,
C: cfg::Config,
{
}
impl<T> Default for Pool<T>
where
T: Clear + Default,
{
fn default() -> Self {
Self::new()
}
}
impl<T, C> fmt::Debug for Pool<T, C>
where
T: fmt::Debug + Clear + Default,
C: cfg::Config,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("Pool")
.field("shards", &self.shards)
.field("config", &C::debug())
.finish()
}
}
// === impl Ref ===
impl<'a, T, C> Ref<'a, T, C>
where
T: Clear + Default,
C: cfg::Config,
{
/// Returns the key used to access this guard
pub fn key(&self) -> usize {
self.key
}
#[inline]
fn value(&self) -> &T {
unsafe {
// Safety: calling `slot::Guard::value` is unsafe, since the `Guard`
// value contains a pointer to the slot that may outlive the slab
// containing that slot. Here, the `Ref` has a borrowed reference to
// the shard containing that slot, which ensures that the slot will
// not be dropped while this `Guard` exists.
self.inner.value()
}
}
}
impl<'a, T, C> std::ops::Deref for Ref<'a, T, C>
where
T: Clear + Default,
C: cfg::Config,
{
type Target = T;
fn deref(&self) -> &Self::Target {
self.value()
}
}
impl<'a, T, C> Drop for Ref<'a, T, C>
where
T: Clear + Default,
C: cfg::Config,
{
fn drop(&mut self) {
test_println!("drop Ref: try clearing data");
let should_clear = unsafe {
// Safety: calling `slot::Guard::release` is unsafe, since the
// `Guard` value contains a pointer to the slot that may outlive the
// slab containing that slot. Here, the `Ref` guard owns a
// borrowed reference to the shard containing that slot, which
// ensures that the slot will not be dropped while this `Ref`
// exists.
self.inner.release()
};
if should_clear {
self.shard.clear_after_release(self.key);
}
}
}
impl<'a, T, C> fmt::Debug for Ref<'a, T, C>
where
T: fmt::Debug + Clear + Default,
C: cfg::Config,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.value(), f)
}
}
impl<'a, T, C> PartialEq<T> for Ref<'a, T, C>
where
T: PartialEq<T> + Clear + Default,
C: cfg::Config,
{
fn eq(&self, other: &T) -> bool {
*self.value() == *other
}
}
// === impl GuardMut ===
impl<'a, T, C: cfg::Config> RefMut<'a, T, C>
where
T: Clear + Default,
C: cfg::Config,
{
/// Returns the key used to access the guard.
pub fn key(&self) -> usize {
self.key
}
/// Downgrades the mutable guard to an immutable guard, allowing access to
/// the pooled value from other threads.
///
/// ## Examples
///
/// ```
/// # use sharded_slab::Pool;
/// # use std::{sync::Arc, thread};
/// let pool = Arc::new(Pool::<String>::new());
///
/// let mut guard_mut = pool.clone().create_owned().unwrap();
/// let key = guard_mut.key();
/// guard_mut.push_str("Hello");
///
/// // The pooled string is currently borrowed mutably, so other threads
/// // may not access it.
/// let pool2 = pool.clone();
/// thread::spawn(move || {
/// assert!(pool2.get(key).is_none())
/// }).join().unwrap();
///
/// // Downgrade the guard to an immutable reference.
/// let guard = guard_mut.downgrade();
///
/// // Now, other threads may also access the pooled value.
/// let pool2 = pool.clone();
/// thread::spawn(move || {
/// let guard = pool2.get(key)
/// .expect("the item may now be referenced by other threads");
/// assert_eq!(guard, String::from("Hello"));
/// }).join().unwrap();
///
/// // We can still access the value immutably through the downgraded guard.
