1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
#![cfg_attr(not(all(feature = "rt", feature = "net")), allow(dead_code))]
mod registration;
pub(crate) use registration::Registration;
mod scheduled_io;
use scheduled_io::ScheduledIo;
mod metrics;
use crate::io::interest::Interest;
use crate::io::ready::Ready;
use crate::runtime::driver;
use crate::util::slab::{self, Slab};
use crate::{loom::sync::RwLock, util::bit};
use metrics::IoDriverMetrics;
use std::fmt;
use std::io;
use std::time::Duration;
/// I/O driver, backed by Mio.
pub(crate) struct Driver {
/// Tracks the number of times `turn` is called. It is safe for this to wrap
/// as it is mostly used to determine when to call `compact()`.
tick: u8,
/// True when an event with the signal token is received
signal_ready: bool,
/// Reuse the `mio::Events` value across calls to poll.
events: mio::Events,
/// Primary slab handle containing the state for each resource registered
/// with this driver.
resources: Slab<ScheduledIo>,
/// The system event queue.
poll: mio::Poll,
}
/// A reference to an I/O driver.
pub(crate) struct Handle {
/// Registers I/O resources.
registry: mio::Registry,
/// Allocates `ScheduledIo` handles when creating new resources.
io_dispatch: RwLock<IoDispatcher>,
/// Used to wake up the reactor from a call to `turn`.
/// Not supported on Wasi due to lack of threading support.
#[cfg(not(tokio_wasi))]
waker: mio::Waker,
pub(crate) metrics: IoDriverMetrics,
}
#[derive(Debug)]
pub(crate) struct ReadyEvent {
tick: u8,
pub(crate) ready: Ready,
is_shutdown: bool,
}
cfg_net_unix!(
impl ReadyEvent {
pub(crate) fn with_ready(&self, ready: Ready) -> Self {
Self {
ready,
tick: self.tick,
is_shutdown: self.is_shutdown,
}
}
}
);
struct IoDispatcher {
allocator: slab::Allocator<ScheduledIo>,
is_shutdown: bool,
}
#[derive(Debug, Eq, PartialEq, Clone, Copy)]
enum Direction {
Read,
Write,
}
enum Tick {
Set(u8),
Clear(u8),
}
// TODO: Don't use a fake token. Instead, reserve a slot entry for the wakeup
// token.
const TOKEN_WAKEUP: mio::Token = mio::Token(1 << 31);
const TOKEN_SIGNAL: mio::Token = mio::Token(1 + (1 << 31));
const ADDRESS: bit::Pack = bit::Pack::least_significant(24);
// Packs the generation value in the `readiness` field.
//
// The generation prevents a race condition where a slab slot is reused for a
// new socket while the I/O driver is about to apply a readiness event. The
// generation value is checked when setting new readiness. If the generation do
// not match, then the readiness event is discarded.
const GENERATION: bit::Pack = ADDRESS.then(7);
fn _assert_kinds() {
fn _assert<T: Send + Sync>() {}
_assert::<Handle>();
}
// ===== impl Driver =====
impl Driver {
/// Creates a new event loop, returning any error that happened during the
/// creation.
pub(crate) fn new(nevents: usize) -> io::Result<(Driver, Handle)> {
let poll = mio::Poll::new()?;
#[cfg(not(tokio_wasi))]
let waker = mio::Waker::new(poll.registry(), TOKEN_WAKEUP)?;
let registry = poll.registry().try_clone()?;
let slab = Slab::new();
let allocator = slab.allocator();
let driver = Driver {
tick: 0,
signal_ready: false,
events: mio::Events::with_capacity(nevents),
poll,
resources: slab,
};
let handle = Handle {
registry,
io_dispatch: RwLock::new(IoDispatcher::new(allocator)),
#[cfg(not(tokio_wasi))]
waker,
metrics: IoDriverMetrics::default(),
};
Ok((driver, handle))
}
pub(crate) fn park(&mut self, rt_handle: &driver::Handle) {
let handle = rt_handle.io();
self.turn(handle, None);
}
pub(crate) fn park_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
let handle = rt_handle.io();
self.turn(handle, Some(duration));
}
pub(crate) fn shutdown(&mut self, rt_handle: &driver::Handle) {
let handle = rt_handle.io();
if handle.shutdown() {
self.resources.for_each(|io| {
// If a task is waiting on the I/O resource, notify it that the
// runtime is being shutdown. And shutdown will clear all wakers.
io.shutdown();
});
}
}
fn turn(&mut self, handle: &Handle, max_wait: Option<Duration>) {
// How often to call `compact()` on the resource slab
const COMPACT_INTERVAL: u8 = 255;
self.tick = self.tick.wrapping_add(1);
if self.tick == COMPACT_INTERVAL {
self.resources.compact()
}
let events = &mut self.events;
// Block waiting for an event to happen, peeling out how many events
// happened.
match self.poll.poll(events, max_wait) {
Ok(_) => {}
Err(ref e) if e.kind() == io::ErrorKind::Interrupted => {}
#[cfg(tokio_wasi)]
Err(e) if e.kind() == io::ErrorKind::InvalidInput => {
// In case of wasm32_wasi this error happens, when trying to poll without subscriptions
// just return from the park, as there would be nothing, which wakes us up.
