1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
// Take a look at the license at the top of the repository in the LICENSE file.
use crate::{DiskUsage, Gid, Pid, ProcessExt, ProcessRefreshKind, ProcessStatus, Signal, Uid};
use std::fmt;
use std::path::{Path, PathBuf};
use libc::kill;
use super::utils::{get_sys_value_str, WrapMap};
#[doc(hidden)]
impl From<libc::c_char> for ProcessStatus {
fn from(status: libc::c_char) -> ProcessStatus {
match status {
libc::SIDL => ProcessStatus::Idle,
libc::SRUN => ProcessStatus::Run,
libc::SSLEEP => ProcessStatus::Sleep,
libc::SSTOP => ProcessStatus::Stop,
libc::SZOMB => ProcessStatus::Zombie,
libc::SWAIT => ProcessStatus::Dead,
libc::SLOCK => ProcessStatus::LockBlocked,
x => ProcessStatus::Unknown(x as _),
}
}
}
impl fmt::Display for ProcessStatus {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.write_str(match *self {
ProcessStatus::Idle => "Idle",
ProcessStatus::Run => "Runnable",
ProcessStatus::Sleep => "Sleeping",
ProcessStatus::Stop => "Stopped",
ProcessStatus::Zombie => "Zombie",
ProcessStatus::Dead => "Dead",
ProcessStatus::LockBlocked => "LockBlocked",
_ => "Unknown",
})
}
}
#[doc = include_str!("../../md_doc/process.md")]
pub struct Process {
pub(crate) name: String,
pub(crate) cmd: Vec<String>,
pub(crate) exe: PathBuf,
pub(crate) pid: Pid,
parent: Option<Pid>,
pub(crate) environ: Vec<String>,
pub(crate) cwd: PathBuf,
pub(crate) root: PathBuf,
pub(crate) memory: u64,
pub(crate) virtual_memory: u64,
pub(crate) updated: bool,
cpu_usage: f32,
start_time: u64,
run_time: u64,
pub(crate) status: ProcessStatus,
user_id: Uid,
effective_user_id: Uid,
group_id: Gid,
effective_group_id: Gid,
read_bytes: u64,
old_read_bytes: u64,
written_bytes: u64,
old_written_bytes: u64,
}
impl ProcessExt for Process {
fn kill_with(&self, signal: Signal) -> Option<bool> {
let c_signal = super::system::convert_signal(signal)?;
unsafe { Some(libc::kill(self.pid.0, c_signal) == 0) }
}
fn name(&self) -> &str {
&self.name
}
fn cmd(&self) -> &[String] {
&self.cmd
}
fn exe(&self) -> &Path {
self.exe.as_path()
}
fn pid(&self) -> Pid {
self.pid
}
fn environ(&self) -> &[String] {
&self.environ
}
fn cwd(&self) -> &Path {
self.cwd.as_path()
}
fn root(&self) -> &Path {
self.root.as_path()
}
fn memory(&self) -> u64 {
self.memory
}
fn virtual_memory(&self) -> u64 {
self.virtual_memory
}
fn parent(&self) -> Option<Pid> {
self.parent
}
fn status(&self) -> ProcessStatus {
self.status
}
fn start_time(&self) -> u64 {
self.start_time
}
fn run_time(&self) -> u64 {
self.run_time
}
fn cpu_usage(&self) -> f32 {
self.cpu_usage
}
fn disk_usage(&self) -> DiskUsage {
DiskUsage {
written_bytes: self.written_bytes.saturating_sub(self.old_written_bytes),
total_written_bytes: self.written_bytes,
read_bytes: self.read_bytes.saturating_sub(self.old_read_bytes),
total_read_bytes: self.read_bytes,
}
}
fn user_id(&self) -> Option<&Uid> {
Some(&self.user_id)
}
fn effective_user_id(&self) -> Option<&Uid> {
Some(&self.effective_user_id)
}
fn group_id(&self) -> Option<Gid> {
Some(self.group_id)
}
fn effective_group_id(&self) -> Option<Gid> {
Some(self.effective_group_id)
}
fn wait(&self) {
let mut status = 0;
// attempt waiting
unsafe {
if retry_eintr!(libc::waitpid(self.pid.0, &mut status, 0)) < 0 {
// attempt failed (non-child process) so loop until process ends
let duration = std::time::Duration::from_millis(10);
while kill(self.pid.0, 0) == 0 {
std::thread::sleep(duration);
}
}
}
}
fn session_id(&self) -> Option<Pid> {
unsafe {
let session_id = libc::getsid(self.pid.0);
if session_id < 0 {
None
} else {
Some(Pid(session_id))
}
}
}
}
pub(crate) unsafe fn get_process_data(
kproc: &libc::kinfo_proc,
wrap: &WrapMap,
page_size: isize,
fscale: f32,
now: u64,
refresh_kind: ProcessRefreshKind,
) -> Result<Option<Process>, ()> {
if kproc.ki_pid != 1 && (kproc.ki_flag as libc::c_int & libc::P_SYSTEM) != 0 {
// We filter out the kernel threads.
