summaryrefslogtreecommitdiffstats
path: root/vendor/unicode-normalization/scripts/unicode.py
blob: d32d9128afbbbd9ad2a945d8cebaf856d833da54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
#!/usr/bin/env python
#
# Copyright 2011-2018 The Rust Project Developers. See the COPYRIGHT
# file at the top-level directory of this distribution and at
# http://rust-lang.org/COPYRIGHT.
#
# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
# option. This file may not be copied, modified, or distributed
# except according to those terms.

# This script uses the following Unicode tables:
# - DerivedNormalizationProps.txt
# - NormalizationTest.txt
# - UnicodeData.txt
# - StandardizedVariants.txt
#
# Since this should not require frequent updates, we just store this
# out-of-line and check the tables.rs and normalization_tests.rs files into git.
import collections
import urllib.request

UNICODE_VERSION = "15.0.0"
UCD_URL = "https://www.unicode.org/Public/%s/ucd/" % UNICODE_VERSION

PREAMBLE = """// Copyright 2012-2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

// NOTE: The following code was generated by "scripts/unicode.py", do not edit directly

#![allow(missing_docs)]
"""

NormalizationTest = collections.namedtuple(
    "NormalizationTest",
    ["source", "nfc", "nfd", "nfkc", "nfkd"],
)

# Mapping taken from Table 12 from:
# http://www.unicode.org/reports/tr44/#General_Category_Values
expanded_categories = {
    'Lu': ['LC', 'L'], 'Ll': ['LC', 'L'], 'Lt': ['LC', 'L'],
    'Lm': ['L'], 'Lo': ['L'],
    'Mn': ['M'], 'Mc': ['M'], 'Me': ['M'],
    'Nd': ['N'], 'Nl': ['N'], 'No': ['No'],
    'Pc': ['P'], 'Pd': ['P'], 'Ps': ['P'], 'Pe': ['P'],
    'Pi': ['P'], 'Pf': ['P'], 'Po': ['P'],
    'Sm': ['S'], 'Sc': ['S'], 'Sk': ['S'], 'So': ['S'],
    'Zs': ['Z'], 'Zl': ['Z'], 'Zp': ['Z'],
    'Cc': ['C'], 'Cf': ['C'], 'Cs': ['C'], 'Co': ['C'], 'Cn': ['C'],
}

# Constants from Unicode 9.0.0 Section 3.12 Conjoining Jamo Behavior
# http://www.unicode.org/versions/Unicode9.0.0/ch03.pdf#M9.32468.Heading.310.Combining.Jamo.Behavior
S_BASE, L_COUNT, V_COUNT, T_COUNT = 0xAC00, 19, 21, 28
S_COUNT = L_COUNT * V_COUNT * T_COUNT

class UnicodeData(object):
    def __init__(self):
        self._load_unicode_data()
        self.norm_props = self._load_norm_props()
        self.norm_tests = self._load_norm_tests()

        self.canon_comp = self._compute_canonical_comp()
        self.canon_fully_decomp, self.compat_fully_decomp = self._compute_fully_decomposed()

        self.cjk_compat_variants_fully_decomp = {}
        self._load_cjk_compat_ideograph_variants()

        def stats(name, table):
            count = sum(len(v) for v in table.values())
            print("%s: %d chars => %d decomposed chars" % (name, len(table), count))

        print("Decomposition table stats:")
        stats("Canonical decomp", self.canon_decomp)
        stats("Compatible decomp", self.compat_decomp)
        stats("Canonical fully decomp", self.canon_fully_decomp)
        stats("Compatible fully decomp", self.compat_fully_decomp)
        stats("CJK Compat Variants fully decomp", self.cjk_compat_variants_fully_decomp)

        self.ss_leading, self.ss_trailing = self._compute_stream_safe_tables()

    def _fetch(self, filename):
        resp = urllib.request.urlopen(UCD_URL + filename)
        return resp.read().decode('utf-8')