}
Err(e) => panic!("unexpected error when polling the I/O driver: {:?}", e),
}
// Process all the events that came in, dispatching appropriately
let mut ready_count = 0;
for event in events.iter() {
let token = event.token();
if token == TOKEN_WAKEUP {
// Nothing to do, the event is used to unblock the I/O driver
} else if token == TOKEN_SIGNAL {
self.signal_ready = true;
} else {
Self::dispatch(
&mut self.resources,
self.tick,
token,
Ready::from_mio(event),
);
ready_count += 1;
}
}
handle.metrics.incr_ready_count_by(ready_count);
}
fn dispatch(resources: &mut Slab<ScheduledIo>, tick: u8, token: mio::Token, ready: Ready) {
let addr = slab::Address::from_usize(ADDRESS.unpack(token.0));
let io = match resources.get(addr) {
Some(io) => io,
None => return,
};
let res = io.set_readiness(Some(token.0), Tick::Set(tick), |curr| curr | ready);
if res.is_err() {
// token no longer valid!
return;
}
io.wake(ready);
}
}
impl fmt::Debug for Driver {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Driver")
}
}
impl Handle {
/// Forces a reactor blocked in a call to `turn` to wakeup, or otherwise
/// makes the next call to `turn` return immediately.
///
/// This method is intended to be used in situations where a notification
/// needs to otherwise be sent to the main reactor. If the reactor is
/// currently blocked inside of `turn` then it will wake up and soon return
/// after this method has been called. If the reactor is not currently
/// blocked in `turn`, then the next call to `turn` will not block and
/// return immediately.
pub(crate) fn unpark(&self) {
#[cfg(not(tokio_wasi))]
self.waker.wake().expect("failed to wake I/O driver");
}
/// Registers an I/O resource with the reactor for a given `mio::Ready` state.
///
/// The registration token is returned.
pub(super) fn add_source(
&self,
source: &mut impl mio::event::Source,
interest: Interest,
) -> io::Result<slab::Ref<ScheduledIo>> {
let (address, shared) = self.allocate()?;
let token = GENERATION.pack(shared.generation(), ADDRESS.pack(address.as_usize(), 0));
self.registry
.register(source, mio::Token(token), interest.to_mio())?;
self.metrics.incr_fd_count();
Ok(shared)
}
/// Deregisters an I/O resource from the reactor.
pub(super) fn deregister_source(&self, source: &mut impl mio::event::Source) -> io::Result<()> {
self.registry.deregister(source)?;
self.metrics.dec_fd_count();
Ok(())
}
/// shutdown the dispatcher.
fn shutdown(&self) -> bool {
let mut io = self.io_dispatch.write().unwrap();
if io.is_shutdown {
return false;
}
io.is_shutdown = true;
true
}
fn allocate(&self) -> io::Result<(slab::Address, slab::Ref<ScheduledIo>)> {
let io = self.io_dispatch.read().unwrap();
if io.is_shutdown {
return Err(io::Error::new(
io::ErrorKind::Other,
crate::util::error::RUNTIME_SHUTTING_DOWN_ERROR,
));
}
io.allocator.allocate().ok_or_else(|| {
io::Error::new(
io::ErrorKind::Other,
"reactor at max registered I/O resources",
)
})
}
}
impl fmt::Debug for Handle {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "Handle")
}
}
// ===== impl IoDispatcher =====
impl IoDispatcher {
fn new(allocator: slab::Allocator<ScheduledIo>) -> Self {
Self {
allocator,
is_shutdown: false,
}
}
}
impl Direction {
pub(super) fn mask(self) -> Ready {
match self {
Direction::Read => Ready::READABLE | Ready::READ_CLOSED,
Direction::Write => Ready::WRITABLE | Ready::WRITE_CLOSED,
}
}
}
// Signal handling
cfg_signal_internal_and_unix! {
impl Handle {
pub(crate) fn register_signal_receiver(&self, receiver: &mut mio::net::UnixStream) -> io::Result<()> {
self.registry.register(receiver, TOKEN_SIGNAL, mio::Interest::READABLE)?;
Ok(())
}
}
impl Driver {
pub(crate) fn consume_signal_ready(&mut self) -> bool {
let ret = self.signal_ready;
self.signal_ready = false;
ret
}
}
}
|