1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
|
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
// https://github.com/unicode-org/icu4x/blob/main/docs/process/boilerplate.md#library-annotations
#![cfg_attr(all(not(test), not(doc)), no_std)]
#![cfg_attr(
not(test),
deny(
clippy::indexing_slicing,
clippy::unwrap_used,
clippy::expect_used,
clippy::panic,
clippy::exhaustive_structs,
clippy::exhaustive_enums,
missing_debug_implementations,
)
)]
//! `writeable` is a utility crate of the [`ICU4X`] project.
//!
//! It includes [`Writeable`], a core trait representing an object that can be written to a
//! sink implementing `std::fmt::Write`. It is an alternative to `std::fmt::Display` with the
//! addition of a function indicating the number of bytes to be written.
//!
//! `Writeable` improves upon `std::fmt::Display` in two ways:
//!
//! 1. More efficient, since the sink can pre-allocate bytes.
//! 2. Smaller code, since the format machinery can be short-circuited.
//!
//! # Examples
//!
//! ```
//! use std::fmt;
//! use writeable::assert_writeable_eq;
//! use writeable::LengthHint;
//! use writeable::Writeable;
//!
//! struct WelcomeMessage<'s> {
//! pub name: &'s str,
//! }
//!
//! impl<'s> Writeable for WelcomeMessage<'s> {
//! fn write_to<W: fmt::Write + ?Sized>(&self, sink: &mut W) -> fmt::Result {
//! sink.write_str("Hello, ")?;
//! sink.write_str(self.name)?;
//! sink.write_char('!')?;
//! Ok(())
//! }
//!
//! fn writeable_length_hint(&self) -> LengthHint {
//! // "Hello, " + '!' + length of name
//! LengthHint::exact(8 + self.name.len())
//! }
//! }
//!
//! let message = WelcomeMessage { name: "Alice" };
//! assert_writeable_eq!(&message, "Hello, Alice!");
//!
//! // Types implementing `Writeable` are recommended to also implement `fmt::Display`.
//! // This can be simply done by redirecting to the `Writeable` implementation:
//! writeable::impl_display_with_writeable!(WelcomeMessage<'_>);
//! ```
//!
//! [`ICU4X`]: ../icu/index.html
extern crate alloc;
mod impls;
mod ops;
use alloc::borrow::Cow;
use alloc::string::String;
use alloc::vec::Vec;
use core::fmt;
/// A hint to help consumers of `Writeable` pre-allocate bytes before they call
/// [`write_to`](Writeable::write_to).
///
/// This behaves like `Iterator::size_hint`: it is a tuple where the first element is the
/// lower bound, and the second element is the upper bound. If the upper bound is `None`
/// either there is no known upper bound, or the upper bound is larger than `usize`.
///
/// `LengthHint` implements std`::ops::{Add, Mul}` and similar traits for easy composition.
/// During computation, the lower bound will saturate at `usize::MAX`, while the upper
/// bound will become `None` if `usize::MAX` is exceeded.
#[derive(Debug, PartialEq, Eq, Copy, Clone)]
#[non_exhaustive]
pub struct LengthHint(pub usize, pub Option<usize>);
impl LengthHint {
pub fn undefined() -> Self {
Self(0, None)
}
/// `write_to` will use exactly n bytes.
pub fn exact(n: usize) -> Self {
Self(n, Some(n))
}
/// `write_to` will use at least n bytes.
pub fn at_least(n: usize) -> Self {
Self(n, None)
}
/// `write_to` will use at most n bytes.
pub fn at_most(n: usize) -> Self {
Self(0, Some(n))
}
/// `write_to` will use between `n` and `m` bytes.
pub fn between(n: usize, m: usize) -> Self {
Self(Ord::min(n, m), Some(Ord::max(n, m)))
}
/// Returns a recommendation for the number of bytes to pre-allocate.
/// If an upper bound exists, this is used, otherwise the lower bound
/// (which might be 0).
