1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
use crate::task::JoinHandle;
use std::future::Future;
cfg_rt! {
/// Spawns a new asynchronous task, returning a
/// [`JoinHandle`](super::JoinHandle) for it.
///
/// The provided future will start running in the background immediately
/// when `spawn` is called, even if you don't await the returned
/// `JoinHandle`.
///
/// Spawning a task enables the task to execute concurrently to other tasks. The
/// spawned task may execute on the current thread, or it may be sent to a
/// different thread to be executed. The specifics depend on the current
/// [`Runtime`](crate::runtime::Runtime) configuration.
///
/// It is guaranteed that spawn will not synchronously poll the task being spawned.
/// This means that calling spawn while holding a lock does not pose a risk of
/// deadlocking with the spawned task.
///
/// There is no guarantee that a spawned task will execute to completion.
/// When a runtime is shutdown, all outstanding tasks are dropped,
/// regardless of the lifecycle of that task.
///
/// This function must be called from the context of a Tokio runtime. Tasks running on
/// the Tokio runtime are always inside its context, but you can also enter the context
/// using the [`Runtime::enter`](crate::runtime::Runtime::enter()) method.
///
/// # Examples
///
/// In this example, a server is started and `spawn` is used to start a new task
/// that processes each received connection.
///
/// ```no_run
/// use tokio::net::{TcpListener, TcpStream};
///
/// use std::io;
///
/// async fn process(socket: TcpStream) {
/// // ...
/// # drop(socket);
/// }
///
/// #[tokio::main]
/// async fn main() -> io::Result<()> {
/// let listener = TcpListener::bind("127.0.0.1:8080").await?;
///
/// loop {
/// let (socket, _) = listener.accept().await?;
///
/// tokio::spawn(async move {
/// // Process each socket concurrently.
/// process(socket).await
/// });
/// }
/// }
/// ```
///
/// To run multiple tasks in parallel and receive their results, join
/// handles can be stored in a vector.
/// ```
/// # #[tokio::main(flavor = "current_thread")] async fn main() {
/// async fn my_background_op(id: i32) -> String {
/// let s = format!("Starting background task {}.", id);
/// println!("{}", s);
/// s
/// }
///
/// let ops = vec![1, 2, 3];
/// let mut tasks = Vec::with_capacity(ops.len());
/// for op in ops {
/// // This call will make them start running in the background
/// // immediately.
/// tasks.push(tokio::spawn(my_background_op(op)));
/// }
///
/// let mut outputs = Vec::with_capacity(tasks.len());
/// for task in tasks {
/// outputs.push(task.await.unwrap());
/// }
/// println!("{:?}", outputs);
/// # }
/// ```
/// This example pushes the tasks to `outputs` in the order they were
/// started in. If you do not care about the ordering of the outputs, then
/// you can also use a [`JoinSet`].
///
/// [`JoinSet`]: struct@crate::task::JoinSet
///
/// # Panics
///
/// Panics if called from **outside** of the Tokio runtime.
///
/// # Using `!Send` values from a task
///
/// The task supplied to `spawn` must implement `Send`. However, it is
/// possible to **use** `!Send` values from the task as long as they only
/// exist between calls to `.await`.
///
/// For example, this will work:
///
/// ```
/// use tokio::task;
///
/// use std::rc::Rc;
///
/// fn use_rc(rc: Rc<()>) {
/// // Do stuff w/ rc
/// # drop(rc);
/// }
///
/// #[tokio::main]
/// async fn main() {
/// tokio::spawn(async {
/// // Force the `Rc` to stay in a scope with no `.await`
/// {
/// let rc = Rc::new(());
/// use_rc(rc.clone());
/// }
///
/// task::yield_now().await;
/// }).await.unwrap();
/// }
/// ```
///
/// This will **not** work:
///
/// ```compile_fail
/// use tokio::task;
///
/// use std::rc::Rc;
///
/// fn use_rc(rc: Rc<()>) {
/// // Do stuff w/ rc
/// # drop(rc);
/// }
///
/// #[tokio::main]
/// async fn main() {
/// tokio::spawn(async {
/// let rc = Rc::new(());
///
/// task::yield_now().await;
///
/// use_rc(rc.clone());
/// }).await.unwrap();
/// }
/// ```
///
/// Holding on to a `!Send` value across calls to `.await` will result in
/// an unfriendly compile error message similar to:
///
/// ```text
/// `[... some type ...]` cannot be sent between threads safely
/// ```
///
/// or:
///
/// ```text
/// error[E0391]: cycle detected when processing `main`
/// ```
#[track_caller]
pub fn spawn<T>(future: T) -> JoinHandle<T::Output>
where
T: Future + Send + 'static,
T::Output: Send + 'static,
{
// preventing stack overflows on debug mode, by quickly sending the
// task to the heap.
if cfg!(debug_assertions) && std::mem::size_of::<T>() > 2048 {
spawn_inner(Box::pin(future), None)
} else {
spawn_inner(future, None)
}
}
#[track_caller]
pub(super) fn spawn_inner<T>(future: T, name: Option<&str>) -> JoinHandle<T::Output>
where
T: Future + Send + 'static,
T::Output: Send + 'static,
{
use crate::runtime::{context, task};
#[cfg(all(
tokio_unstable,
tokio_taskdump,
feature = "rt",
target_os = "linux",
any(
target_arch = "aarch64",
target_arch = "x86",
target_arch = "x86_64"
)
))]
let future = task::trace::Trace::root(future);
let id = task::Id::next();
let task = crate::util::trace::task(future, "task", name, id.as_u64());
match context::with_current(|handle| handle.spawn(task, id)) {
Ok(join_handle) => join_handle,
Err(e) => panic!("{}", e),
}
}
}
|