summaryrefslogtreecommitdiffstats
path: root/vendor/windows-metadata/src/reader.rs
blob: 3445a7ad2bb9b1dc7c1dbac3670995a246514eca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
use super::*;

#[derive(Clone)]
pub enum Item {
    Type(TypeDef),
    Const(Field),
    // TODO: get rid of the trailing String - that's just a hack to get around a silly Win32 metadata deficiency where parsing method signatures
    // requires knowing which namespace the method's surrounding interface was defined in.
    Fn(MethodDef, &'static str),
}

pub struct Reader {
    // TODO: get rid of inner Vec - that's just a hack to support multi-arch structs in Win32 metadata.
    items: BTreeMap<&'static str, BTreeMap<&'static str, Vec<Item>>>,

    // TODO: riddle should just avoid nested structs
    nested: HashMap<TypeDef, BTreeMap<&'static str, TypeDef>>,

    // The reader needs to store the filter since standalone code generation needs more than just the filtered items
    // in order to chase dependencies automatically. This is why `Reader::filter` can't just filter everything up front.
    filter: Filter,
}

impl Reader {
    pub fn new(files: Vec<File>) -> &'static Self {
        Self::filter(files, &[], &[])
    }

    pub fn filter(files: Vec<File>, include: &[&str], exclude: &[&str]) -> &'static Self {
        let reader: &'static mut Reader = Box::leak(Box::new(Self { items: Default::default(), nested: Default::default(), filter: Filter::new(include, exclude) }));

        for mut file in files {
            file.reader = reader as *mut Reader;
            let file = Box::leak(Box::new(file));

            for def in file.table::<TypeDef>() {
                let namespace = def.namespace();

                if namespace.is_empty() {
                    continue;
                }

                let namespace_items = reader.items.entry(namespace).or_default();
                let name = def.name();

                if name == "Apis" {
                    for method in def.methods() {
                        namespace_items.entry(method.name()).or_default().push(Item::Fn(method, namespace));
                    }

                    for field in def.fields() {
                        namespace_items.entry(field.name()).or_default().push(Item::Const(field));
                    }
                } else {
                    namespace_items.entry(name).or_default().push(Item::Type(def));

                    // TODO: these should all be fields on the Apis class so we don't have to go looking for all of these as well.
                    if def.extends() == Some(TypeName::Enum) && !def.flags().contains(TypeAttributes::WindowsRuntime) && !def.has_attribute("ScopedEnumAttribute") {
                        for field in def.fields().filter(|field| field.flags().contains(FieldAttributes::Literal)) {
                            namespace_items.entry(field.name()).or_default().push(Item::Const(field));
                        }
                    }
                }
            }

            for key in file.table::<NestedClass>() {
                let inner = key.inner();
                reader.nested.entry(key.outer()).or_default().insert(inner.name(), inner);
            }
        }

        reader
    }

    pub fn includes_namespace(&self, namespace: &str) -> bool {
        self.filter.includes_namespace(namespace)
    }

    pub fn namespaces(&self) -> impl Iterator<Item = &str> + '_ {
        self.items.keys().copied()
    }

    pub fn items(&self) -> impl Iterator<Item = Item> + '_ {
        self.items.iter().filter(move |(namespace, _)| self.filter.includes_namespace(namespace)).flat_map(move |(namespace, items)| items.iter().filter(move |(name, _)| self.filter.includes_type_name(namespace, name))).flat_map(move |(_, items)| items).cloned()
    }

    pub fn namespace_items(&self, namespace: &str) -> impl Iterator<Item = Item> + '_ {
        self.items.get_key_value(namespace).into_iter().flat_map(move |(namespace, items)| items.iter().filter(move |(name, _)| self.filter.includes_type_name(namespace, name))).flat_map(move |(_, items)| items).cloned()
    }

    pub fn unused(&self) -> impl Iterator<Item = &str> + '_ {
        self.filter.0.iter().filter_map(|(name, _)| if self.is_unused(name) { Some(name.as_str()) } else { None })
    }

    fn is_unused(&self, filter: &str) -> bool {
        // Match namespaces
        if self.items.contains_key(filter) {
            return false;
        }

        // Match type names
        if let Some((namespace, name)) = filter.rsplit_once('.') {
            if self.items.get(namespace).is_some_and(|items| items.contains_key(name)) {
                return false;
            }
        }

        // Match empty parent namespaces
        for namespace in self.items.keys() {
            if namespace.len() > filter.len() && namespace.starts_with(filter) && namespace.as_bytes()[filter.len()] == b'.' {
                return false;
            }
        }

        true
    }

    fn get_item(&self, namespace: &str, name: &str) -> impl Iterator<Item = Item> + '_ {
        if let Some(items) = self.items.get(namespace) {
            if let Some(items) = items.get(name) {
                return Some(items.iter().cloned()).into_iter().flatten();
            }
        }
        None.into_iter().flatten()
    }

    pub fn get_type_def(&self, namespace: &str, name: &str) -> impl Iterator<Item = TypeDef> + '_ {
        self.get_item(namespace, name).filter_map(|item| if let Item::Type(def) = item { Some(def) } else { None })
    }

    pub fn get_method_def(&self, namespace: &str, name: &str) -> impl Iterator<Item = (MethodDef, &'static str)> + '_ {
        self.get_item(namespace, name).filter_map(|item| if let Item::Fn(def, namespace) = item { Some((def, namespace)) } else { None })
    }

    pub fn nested_types(&self, type_def: TypeDef) -> impl Iterator<Item = TypeDef> + '_ {
        self.nested.get(&type_def).map(|map| map.values().copied()).into_iter().flatten()
    }

    pub fn type_from_ref(&self, code: TypeDefOrRef, enclosing: Option<TypeDef>, generics: &[Type]) -> Type {
        if let TypeDefOrRef::TypeSpec(def) = code {
            let mut blob = def.blob(0);
            return self.type_from_blob_impl(&mut blob, None, generics);
        }

        let mut full_name = code.type_name();

