1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
|
use crate::UnalignedBuffer;
use core::{cmp, hash::Hasher};
#[cfg(feature = "serialize")]
use serde::{Deserialize, Serialize};
const CHUNK_SIZE: usize = 16;
pub const PRIME_1: u32 = 2_654_435_761;
pub const PRIME_2: u32 = 2_246_822_519;
pub const PRIME_3: u32 = 3_266_489_917;
pub const PRIME_4: u32 = 668_265_263;
pub const PRIME_5: u32 = 374_761_393;
#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
#[derive(Copy, Clone, PartialEq)]
struct XxCore {
v1: u32,
v2: u32,
v3: u32,
v4: u32,
}
/// Calculates the 32-bit hash. Care should be taken when using this
/// hash.
///
/// Although this struct implements `Hasher`, it only calculates a
/// 32-bit number, leaving the upper bits as 0. This means it is
/// unlikely to be correct to use this in places like a `HashMap`.
#[cfg_attr(feature = "serialize", derive(Deserialize, Serialize))]
#[derive(Debug, Copy, Clone, PartialEq)]
pub struct XxHash32 {
total_len: u64,
seed: u32,
core: XxCore,
#[cfg_attr(feature = "serialize", serde(flatten))]
buffer: Buffer,
}
impl XxCore {
fn with_seed(seed: u32) -> XxCore {
XxCore {
v1: seed.wrapping_add(PRIME_1).wrapping_add(PRIME_2),
v2: seed.wrapping_add(PRIME_2),
v3: seed,
v4: seed.wrapping_sub(PRIME_1),
}
}
#[inline(always)]
fn ingest_chunks<I>(&mut self, values: I)
where
I: IntoIterator<Item = [u32; 4]>,
{
#[inline(always)]
fn ingest_one_number(mut current_value: u32, mut value: u32) -> u32 {
value = value.wrapping_mul(PRIME_2);
current_value = current_value.wrapping_add(value);
current_value = current_value.rotate_left(13);
current_value.wrapping_mul(PRIME_1)
}
// By drawing these out, we can avoid going back and forth to
// memory. It only really helps for large files, when we need
// to iterate multiple times here.
let mut v1 = self.v1;
let mut v2 = self.v2;
let mut v3 = self.v3;
let mut v4 = self.v4;
for [n1, n2, n3, n4] in values {
v1 = ingest_one_number(v1, n1.to_le());
v2 = ingest_one_number(v2, n2.to_le());
v3 = ingest_one_number(v3, n3.to_le());
v4 = ingest_one_number(v4, n4.to_le());
}
self.v1 = v1;
self.v2 = v2;
self.v3 = v3;
self.v4 = v4;
}
#[inline(always)]
fn finish(&self) -> u32 {
// The original code pulls out local vars for v[1234]
// here. Performance tests did not show that to be effective
// here, presumably because this method is not called in a
// tight loop.
#[allow(unknown_lints, clippy::needless_late_init)] // keeping things parallel
let mut hash;
hash = self.v1.rotate_left(1);
hash = hash.wrapping_add(self.v2.rotate_left(7));
hash = hash.wrapping_add(self.v3.rotate_left(12));
hash = hash.wrapping_add(self.v4.rotate_left(18));
hash
}
}
impl core::fmt::Debug for XxCore {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> Result<(), core::fmt::Error> {
write!(
f,
"XxCore {{ {:016x} {:016x} {:016x} {:016x} }}",
self.v1, self.v2, self.v3, self.v4
)
}
}
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
#[derive(Debug, Copy, Clone, Default, PartialEq)]
#[repr(align(4))]
#[cfg_attr(feature = "serialize", serde(transparent))]
struct AlignToU32<T>(T);
#[cfg_attr(feature = "serialize", derive(Serialize, Deserialize))]
#[derive(Debug, Copy, Clone, Default, PartialEq)]
struct Buffer {
#[cfg_attr(feature = "serialize", serde(rename = "buffer"))]
data: AlignToU32<[u8; CHUNK_SIZE]>,
#[cfg_attr(feature = "serialize", serde(rename = "buffer_usage"))]
len: usize,
}
impl Buffer {
fn data(&self) -> &[u8] {
&self.data.0[..self.len]
}
/// Consumes as much of the parameter as it can, returning the unused part.
