summaryrefslogtreecommitdiffstats
path: root/vendor/tokio/tests/sync_mutex.rs
blob: 1e35a558c1dbfe7a1b469967afe2b64276c6f678 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#![warn(rust_2018_idioms)]
#![cfg(feature = "sync")]

#[cfg(tokio_wasm_not_wasi)]
use wasm_bindgen_test::wasm_bindgen_test as test;
#[cfg(tokio_wasm_not_wasi)]
use wasm_bindgen_test::wasm_bindgen_test as maybe_tokio_test;

#[cfg(not(tokio_wasm_not_wasi))]
use tokio::test as maybe_tokio_test;

use tokio::sync::Mutex;
use tokio_test::task::spawn;
use tokio_test::{assert_pending, assert_ready};

use std::sync::Arc;

#[test]
fn straight_execution() {
    let l = Mutex::new(100);

    {
        let mut t = spawn(l.lock());
        let mut g = assert_ready!(t.poll());
        assert_eq!(&*g, &100);
        *g = 99;
    }
    {
        let mut t = spawn(l.lock());
        let mut g = assert_ready!(t.poll());
        assert_eq!(&*g, &99);
        *g = 98;
    }
    {
        let mut t = spawn(l.lock());
        let g = assert_ready!(t.poll());
        assert_eq!(&*g, &98);
    }
}

#[test]
fn readiness() {
    let l1 = Arc::new(Mutex::new(100));
    let l2 = Arc::clone(&l1);
    let mut t1 = spawn(l1.lock());
    let mut t2 = spawn(l2.lock());

    let g = assert_ready!(t1.poll());

    // We can't now acquire the lease since it's already held in g
    assert_pending!(t2.poll());

    // But once g unlocks, we can acquire it
    drop(g);
    assert!(t2.is_woken());
    let _t2 = assert_ready!(t2.poll());
}

/*
#[test]
#[ignore]
fn lock() {
    let mut lock = Mutex::new(false);

    let mut lock2 = lock.clone();
    std::thread::spawn(move || {
        let l = lock2.lock();
        pin_mut!(l);

        let mut task = MockTask::new();
        let mut g = assert_ready!(task.poll(&mut l));
        std::thread::sleep(std::time::Duration::from_millis(500));
        *g = true;
        drop(g);
    });

    std::thread::sleep(std::time::Duration::from_millis(50));
    let mut task = MockTask::new();
    let l = lock.lock();
    pin_mut!(l);

    assert_pending!(task.poll(&mut l));

    std::thread::sleep(std::time::Duration::from_millis(500));
    assert!(task.is_woken());
    let result = assert_ready!(task.poll(&mut l));
    assert!(*result);
}
*/

/// Ensure a mutex is unlocked if a future holding the lock
/// is aborted prematurely.
#[tokio::test]
#[cfg(feature = "full")]
async fn aborted_future_1() {
    use std::time::Duration;
    use tokio::time::{interval, timeout};

    let m1: Arc<Mutex<usize>> = Arc::new(Mutex::new(0));
    {
        let m2 = m1.clone();
        // Try to lock mutex in a future that is aborted prematurely
        timeout(Duration::from_millis(1u64), async move {
            let iv = interval(Duration::from_millis(1000));
            tokio::pin!(iv);
            let _g = m2.lock().await;
            iv.as_mut().tick().await;
            iv.as_mut().tick().await;
        })
        .await
        .unwrap_err();
    }
    // This should succeed as there is no lock left for the mutex.
    timeout(Duration::from_millis(1u64), async move {
        let _g = m1.lock().await;
    })
    .await
    .expect("Mutex is locked");
}

/// This test is similar to `aborted_future_1` but this time the
/// aborted future is waiting for the lock.
#[tokio::test]
#[cfg(feature = "full")]
async fn aborted_future_2() {
    use std::time::Duration;
    use tokio::time::timeout;

    let m1: Arc<Mutex<usize>> = Arc::new(Mutex::new(0));
    {
        // Lock mutex
        let _lock = m1.lock().await;
        {
            let m2 = m1.clone();
            // Try to lock mutex in a future that is aborted prematurely
            timeout(Duration::from_millis(1u64), async move {
                let _g = m2.lock().await;
            })
            .await
            .unwrap_err();
        }
    }
    // This should succeed as there is no lock left for the mutex.
    timeout(Duration::from_millis(1u64), async move {
        let _g = m1.lock().await;
    })
    .await
    .expect("Mutex is locked");
}

#[test]
fn try_lock() {
    let m: Mutex<usize> = Mutex::new(0);
    {
        let g1 = m.try_lock();
        assert!(g1.is_ok());
        let g2 = m.try_lock();
        assert!(g2.is_err());
    }
    let g3 = m.try_lock();
    assert!(g3.is_ok());
}

#[maybe_tokio_test]
async fn debug_format() {
    let s = "debug";
    let m = Mutex::new(s.to_string());
    assert_eq!(format!("{:?}", s), format!("{:?}", m.lock().await));
}

#[maybe_tokio_test]
async fn mutex_debug() {
    let s = "data";
    let m = Mutex::new(s.to_string());
    assert_eq!(format!("{:?}", m), r#"Mutex { data: "data" }"#);
    let _guard = m.lock().await;
    assert_eq!(format!("{:?}", m), r#"Mutex { data: <locked> }"#)
}