        // TODO: remove this
        for (known_name, kind) in CORE_TYPES {
            if full_name == known_name {
                return kind;
            }
        }

        // TODO: remove this
        for (from, to) in REMAP_TYPES {
            if full_name == from {
                full_name = to;
                break;
            }
        }

        if let Some(outer) = enclosing {
            if full_name.namespace.is_empty() {
                let nested = &self.nested[&outer];
                let Some(inner) = nested.get(full_name.name) else {
                    panic!("Nested type not found: {}.{}", outer.type_name(), full_name.name);
                };
                return Type::TypeDef(*inner, Vec::new());
            }
        }

        if let Some(def) = self.get_type_def(full_name.namespace, full_name.name).next() {
            Type::TypeDef(def, Vec::new())
        } else {
            Type::TypeRef(full_name)
        }
    }

    pub fn type_from_blob(&self, blob: &mut Blob, enclosing: Option<TypeDef>, generics: &[Type]) -> Type {
        // Used by WinRT to indicate that a struct input parameter is passed by reference rather than by value on the ABI.
        let is_const = blob.read_modifiers().iter().any(|def| def.type_name() == TypeName::IsConst);

        // Used by WinRT to indicate an output parameter, but there are other ways to determine this direction so here
        // it is only used to distinguish between slices and heap-allocated arrays.
        let is_ref = blob.read_expected(ELEMENT_TYPE_BYREF as usize);

        if blob.read_expected(ELEMENT_TYPE_VOID as usize) {
            return Type::Void;
        }

        let is_array = blob.read_expected(ELEMENT_TYPE_SZARRAY as usize); // Used by WinRT to indicate an array

        let mut pointers = 0;

        while blob.read_expected(ELEMENT_TYPE_PTR as usize) {
            pointers += 1;
        }

        let kind = self.type_from_blob_impl(blob, enclosing, generics);

        if pointers > 0 {
            Type::MutPtr(Box::new(kind), pointers)
        } else if is_const {
            Type::ConstRef(Box::new(kind))
        } else if is_array {
            if is_ref {
                Type::WinrtArrayRef(Box::new(kind))
            } else {
                Type::WinrtArray(Box::new(kind))
            }
        } else {
            kind
        }
    }

    fn type_from_blob_impl(&self, blob: &mut Blob, enclosing: Option<TypeDef>, generics: &[Type]) -> Type {
        let code = blob.read_usize();

        if let Some(code) = Type::from_code(code) {
            return code;
        }

        match code as u8 {
            ELEMENT_TYPE_VALUETYPE | ELEMENT_TYPE_CLASS => self.type_from_ref(TypeDefOrRef::decode(blob.file, blob.read_usize()), enclosing, generics),
            ELEMENT_TYPE_VAR => generics.get(blob.read_usize()).unwrap_or(&Type::Void).clone(),
            ELEMENT_TYPE_ARRAY => {
                let kind = self.type_from_blob(blob, enclosing, generics);
                let _rank = blob.read_usize();
                let _count = blob.read_usize();
                let bounds = blob.read_usize();
                Type::Win32Array(Box::new(kind), bounds)
            }
            ELEMENT_TYPE_GENERICINST => {
                blob.read_usize(); // ELEMENT_TYPE_VALUETYPE or ELEMENT_TYPE_CLASS

                let type_name = TypeDefOrRef::decode(blob.file, blob.read_usize()).type_name();
                let def = self.get_type_def(type_name.namespace, type_name.name).next().unwrap_or_else(|| panic!("Type not found: {}", type_name));
                let mut args = Vec::with_capacity(blob.read_usize());

                for _ in 0..args.capacity() {
                    args.push(self.type_from_blob_impl(blob, enclosing, generics));
                }

                Type::TypeDef(def, args)
            }
            rest => unimplemented!("{rest:?}"),
        }
    }
}

// TODO: this should be in riddle's Rust generator if at all - perhaps as convertible types rather than remapped types since there's already some precedent for that.
pub const REMAP_TYPES: [(TypeName, TypeName); 2] = [(TypeName::D2D_MATRIX_3X2_F, TypeName::Matrix3x2), (TypeName::D3DMATRIX, TypeName::Matrix4x4)];

// TODO: get rid of at least the second tuple if not the whole thing.
pub const CORE_TYPES: [(TypeName, Type); 11] = [(TypeName::GUID, Type::GUID), (TypeName::IUnknown, Type::IUnknown), (TypeName::HResult, Type::HRESULT), (TypeName::HRESULT, Type::HRESULT), (TypeName::HSTRING, Type::String), (TypeName::BSTR, Type::BSTR), (TypeName::IInspectable, Type::IInspectable), (TypeName::PSTR, Type::PSTR), (TypeName::PWSTR, Type::PWSTR), (TypeName::Type, Type::Type), (TypeName::CHAR, Type::U8)];