/// assert_eq!(guard, String::from("Hello"));
/// ```
pub fn downgrade(mut self) -> Ref<'a, T, C> {
let inner = unsafe { self.inner.downgrade() };
Ref {
inner,
shard: self.shard,
key: self.key,
}
}
#[inline]
fn value(&self) -> &T {
unsafe {
// Safety: we are holding a reference to the shard which keeps the
// pointed slot alive. The returned reference will not outlive
// `self`.
self.inner.value()
}
}
}
impl<'a, T, C: cfg::Config> std::ops::Deref for RefMut<'a, T, C>
where
T: Clear + Default,
C: cfg::Config,
{
type Target = T;
fn deref(&self) -> &Self::Target {
self.value()
}
}
impl<'a, T, C> std::ops::DerefMut for RefMut<'a, T, C>
where
T: Clear + Default,
C: cfg::Config,
{
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe {
// Safety: we are holding a reference to the shard which keeps the
// pointed slot alive. The returned reference will not outlive `self`.
self.inner.value_mut()
}
}
}
impl<'a, T, C> Drop for RefMut<'a, T, C>
where
T: Clear + Default,
C: cfg::Config,
{
fn drop(&mut self) {
test_println!(" -> drop RefMut: try clearing data");
let should_clear = unsafe {
// Safety: we are holding a reference to the shard which keeps the
// pointed slot alive. The returned reference will not outlive `self`.
self.inner.release()
};
if should_clear {
self.shard.clear_after_release(self.key);
}
}
}
impl<'a, T, C> fmt::Debug for RefMut<'a, T, C>
where
T: fmt::Debug + Clear + Default,
C: cfg::Config,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.value(), f)
}
}
impl<'a, T, C> PartialEq<T> for RefMut<'a, T, C>
where
T: PartialEq<T> + Clear + Default,
C: cfg::Config,
{
fn eq(&self, other: &T) -> bool {
self.value().eq(other)
}
}
// === impl OwnedRef ===
impl<T, C> OwnedRef<T, C>
where
T: Clear + Default,
C: cfg::Config,
{
/// Returns the key used to access this guard
pub fn key(&self) -> usize {
self.key
}
#[inline]
fn value(&self) -> &T {
unsafe {
// Safety: calling `slot::Guard::value` is unsafe, since the `Guard`
// value contains a pointer to the slot that may outlive the slab
// containing that slot. Here, the `Ref` has a borrowed reference to
// the shard containing that slot, which ensures that the slot will
// not be dropped while this `Guard` exists.
self.inner.value()
}
}
}
impl<T, C> std::ops::Deref for OwnedRef<T, C>
where
T: Clear + Default,
C: cfg::Config,
{
type Target = T;
fn deref(&self) -> &Self::Target {
self.value()
}
}
impl<T, C> Drop for OwnedRef<T, C>
where
T: Clear + Default,
C: cfg::Config,
{
fn drop(&mut self) {
test_println!("drop OwnedRef: try clearing data");
let should_clear = unsafe {
// Safety: calling `slot::Guard::release` is unsafe, since the
// `Guard` value contains a pointer to the slot that may outlive the
// slab containing that slot. Here, the `OwnedRef` owns an `Arc`
// clone of the pool, which keeps it alive as long as the `OwnedRef`
// exists.
self.inner.release()
};
if should_clear {
let shard_idx = Tid::<C>::from_packed(self.key);
test_println!("-> shard={:?}", shard_idx);
if let Some(shard) = self.pool.shards.get(shard_idx.as_usize()) {
shard.clear_after_release(self.key);
} else {
test_println!("-> shard={:?} does not exist! THIS IS A BUG", shard_idx);
debug_assert!(std::thread::panicking(), "[internal error] tried to drop an `OwnedRef` to a slot on a shard that never existed!");
}
}
}
}
impl<T, C> fmt::Debug for OwnedRef<T, C>
where
T: fmt::Debug + Clear + Default,
C: cfg::Config,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.value(), f)
}
}
impl<T, C> PartialEq<T> for OwnedRef<T, C>
where
T: PartialEq<T> + Clear + Default,
C: cfg::Config,
{
fn eq(&self, other: &T) -> bool {
*self.value() == *other
}
}
unsafe impl<T, C> Sync for OwnedRef<T, C>
where
T: Sync + Clear + Default,
C: cfg::Config,
{
}
unsafe impl<T, C> Send for OwnedRef<T, C>
where
T: Sync + Clear + Default,
C: cfg::Config,
{
}
// === impl OwnedRefMut ===
impl<T, C> OwnedRefMut<T, C>
where
T: Clear + Default,
C: cfg::Config,
{
/// Returns the key used to access this guard
pub fn key(&self) -> usize {
self.key
}
/// Downgrades the owned mutable guard to an owned immutable guard, allowing
/// access to the pooled value from other threads.
