1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
//! Simple hand-written ungrammar parser.
use std::collections::HashMap;
use crate::{
error::{bail, format_err, Result},
lexer::{self, TokenKind},
Grammar, Node, NodeData, Rule, Token, TokenData,
};
macro_rules! bail {
($loc:expr, $($tt:tt)*) => {{
let err = $crate::error::format_err!($($tt)*)
.with_location($loc);
return Err(err);
}};
}
pub(crate) fn parse(tokens: Vec<lexer::Token>) -> Result<Grammar> {
let mut p = Parser::new(tokens);
while !p.is_eof() {
node(&mut p)?;
}
p.finish()
}
#[derive(Default)]
struct Parser {
grammar: Grammar,
tokens: Vec<lexer::Token>,
node_table: HashMap<String, Node>,
token_table: HashMap<String, Token>,
}
const DUMMY_RULE: Rule = Rule::Node(Node(!0));
impl Parser {
fn new(mut tokens: Vec<lexer::Token>) -> Parser {
tokens.reverse();
Parser {
tokens,
..Parser::default()
}
}
fn peek(&self) -> Option<&lexer::Token> {
self.peek_n(0)
}
fn peek_n(&self, n: usize) -> Option<&lexer::Token> {
self.tokens.iter().nth_back(n)
}
fn bump(&mut self) -> Result<lexer::Token> {
self.tokens
.pop()
.ok_or_else(|| format_err!("unexpected EOF"))
}
fn expect(&mut self, kind: TokenKind, what: &str) -> Result<()> {
let token = self.bump()?;
if token.kind != kind {
bail!(token.loc, "unexpected token, expected `{}`", what);
}
Ok(())
}
fn is_eof(&self) -> bool {
self.tokens.is_empty()
}
fn finish(self) -> Result<Grammar> {
for node_data in &self.grammar.nodes {
if matches!(node_data.rule, DUMMY_RULE) {
crate::error::bail!("Undefined node: {}", node_data.name)
}
}
Ok(self.grammar)
}
fn intern_node(&mut self, name: String) -> Node {
let len = self.node_table.len();
let grammar = &mut self.grammar;
*self.node_table.entry(name.clone()).or_insert_with(|| {
grammar.nodes.push(NodeData {
name,
rule: DUMMY_RULE,
});
Node(len)
})
}
fn intern_token(&mut self, name: String) -> Token {
let len = self.token_table.len();
let grammar = &mut self.grammar;
*self.token_table.entry(name.clone()).or_insert_with(|| {
grammar.tokens.push(TokenData { name });
Token(len)
})
}
}
fn node(p: &mut Parser) -> Result<()> {
let token = p.bump()?;
let node = match token.kind {
TokenKind::Node(it) => p.intern_node(it),
_ => bail!(token.loc, "expected ident"),
};
p.expect(TokenKind::Eq, "=")?;
if !matches!(p.grammar[node].rule, DUMMY_RULE) {
bail!(token.loc, "duplicate rule: `{}`", p.grammar[node].name)
}
let rule = rule(p)?;
p.grammar.nodes[node.0].rule = rule;
Ok(())
}
fn rule(p: &mut Parser) -> Result<Rule> {
if let Some(lexer::Token { kind: TokenKind::Pipe, loc }) = p.peek() {
bail!(
*loc,
"The first element in a sequence of productions or alternatives \
must not have a leading pipe (`|`)"
);
}
let lhs = seq_rule(p)?;
let mut alt = vec![lhs];
while let Some(token) = p.peek() {
if token.kind != TokenKind::Pipe {
break;
}
p.bump()?;
let rule = seq_rule(p)?;
alt.push(rule)
}
let res = if alt.len() == 1 {
alt.pop().unwrap()
} else {
Rule::Alt(alt)
};
Ok(res)
}
fn seq_rule(p: &mut Parser) -> Result<Rule> {
let lhs = atom_rule(p)?;
let mut seq = vec![lhs];
while let Some(rule) = opt_atom_rule(p)? {
seq.push(rule)
}
let res = if seq.len() == 1 {
seq.pop().unwrap()
} else {
Rule::Seq(seq)
};
Ok(res)
}
fn atom_rule(p: &mut Parser) -> Result<Rule> {
match opt_atom_rule(p)? {
Some(it) => Ok(it),
None => {
let token = p.bump()?;
bail!(token.loc, "unexpected token")
}
}
}
fn opt_atom_rule(p: &mut Parser) -> Result<Option<Rule>> {
let token = match p.peek() {
Some(it) => it,
None => return Ok(None),
};
let mut res = match &token.kind {
TokenKind::Node(name) => {
if let Some(lookahead) = p.peek_n(1) {
match lookahead.kind {
TokenKind::Eq => return Ok(None),
TokenKind::Colon => {
let label = name.clone();
p.bump()?;
p.bump()?;
let rule = atom_rule(p)?;
let res = Rule::Labeled {
label,
rule: Box::new(rule),
};
return Ok(Some(res));
}
_ => (),
}
}
match p.peek_n(1) {
Some(token) if token.kind == TokenKind::Eq => return Ok(None),
_ => (),
}
let name = name.clone();
p.bump()?;
let node = p.intern_node(name);
Rule::Node(node)
}
TokenKind::Token(name) => {
let name = name.clone();
p.bump()?;
let token = p.intern_token(name);
Rule::Token(token)
}
TokenKind::LParen => {
p.bump()?;
let rule = rule(p)?;
p.expect(TokenKind::RParen, ")")?;
rule
}
_ => return Ok(None),
};
if let Some(token) = p.peek() {
match &token.kind {
TokenKind::QMark => {
p.bump()?;
res = Rule::Opt(Box::new(res));
}
TokenKind::Star => {
p.bump()?;
res = Rule::Rep(Box::new(res));
}
_ => (),
}
}
Ok(Some(res))
}
|