fn consume<'a>(&mut self, data: &'a [u8]) -> &'a [u8] {
let to_use = cmp::min(self.available(), data.len());
let (data, remaining) = data.split_at(to_use);
self.data.0[self.len..][..to_use].copy_from_slice(data);
self.len += to_use;
remaining
}
fn set_data(&mut self, data: &[u8]) {
debug_assert!(self.is_empty());
debug_assert!(data.len() < CHUNK_SIZE);
self.data.0[..data.len()].copy_from_slice(data);
self.len = data.len();
}
fn available(&self) -> usize {
CHUNK_SIZE - self.len
}
fn is_empty(&self) -> bool {
self.len == 0
}
fn is_full(&self) -> bool {
self.len == CHUNK_SIZE
}
}
impl XxHash32 {
/// Constructs the hash with an initial seed
pub fn with_seed(seed: u32) -> XxHash32 {
XxHash32 {
total_len: 0,
seed,
core: XxCore::with_seed(seed),
buffer: Buffer::default(),
}
}
pub(crate) fn write(&mut self, bytes: &[u8]) {
let remaining = self.maybe_consume_bytes(bytes);
if !remaining.is_empty() {
let mut remaining = UnalignedBuffer::new(remaining);
self.core.ingest_chunks(&mut remaining);
self.buffer.set_data(remaining.remaining());
}
self.total_len += bytes.len() as u64;
}
// Consume bytes and try to make `self.buffer` empty.
// If there are not enough bytes, `self.buffer` can be non-empty, and this
// function returns an empty slice.
fn maybe_consume_bytes<'a>(&mut self, data: &'a [u8]) -> &'a [u8] {
if self.buffer.is_empty() {
data
} else {
let data = self.buffer.consume(data);
if self.buffer.is_full() {
let mut u32s = UnalignedBuffer::new(self.buffer.data());
self.core.ingest_chunks(&mut u32s);
debug_assert!(u32s.remaining().is_empty());
self.buffer.len = 0;
}
data
}
}
pub(crate) fn finish(&self) -> u32 {
let mut hash = if self.total_len >= CHUNK_SIZE as u64 {
// We have processed at least one full chunk
self.core.finish()
} else {
self.seed.wrapping_add(PRIME_5)
};
hash = hash.wrapping_add(self.total_len as u32);
let mut buffered_u32s = UnalignedBuffer::<u32>::new(self.buffer.data());
for buffered_u32 in &mut buffered_u32s {
let k1 = buffered_u32.to_le().wrapping_mul(PRIME_3);
hash = hash.wrapping_add(k1);
hash = hash.rotate_left(17);
hash = hash.wrapping_mul(PRIME_4);
}
let buffered_u8s = buffered_u32s.remaining();
for &buffered_u8 in buffered_u8s {
let k1 = u32::from(buffered_u8).wrapping_mul(PRIME_5);
hash = hash.wrapping_add(k1);
hash = hash.rotate_left(11);
hash = hash.wrapping_mul(PRIME_1);
}
// The final intermixing
hash ^= hash >> 15;
hash = hash.wrapping_mul(PRIME_2);
hash ^= hash >> 13;
hash = hash.wrapping_mul(PRIME_3);
hash ^= hash >> 16;
hash
}
pub fn seed(&self) -> u32 {
self.seed
}
/// Get the total number of bytes hashed, truncated to 32 bits.
/// For the full 64-bit byte count, use `total_len_64`
pub fn total_len(&self) -> u32 {
self.total_len as u32
}
/// Get the total number of bytes hashed.