    def _load_unicode_data(self):
        self.name_to_char_int = {}
        self.combining_classes = {}
        self.compat_decomp = {}
        self.canon_decomp = {}
        self.general_category_mark = []
        self.general_category_public_assigned = []

        assigned_start = 0;
        prev_char_int = -1;
        prev_name = "";

        for line in self._fetch("UnicodeData.txt").splitlines():
            # See ftp://ftp.unicode.org/Public/3.0-Update/UnicodeData-3.0.0.html
            pieces = line.split(';')
            assert len(pieces) == 15
            char, name, category, cc, decomp = pieces[0], pieces[1], pieces[2], pieces[3], pieces[5]
            char_int = int(char, 16)

            name = pieces[1].strip()
            self.name_to_char_int[name] = char_int

            if cc != '0':
                self.combining_classes[char_int] = cc

            if decomp.startswith('<'):
                self.compat_decomp[char_int] = [int(c, 16) for c in decomp.split()[1:]]
            elif decomp != '':
                self.canon_decomp[char_int] = [int(c, 16) for c in decomp.split()]

            if category == 'M' or 'M' in expanded_categories.get(category, []):
                self.general_category_mark.append(char_int)

            assert category != 'Cn', "Unexpected: Unassigned codepoint in UnicodeData.txt"
            if category not in ['Co', 'Cs']:
                if char_int != prev_char_int + 1 and not is_first_and_last(prev_name, name):
                    self.general_category_public_assigned.append((assigned_start, prev_char_int))
                    assigned_start = char_int
                prev_char_int = char_int
                prev_name = name;

        self.general_category_public_assigned.append((assigned_start, prev_char_int))

    def _load_cjk_compat_ideograph_variants(self):
        for line in self._fetch("StandardizedVariants.txt").splitlines():
            strip_comments = line.split('#', 1)[0].strip()
            if not strip_comments:
                continue

            variation_sequence, description, differences = strip_comments.split(';')
            description = description.strip()

            # Don't use variations that only apply in particular shaping environments.
            if differences:
                continue

            # Look for entries where the description field is a codepoint name.
            if description not in self.name_to_char_int:
                continue

            # Only consider the CJK Compatibility Ideographs.
            if not description.startswith('CJK COMPATIBILITY IDEOGRAPH-'):
                continue

            char_int = self.name_to_char_int[description]

            assert not char_int in self.combining_classes, "Unexpected: CJK compat variant with a combining class"
            assert not char_int in self.compat_decomp, "Unexpected: CJK compat variant and compatibility decomposition"
            assert len(self.canon_decomp[char_int]) == 1, "Unexpected: CJK compat variant and non-singleton canonical decomposition"
            # If we ever need to handle Hangul here, we'll need to handle it separately.
            assert not (S_BASE <= char_int < S_BASE + S_COUNT)

            cjk_compat_variant_parts = [int(c, 16) for c in variation_sequence.split()]
            for c in cjk_compat_variant_parts:
                assert not c in self.canon_decomp, "Unexpected: CJK compat variant is unnormalized (canon)"
                assert not c in self.compat_decomp, "Unexpected: CJK compat variant is unnormalized (compat)"
            self.cjk_compat_variants_fully_decomp[char_int] = cjk_compat_variant_parts

    def _load_norm_props(self):
        props = collections.defaultdict(list)

        for line in self._fetch("DerivedNormalizationProps.txt").splitlines():
            (prop_data, _, _) = line.partition("#")
            prop_pieces = prop_data.split(";")

            if len(prop_pieces) < 2:
                continue

            assert len(prop_pieces) <= 3
            (low, _, high) = prop_pieces[0].strip().partition("..")