return Err(());
}
// We now get the values needed for both new and existing process.
let cpu_usage = if refresh_kind.cpu() {
(100 * kproc.ki_pctcpu) as f32 / fscale
} else {
0.
};
// Processes can be reparented apparently?
let parent = if kproc.ki_ppid != 0 {
Some(Pid(kproc.ki_ppid))
} else {
None
};
let status = ProcessStatus::from(kproc.ki_stat);
// from FreeBSD source /src/usr.bin/top/machine.c
let virtual_memory = kproc.ki_size as _;
let memory = (kproc.ki_rssize as u64).saturating_mul(page_size as _);
// FIXME: This is to get the "real" run time (in micro-seconds).
// let run_time = (kproc.ki_runtime + 5_000) / 10_000;
let start_time = kproc.ki_start.tv_sec as u64;
if let Some(proc_) = (*wrap.0.get()).get_mut(&Pid(kproc.ki_pid)) {
proc_.updated = true;
// If the `start_time` we just got is different from the one stored, it means it's not the
// same process.
if proc_.start_time == start_time {
proc_.cpu_usage = cpu_usage;
proc_.parent = parent;
proc_.status = status;
proc_.virtual_memory = virtual_memory;
proc_.memory = memory;
proc_.run_time = now.saturating_sub(proc_.start_time);
if refresh_kind.disk_usage() {
proc_.old_read_bytes = proc_.read_bytes;
proc_.read_bytes = kproc.ki_rusage.ru_inblock as _;
proc_.old_written_bytes = proc_.written_bytes;
proc_.written_bytes = kproc.ki_rusage.ru_oublock as _;
}
return Ok(None);
}
}
// This is a new process, we need to get more information!
let mut buffer = [0; libc::PATH_MAX as usize + 1];
let exe = get_sys_value_str(
&[
libc::CTL_KERN,
libc::KERN_PROC,
libc::KERN_PROC_PATHNAME,
kproc.ki_pid,
],
&mut buffer,
)
.unwrap_or_default();
// For some reason, it can return completely invalid path like `p\u{5}`. So we need to use
// procstat to get around this problem.
// let cwd = get_sys_value_str(
// &[
// libc::CTL_KERN,
// libc::KERN_PROC,
// libc::KERN_PROC_CWD,
// kproc.ki_pid,
// ],
// &mut buffer,
// )
// .map(|s| s.into())
// .unwrap_or_else(PathBuf::new);
Ok(Some(Process {
pid: Pid(kproc.ki_pid),
parent,
user_id: Uid(kproc.ki_ruid),
effective_user_id: Uid(kproc.ki_uid),
group_id: Gid(kproc.ki_rgid),
effective_group_id: Gid(kproc.ki_svgid),
start_time,
run_time: now.saturating_sub(start_time),
cpu_usage,
virtual_memory,
memory,
// procstat_getfiles
cwd: PathBuf::new(),
exe: exe.into(),
// kvm_getargv isn't thread-safe so we get it in the main thread.
name: String::new(),
// kvm_getargv isn't thread-safe so we get it in the main thread.
cmd: Vec::new(),
// kvm_getargv isn't thread-safe so we get it in the main thread.
root: PathBuf::new(),
// kvm_getenvv isn't thread-safe so we get it in the main thread.
environ: Vec::new(),
status,
read_bytes: kproc.ki_rusage.ru_inblock as _,
old_read_bytes: 0,
written_bytes: kproc.ki_rusage.ru_oublock as _,
old_written_bytes: 0,
updated: false,
}))
}
|