1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
use super::ReadBuf;
use std::io;
use std::ops::DerefMut;
use std::pin::Pin;
use std::task::{Context, Poll};
/// Reads bytes from a source.
///
/// This trait is analogous to the [`std::io::Read`] trait, but integrates with
/// the asynchronous task system. In particular, the [`poll_read`] method,
/// unlike [`Read::read`], will automatically queue the current task for wakeup
/// and return if data is not yet available, rather than blocking the calling
/// thread.
///
/// Specifically, this means that the `poll_read` function will return one of
/// the following:
///
/// * `Poll::Ready(Ok(()))` means that data was immediately read and placed into
/// the output buffer. The amount of data read can be determined by the
/// increase in the length of the slice returned by `ReadBuf::filled`. If the
/// difference is 0, EOF has been reached.
///
/// * `Poll::Pending` means that no data was read into the buffer
/// provided. The I/O object is not currently readable but may become readable
/// in the future. Most importantly, **the current future's task is scheduled
/// to get unparked when the object is readable**. This means that like
/// `Future::poll` you'll receive a notification when the I/O object is
/// readable again.
///
/// * `Poll::Ready(Err(e))` for other errors are standard I/O errors coming from the
/// underlying object.
///
/// This trait importantly means that the `read` method only works in the
/// context of a future's task. The object may panic if used outside of a task.
///
/// Utilities for working with `AsyncRead` values are provided by
/// [`AsyncReadExt`].
///
/// [`poll_read`]: AsyncRead::poll_read
/// [`std::io::Read`]: std::io::Read
/// [`Read::read`]: std::io::Read::read
/// [`AsyncReadExt`]: crate::io::AsyncReadExt
pub trait AsyncRead {
/// Attempts to read from the `AsyncRead` into `buf`.
///
/// On success, returns `Poll::Ready(Ok(()))` and places data in the
/// unfilled portion of `buf`. If no data was read (`buf.filled().len()` is
/// unchanged), it implies that EOF has been reached.
///
/// If no data is available for reading, the method returns `Poll::Pending`
/// and arranges for the current task (via `cx.waker()`) to receive a
/// notification when the object becomes readable or is closed.
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>>;
}
macro_rules! deref_async_read {
() => {
fn poll_read(
mut self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
Pin::new(&mut **self).poll_read(cx, buf)
}
};
}
impl<T: ?Sized + AsyncRead + Unpin> AsyncRead for Box<T> {
deref_async_read!();
}
impl<T: ?Sized + AsyncRead + Unpin> AsyncRead for &mut T {
deref_async_read!();
}
impl<P> AsyncRead for Pin<P>
where
P: DerefMut + Unpin,
P::Target: AsyncRead,
{
fn poll_read(
self: Pin<&mut Self>,
cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
self.get_mut().as_mut().poll_read(cx, buf)
}
}
impl AsyncRead for &[u8] {
fn poll_read(
mut self: Pin<&mut Self>,
_cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
let amt = std::cmp::min(self.len(), buf.remaining());
let (a, b) = self.split_at(amt);
buf.put_slice(a);
*self = b;
Poll::Ready(Ok(()))
}
}
impl<T: AsRef<[u8]> + Unpin> AsyncRead for io::Cursor<T> {
fn poll_read(
mut self: Pin<&mut Self>,
_cx: &mut Context<'_>,
buf: &mut ReadBuf<'_>,
) -> Poll<io::Result<()>> {
let pos = self.position();
let slice: &[u8] = (*self).get_ref().as_ref();
// The position could technically be out of bounds, so don't panic...
if pos > slice.len() as u64 {
return Poll::Ready(Ok(()));
}
let start = pos as usize;
let amt = std::cmp::min(slice.len() - start, buf.remaining());
// Add won't overflow because of pos check above.
let end = start + amt;
buf.put_slice(&slice[start..end]);
self.set_position(end as u64);
Poll::Ready(Ok(()))
}
}
|