            prop = prop_pieces[1].strip()

            data = None
            if len(prop_pieces) == 3:
                data = prop_pieces[2].strip()

            props[prop].append((low, high, data))

        return props

    def _load_norm_tests(self):
        tests = []
        for line in self._fetch("NormalizationTest.txt").splitlines():
            (test_data, _, _) = line.partition("#")
            test_pieces = test_data.split(";")

            if len(test_pieces) < 5:
                continue

            source, nfc, nfd, nfkc, nfkd = [[c.strip() for c in p.split()] for p in test_pieces[:5]]
            tests.append(NormalizationTest(source, nfc, nfd, nfkc, nfkd))

        return tests

    def _compute_canonical_comp(self):
        canon_comp = {}
        comp_exclusions = [
            (int(low, 16), int(high or low, 16))
            for low, high, _ in self.norm_props["Full_Composition_Exclusion"]
        ]
        for char_int, decomp in self.canon_decomp.items():
            if any(lo <= char_int <= hi for lo, hi in comp_exclusions):
                continue

            assert len(decomp) == 2
            assert (decomp[0], decomp[1]) not in canon_comp
            canon_comp[(decomp[0], decomp[1])] = char_int

        return canon_comp

    def _compute_fully_decomposed(self):
        """
        Even though the decomposition algorithm is recursive, it is possible
        to precompute the recursion at table generation time with modest
        increase to the table size.  Then, for these precomputed tables, we
        note that 1) compatible decomposition is a subset of canonical
        decomposition and 2) they mostly agree on their intersection.
        Therefore, we don't store entries in the compatible table for
        characters that decompose the same way under canonical decomposition.

            Decomposition table stats:
            Canonical decomp: 2060 chars => 3085 decomposed chars
            Compatible decomp: 3662 chars => 5440 decomposed chars
            Canonical fully decomp: 2060 chars => 3404 decomposed chars
            Compatible fully decomp: 3678 chars => 5599 decomposed chars

        The upshot is that decomposition code is very simple and easy to inline
        at mild code size cost.
        """
        def _decompose(char_int, compatible):
            # 7-bit ASCII never decomposes
            if char_int <= 0x7f:
                yield char_int
                return

            # Assert that we're handling Hangul separately.
            assert not (S_BASE <= char_int < S_BASE + S_COUNT)

            decomp = self.canon_decomp.get(char_int)
            if decomp is not None:
                for decomposed_ch in decomp:
                    for fully_decomposed_ch in _decompose(decomposed_ch, compatible):
                        yield fully_decomposed_ch
                return

            if compatible and char_int in self.compat_decomp:
                for decomposed_ch in self.compat_decomp[char_int]:
                    for fully_decomposed_ch in _decompose(decomposed_ch, compatible):
                        yield fully_decomposed_ch
                return

            yield char_int
            return

        end_codepoint = max(
            max(self.canon_decomp.keys()),
            max(self.compat_decomp.keys()),
        )

        canon_fully_decomp = {}
        compat_fully_decomp = {}

        for char_int in range(0, end_codepoint + 1):
            # Always skip Hangul, since it's more efficient to represent its
            # decomposition programmatically.
            if S_BASE <= char_int < S_BASE + S_COUNT:
                continue

            canon = list(_decompose(char_int, False))
            if not (len(canon) == 1 and canon[0] == char_int):
                canon_fully_decomp[char_int] = canon

            compat = list(_decompose(char_int, True))
            if not (len(compat) == 1 and compat[0] == char_int):
                compat_fully_decomp[char_int] = compat

        # Since canon_fully_decomp is a subset of compat_fully_decomp, we don't
        # need to store their overlap when they agree.  When they don't agree,
        # store the decomposition in the compatibility table since we'll check
        # that first when normalizing to NFKD.
        assert set(canon_fully_decomp) <= set(compat_fully_decomp)

        for ch in set(canon_fully_decomp) & set(compat_fully_decomp):
            if canon_fully_decomp[ch] == compat_fully_decomp[ch]:
                del compat_fully_decomp[ch]

        return canon_fully_decomp, compat_fully_decomp

    def _compute_stream_safe_tables(self):
        """
        To make a text stream-safe with the Stream-Safe Text Process (UAX15-D4),
        we need to be able to know the number of contiguous non-starters *after*
        applying compatibility decomposition to each character.