///
/// ## Examples
///
/// ```
/// # use sharded_slab::Pool;
/// # use std::{sync::Arc, thread};
/// let pool = Arc::new(Pool::<String>::new());
///
/// let mut guard_mut = pool.clone().create_owned().unwrap();
/// let key = guard_mut.key();
/// guard_mut.push_str("Hello");
///
/// // The pooled string is currently borrowed mutably, so other threads
/// // may not access it.
/// let pool2 = pool.clone();
/// thread::spawn(move || {
/// assert!(pool2.get(key).is_none())
/// }).join().unwrap();
///
/// // Downgrade the guard to an immutable reference.
/// let guard = guard_mut.downgrade();
///
/// // Now, other threads may also access the pooled value.
/// let pool2 = pool.clone();
/// thread::spawn(move || {
/// let guard = pool2.get(key)
/// .expect("the item may now be referenced by other threads");
/// assert_eq!(guard, String::from("Hello"));
/// }).join().unwrap();
///
/// // We can still access the value immutably through the downgraded guard.
/// assert_eq!(guard, String::from("Hello"));
/// ```
pub fn downgrade(mut self) -> OwnedRef<T, C> {
let inner = unsafe { self.inner.downgrade() };
OwnedRef {
inner,
pool: self.pool.clone(),
key: self.key,
}
}
fn shard(&self) -> Option<&Shard<T, C>> {
let shard_idx = Tid::<C>::from_packed(self.key);
test_println!("-> shard={:?}", shard_idx);
self.pool.shards.get(shard_idx.as_usize())
}
#[inline]
fn value(&self) -> &T {
unsafe {
// Safety: calling `slot::InitGuard::value` is unsafe, since the `Guard`
// value contains a pointer to the slot that may outlive the slab
// containing that slot. Here, the `OwnedRefMut` has an `Arc` clone of
// the shard containing that slot, which ensures that the slot will
// not be dropped while this `Guard` exists.
self.inner.value()
}
}
}
impl<T, C> std::ops::Deref for OwnedRefMut<T, C>
where
T: Clear + Default,
C: cfg::Config,
{
type Target = T;
fn deref(&self) -> &Self::Target {
self.value()
}
}
impl<T, C> std::ops::DerefMut for OwnedRefMut<T, C>
where
T: Clear + Default,
C: cfg::Config,
{
fn deref_mut(&mut self) -> &mut Self::Target {
unsafe {
// Safety: calling `slot::InitGuard::value_mut` is unsafe, since the
// `Guard` value contains a pointer to the slot that may outlive
// the slab containing that slot. Here, the `OwnedRefMut` has an
// `Arc` clone of the shard containing that slot, which ensures that
// the slot will not be dropped while this `Guard` exists.
self.inner.value_mut()
}
}
}
impl<T, C> Drop for OwnedRefMut<T, C>
where
T: Clear + Default,
C: cfg::Config,
{
fn drop(&mut self) {
test_println!("drop OwnedRefMut: try clearing data");
let should_clear = unsafe {
// Safety: calling `slot::Guard::release` is unsafe, since the
// `Guard` value contains a pointer to the slot that may outlive the
// slab containing that slot. Here, the `OwnedRefMut` owns an `Arc`
// clone of the pool, which keeps it alive as long as the
// `OwnedRefMut` exists.
self.inner.release()
};
if should_clear {
if let Some(shard) = self.shard() {
shard.clear_after_release(self.key);
} else {
test_println!("-> shard does not exist! THIS IS A BUG");
debug_assert!(std::thread::panicking(), "[internal error] tried to drop an `OwnedRefMut` to a slot on a shard that never existed!");
}
}
}
}
impl<T, C> fmt::Debug for OwnedRefMut<T, C>
where
T: fmt::Debug + Clear + Default,
C: cfg::Config,
{
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Debug::fmt(self.value(), f)
}
}
impl<T, C> PartialEq<T> for OwnedRefMut<T, C>
where
T: PartialEq<T> + Clear + Default,
C: cfg::Config,
{
fn eq(&self, other: &T) -> bool {
*self.value() == *other
}
}
unsafe impl<T, C> Sync for OwnedRefMut<T, C>
where
T: Sync + Clear + Default,
C: cfg::Config,
{
}
unsafe impl<T, C> Send for OwnedRefMut<T, C>
where
T: Sync + Clear + Default,
C: cfg::Config,
{
}
|