pub fn total_len_64(&self) -> u64 {
self.total_len
}
}
impl Default for XxHash32 {
fn default() -> XxHash32 {
XxHash32::with_seed(0)
}
}
impl Hasher for XxHash32 {
fn finish(&self) -> u64 {
u64::from(XxHash32::finish(self))
}
fn write(&mut self, bytes: &[u8]) {
XxHash32::write(self, bytes)
}
}
#[cfg(feature = "std")]
pub use crate::std_support::thirty_two::RandomXxHashBuilder32;
#[cfg(test)]
mod test {
use super::{RandomXxHashBuilder32, XxHash32};
use std::collections::HashMap;
use std::hash::BuildHasherDefault;
use std::prelude::v1::*;
#[test]
fn ingesting_byte_by_byte_is_equivalent_to_large_chunks() {
let bytes: Vec<_> = (0..32).map(|_| 0).collect();
let mut byte_by_byte = XxHash32::with_seed(0);
for byte in bytes.chunks(1) {
byte_by_byte.write(byte);
}
let mut one_chunk = XxHash32::with_seed(0);
one_chunk.write(&bytes);
assert_eq!(byte_by_byte.core, one_chunk.core);
}
#[test]
fn hash_of_nothing_matches_c_implementation() {
let mut hasher = XxHash32::with_seed(0);
hasher.write(&[]);
assert_eq!(hasher.finish(), 0x02cc_5d05);
}
#[test]
fn hash_of_single_byte_matches_c_implementation() {
let mut hasher = XxHash32::with_seed(0);
hasher.write(&[42]);
assert_eq!(hasher.finish(), 0xe0fe_705f);
}
#[test]
fn hash_of_multiple_bytes_matches_c_implementation() {
let mut hasher = XxHash32::with_seed(0);
hasher.write(b"Hello, world!\0");
assert_eq!(hasher.finish(), 0x9e5e_7e93);
}
#[test]
fn hash_of_multiple_chunks_matches_c_implementation() {
let bytes: Vec<_> = (0..100).collect();
let mut hasher = XxHash32::with_seed(0);
hasher.write(&bytes);
assert_eq!(hasher.finish(), 0x7f89_ba44);
}
#[test]
fn hash_with_different_seed_matches_c_implementation() {
let mut hasher = XxHash32::with_seed(0x42c9_1977);
hasher.write(&[]);
assert_eq!(hasher.finish(), 0xd6bf_8459);
}
#[test]
fn hash_with_different_seed_and_multiple_chunks_matches_c_implementation() {
let bytes: Vec<_> = (0..100).collect();
let mut hasher = XxHash32::with_seed(0x42c9_1977);
hasher.write(&bytes);
assert_eq!(hasher.finish(), 0x6d2f_6c17);
}
#[test]
fn can_be_used_in_a_hashmap_with_a_default_seed() {
let mut hash: HashMap<_, _, BuildHasherDefault<XxHash32>> = Default::default();
hash.insert(42, "the answer");
assert_eq!(hash.get(&42), Some(&"the answer"));
}
#[test]
fn can_be_used_in_a_hashmap_with_a_random_seed() {
let mut hash: HashMap<_, _, RandomXxHashBuilder32> = Default::default();
hash.insert(42, "the answer");
assert_eq!(hash.get(&42), Some(&"the answer"));
}
#[cfg(feature = "serialize")]
type TestResult<T = ()> = Result<T, Box<dyn std::error::Error>>;
#[cfg(feature = "serialize")]
#[test]
fn test_serialization_cycle() -> TestResult {
let mut hasher = XxHash32::with_seed(0);
hasher.write(b"Hello, world!\0");
hasher.finish();
let serialized = serde_json::to_string(&hasher)?;
let unserialized: XxHash32 = serde_json::from_str(&serialized)?;
assert_eq!(hasher, unserialized);
Ok(())
}
#[cfg(feature = "serialize")]
#[test]
fn test_serialization_stability() -> TestResult {
let mut hasher = XxHash32::with_seed(0);
hasher.write(b"Hello, world!\0");
hasher.finish();
let serialized = r#"{
"total_len": 14,
"seed": 0,
"core": {
"v1": 606290984,
"v2": 2246822519,
"v3": 0,
"v4": 1640531535
},
"buffer": [
72, 101, 108, 108, 111, 44, 32, 119,
111, 114, 108, 100, 33, 0, 0, 0
],
"buffer_usage": 14
}"#;
let unserialized: XxHash32 = serde_json::from_str(serialized).unwrap();
assert_eq!(hasher, unserialized);
Ok(())
}
// This test validates wraparound/truncation behavior for very large inputs
// of a 32-bit hash, but runs very slowly in the normal "cargo test"
// build config since it hashes 4.3GB of data. It runs reasonably quick
// under "cargo test --release".
/*
#[test]
fn len_overflow_32bit() {
// Hash 4.3 billion (4_300_000_000) bytes, which overflows a u32.
let bytes200: Vec<u8> = (0..200).collect();
let mut hasher = XxHash32::with_seed(0);
for _ in 0..(4_300_000_000u64 / 200u64) {
hasher.write(&bytes200);
}
assert_eq!(hasher.total_len_64(), 0x0000_0001_004c_cb00);
assert_eq!(hasher.total_len(), 0x004c_cb00);
// retult is tested against the C implementation
assert_eq!(hasher.finish(), 0x1522_4ca7);
}
*/
}
|