        We can do this incrementally by computing the number of leading and
        trailing non-starters for each character's compatibility decomposition
        with the following rules:

        1) If a character is not affected by compatibility decomposition, look
           up its canonical combining class to find out if it's a non-starter.
        2) All Hangul characters are starters, even under decomposition.
        3) Otherwise, very few decomposing characters have a nonzero count
           of leading or trailing non-starters, so store these characters
           with their associated counts in a separate table.
        """
        leading_nonstarters = {}
        trailing_nonstarters = {}

        for c in set(self.canon_fully_decomp) | set(self.compat_fully_decomp):
            decomposed = self.compat_fully_decomp.get(c) or self.canon_fully_decomp[c]

            num_leading = 0
            for d in decomposed:
                if d not in self.combining_classes:
                    break
                num_leading += 1

            num_trailing = 0
            for d in reversed(decomposed):
                if d not in self.combining_classes:
                    break
                num_trailing += 1

            if num_leading > 0:
                leading_nonstarters[c] = num_leading
            if num_trailing > 0:
                trailing_nonstarters[c] = num_trailing

        return leading_nonstarters, trailing_nonstarters

hexify = lambda c: '{:04X}'.format(c)

# Test whether `first` and `last` are corresponding "<..., First>" and
# "<..., Last>" markers.
def is_first_and_last(first, last):
    if not first.startswith('<') or not first.endswith(', First>'):
        return False
    if not last.startswith('<') or not last.endswith(', Last>'):
        return False
    return first[1:-8] == last[1:-7]

def gen_mph_data(name, d, kv_type, kv_callback):
    (salt, keys) = minimal_perfect_hash(d)
    out.write("pub(crate) const %s_SALT: &[u16] = &[\n" % name.upper())
    for s in salt:
        out.write("    0x{:x},\n".format(s))
    out.write("];\n")
    out.write("pub(crate) const {}_KV: &[{}] = &[\n".format(name.upper(), kv_type))
    for k in keys:
        out.write("    {},\n".format(kv_callback(k)))
    out.write("];\n\n")

def gen_combining_class(combining_classes, out):
    gen_mph_data('canonical_combining_class', combining_classes, 'u32',
        lambda k: "0x{:X}".format(int(combining_classes[k]) | (k << 8)))

def gen_composition_table(canon_comp, out):
    table = {}
    for (c1, c2), c3 in canon_comp.items():
        if c1 < 0x10000 and c2 < 0x10000:
            table[(c1 << 16) | c2] = c3
    (salt, keys) = minimal_perfect_hash(table)
    gen_mph_data('COMPOSITION_TABLE', table, '(u32, char)',
        lambda k: "(0x%s, '\\u{%s}')" % (hexify(k), hexify(table[k])))

    out.write("pub(crate) fn composition_table_astral(c1: char, c2: char) -> Option<char> {\n")
    out.write("    match (c1, c2) {\n")
    for (c1, c2), c3 in sorted(canon_comp.items()):
        if c1 >= 0x10000 and c2 >= 0x10000:
            out.write("        ('\\u{%s}', '\\u{%s}') => Some('\\u{%s}'),\n" % (hexify(c1), hexify(c2), hexify(c3)))

    out.write("        _ => None,\n")
    out.write("    }\n")
    out.write("}\n")

def gen_decomposition_tables(canon_decomp, compat_decomp, cjk_compat_variants_decomp, out):
    tables = [(canon_decomp, 'canonical'), (compat_decomp, 'compatibility'), (cjk_compat_variants_decomp, 'cjk_compat_variants')]
    for table, name in tables:
        offsets = {}
        offset = 0
        out.write("pub(crate) const %s_DECOMPOSED_CHARS: &[char] = &[\n" % name.upper())
        for k, v in table.items():
            offsets[k] = offset
            offset += len(v)
            for c in v:
                out.write("    '\\u{%s}',\n" % hexify(c))
        # The largest offset must fit in a u16.
        assert offset < 65536
        out.write("];\n")
        gen_mph_data(name + '_decomposed', table, "(u32, (u16, u16))",
            lambda k: "(0x{:x}, ({}, {}))".format(k, offsets[k], len(table[k])))

def gen_qc_match(prop_table, out):
    out.write("    match c {\n")

    for low, high, data in prop_table:
        assert data in ('N', 'M')
        result = "No" if data == 'N' else "Maybe"
        if high:
            out.write(r"        '\u{%s}'...'\u{%s}' => %s," % (low, high, result))
        else:
            out.write(r"        '\u{%s}' => %s," % (low, result))
        out.write("\n")

    out.write("        _ => Yes,\n")
    out.write("    }\n")

def gen_nfc_qc(prop_tables, out):
    out.write("#[inline]\n")
    out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
    out.write("pub fn qc_nfc(c: char) -> IsNormalized {\n")
    gen_qc_match(prop_tables['NFC_QC'], out)
    out.write("}\n")

def gen_nfkc_qc(prop_tables, out):
    out.write("#[inline]\n")
    out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
    out.write("pub fn qc_nfkc(c: char) -> IsNormalized {\n")
    gen_qc_match(prop_tables['NFKC_QC'], out)
    out.write("}\n")

def gen_nfd_qc(prop_tables, out):
    out.write("#[inline]\n")
    out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
    out.write("pub fn qc_nfd(c: char) -> IsNormalized {\n")
    gen_qc_match(prop_tables['NFD_QC'], out)
    out.write("}\n")

def gen_nfkd_qc(prop_tables, out):
    out.write("#[inline]\n")
    out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
    out.write("pub fn qc_nfkd(c: char) -> IsNormalized {\n")
    gen_qc_match(prop_tables['NFKD_QC'], out)
    out.write("}\n")

def gen_combining_mark(general_category_mark, out):
    gen_mph_data('combining_mark', general_category_mark, 'u32',
        lambda k: '0x{:04x}'.format(k))

def gen_public_assigned(general_category_public_assigned, out):
    # This could be done as a hash but the table is somewhat small.
    out.write("#[inline]\n")
    out.write("pub fn is_public_assigned(c: char) -> bool {\n")
    out.write("    match c {\n")

    start = True
    for first, last in general_category_public_assigned:
        if start:
            out.write("        ")
            start = False
        else:
            out.write("        | ")
        if first == last:
            out.write("'\\u{%s}'\n" % hexify(first))
        else:
            out.write("'\\u{%s}'..='\\u{%s}'\n" % (hexify(first), hexify(last)))
    out.write("        => true,\n")

    out.write("        _ => false,\n")
    out.write("    }\n")
    out.write("}\n")
    out.write("\n")

def gen_stream_safe(leading, trailing, out):
    # This could be done as a hash but the table is very small.
    out.write("#[inline]\n")
    out.write("pub fn stream_safe_leading_nonstarters(c: char) -> usize {\n")
    out.write("    match c {\n")

    for char, num_leading in sorted(leading.items()):
        out.write("        '\\u{%s}' => %d,\n" % (hexify(char), num_leading))

    out.write("        _ => 0,\n")
    out.write("    }\n")
    out.write("}\n")
    out.write("\n")

    gen_mph_data('trailing_nonstarters', trailing, 'u32',
        lambda k: "0x{:X}".format(int(trailing[k]) | (k << 8)))

def gen_tests(tests, out):
    out.write("""#[derive(Debug)]
pub struct NormalizationTest {
    pub source: &'static str,
    pub nfc: &'static str,
    pub nfd: &'static str,
    pub nfkc: &'static str,
    pub nfkd: &'static str,
}

""")

    out.write("pub const NORMALIZATION_TESTS: &[NormalizationTest] = &[\n")
    str_literal = lambda s: '"%s"' % "".join("\\u{%s}" % c for c in s)

    for test in tests:
        out.write("    NormalizationTest {\n")
        out.write("        source: %s,\n" % str_literal(test.source))
        out.write("        nfc: %s,\n" % str_literal(test.nfc))
        out.write("        nfd: %s,\n" % str_literal(test.nfd))
        out.write("        nfkc: %s,\n" % str_literal(test.nfkc))
        out.write("        nfkd: %s,\n" % str_literal(test.nfkd))
        out.write("    },\n")

    out.write("];\n")

# Guaranteed to be less than n.
def my_hash(x, salt, n):
    # This is hash based on the theory that multiplication is efficient
    mask_32 = 0xffffffff
    y = ((x + salt) * 2654435769) & mask_32
    y ^= (x * 0x31415926) & mask_32
    return (y * n) >> 32

# Compute minimal perfect hash function, d can be either a dict or list of keys.
def minimal_perfect_hash(d):
    n = len(d)
    buckets = dict((h, []) for h in range(n))
    for key in d:
        h = my_hash(key, 0, n)
        buckets[h].append(key)
    bsorted = [(len(buckets[h]), h) for h in range(n)]
    bsorted.sort(reverse = True)
    claimed = [False] * n
    salts = [0] * n
    keys = [0] * n
    for (bucket_size, h) in bsorted:
        # Note: the traditional perfect hashing approach would also special-case
        # bucket_size == 1 here and assign any empty slot, rather than iterating
        # until rehash finds an empty slot. But we're not doing that so we can
        # avoid the branch.
        if bucket_size == 0:
            break
        else:
            for salt in range(1, 32768):
                rehashes = [my_hash(key, salt, n) for key in buckets[h]]
                # Make sure there are no rehash collisions within this bucket.
                if all(not claimed[hash] for hash in rehashes):
                    if len(set(rehashes)) < bucket_size:
                        continue
                    salts[h] = salt
                    for key in buckets[h]:
                        rehash = my_hash(key, salt, n)
                        claimed[rehash] = True
                        keys[rehash] = key
                    break
            if salts[h] == 0:
                print("minimal perfect hashing failed")
                # Note: if this happens (because of unfortunate data), then there are
                # a few things that could be done. First, the hash function could be
                # tweaked. Second, the bucket order could be scrambled (especially the
                # singletons). Right now, the buckets are sorted, which has the advantage
                # of being deterministic.
                #
                # As a more extreme approach, the singleton bucket optimization could be
                # applied (give the direct address for singleton buckets, rather than
                # relying on a rehash). That is definitely the more standard approach in
                # the minimal perfect hashing literature, but in testing the branch was a
                # significant slowdown.
                exit(1)
    return (salts, keys)

if __name__ == '__main__':
    data = UnicodeData()
    with open("tables.rs", "w", newline = "\n") as out:
        out.write(PREAMBLE)
        out.write("use crate::quick_check::IsNormalized;\n")
        out.write("use crate::quick_check::IsNormalized::*;\n")
        out.write("\n")

        version = "(%s, %s, %s)" % tuple(UNICODE_VERSION.split("."))
        out.write("#[allow(unused)]\n")
        out.write("pub const UNICODE_VERSION: (u8, u8, u8) = %s;\n\n" % version)

        gen_combining_class(data.combining_classes, out)
        out.write("\n")

        gen_composition_table(data.canon_comp, out)
        out.write("\n")

        gen_decomposition_tables(data.canon_fully_decomp, data.compat_fully_decomp, data.cjk_compat_variants_fully_decomp, out)

        gen_combining_mark(data.general_category_mark, out)
        out.write("\n")

        gen_public_assigned(data.general_category_public_assigned, out)
        out.write("\n")

        gen_nfc_qc(data.norm_props, out)
        out.write("\n")

        gen_nfkc_qc(data.norm_props, out)
        out.write("\n")

        gen_nfd_qc(data.norm_props, out)
        out.write("\n")

        gen_nfkd_qc(data.norm_props, out)
        out.write("\n")

        gen_stream_safe(data.ss_leading, data.ss_trailing, out)
        out.write("\n")

    with open("normalization_tests.rs", "w", newline = "\n") as out:
        out.write(PREAMBLE)
        gen_tests(data.norm_tests, out)