///
/// # Examples
///
/// ```
/// use writeable::Writeable;
///
/// fn pre_allocate_string(w: &impl Writeable) -> String {
/// String::with_capacity(w.writeable_length_hint().capacity())
/// }
/// ```
pub fn capacity(&self) -> usize {
self.1.unwrap_or(self.0)
}
/// Returns whether the `LengthHint` indicates that the string is exactly 0 bytes long.
pub fn is_zero(&self) -> bool {
self.1 == Some(0)
}
}
/// [`Part`]s are used as annotations for formatted strings. For example, a string like
/// `Alice, Bob` could assign a `NAME` part to the substrings `Alice` and `Bob`, and a
/// `PUNCTUATION` part to `, `. This allows for example to apply styling only to names.
///
/// `Part` contains two fields, whose usage is left up to the producer of the [`Writeable`].
/// Conventionally, the `category` field will identify the formatting logic that produces
/// the string/parts, whereas the `value` field will have semantic meaning. `NAME` and
/// `PUNCTUATION` could thus be defined as
/// ```
/// # use writeable::Part;
/// const NAME: Part = Part {
/// category: "userlist",
/// value: "name",
/// };
/// const PUNCTUATION: Part = Part {
/// category: "userlist",
/// value: "punctuation",
/// };
/// ```
///
/// That said, consumers should not usually have to inspect `Part` internals. Instead,
/// formatters should expose the `Part`s they produces as constants.
#[derive(Clone, Copy, Debug, PartialEq)]
#[allow(clippy::exhaustive_structs)] // stable
pub struct Part {
pub category: &'static str,
pub value: &'static str,
}
/// A sink that supports annotating parts of the string with `Part`s.
pub trait PartsWrite: fmt::Write {
type SubPartsWrite: PartsWrite + ?Sized;
fn with_part(
&mut self,
part: Part,
f: impl FnMut(&mut Self::SubPartsWrite) -> fmt::Result,
) -> fmt::Result;
}
/// `Writeable` is an alternative to `std::fmt::Display` with the addition of a length function.
pub trait Writeable {
/// Writes a string to the given sink. Errors from the sink are bubbled up.
/// The default implementation delegates to `write_to_parts`, and discards any
/// `Part` annotations.
fn write_to<W: fmt::Write + ?Sized>(&self, sink: &mut W) -> fmt::Result {
struct CoreWriteAsPartsWrite<W: fmt::Write + ?Sized>(W);
impl<W: fmt::Write + ?Sized> fmt::Write for CoreWriteAsPartsWrite<W> {
fn write_str(&mut self, s: &str) -> fmt::Result {
self.0.write_str(s)
}
fn write_char(&mut self, c: char) -> fmt::Result {
self.0.write_char(c)
}
}
impl<W: fmt::Write + ?Sized> PartsWrite for CoreWriteAsPartsWrite<W> {
type SubPartsWrite = CoreWriteAsPartsWrite<W>;
fn with_part(
&mut self,
_part: Part,
mut f: impl FnMut(&mut Self::SubPartsWrite) -> fmt::Result,
) -> fmt::Result {
f(self)
}
}
self.write_to_parts(&mut CoreWriteAsPartsWrite(sink))
}
/// Write bytes and `Part` annotations to the given sink. Errors from the
/// sink are bubbled up. The default implementation delegates to `write_to`,
/// and doesn't produce any `Part` annotations.
fn write_to_parts<S: PartsWrite + ?Sized>(&self, sink: &mut S) -> fmt::Result {
self.write_to(sink)
}
/// Returns a hint for the number of UTF-8 bytes that will be written to the sink.
///
/// Override this method if it can be computed quickly.
fn writeable_length_hint(&self) -> LengthHint {
LengthHint::undefined()
}
/// Creates a new `String` with the data from this `Writeable`. Like `ToString`,
/// but smaller and faster.
///
/// The default impl allocates an owned `String`. However, if it is possible to return a
/// borrowed string, overwrite this method to return a `Cow::Borrowed`.
///
/// To remove the `Cow` wrapper, call `.into_owned()` or `.as_str()` as appropriate.
///
/// # Examples
///
/// Inspect a `Writeable` before writing it to the sink:
///
/// ```
/// use core::fmt::{Result, Write};
/// use writeable::Writeable;
///
/// fn write_if_ascii<W, S>(w: &W, sink: &mut S) -> Result
/// where
/// W: Writeable + ?Sized,
/// S: Write + ?Sized,
/// {
/// let s = w.write_to_string();
/// if s.is_ascii() {
/// sink.write_str(&s)
/// } else {
/// Ok(())
/// }
/// }
/// ```
///
/// Convert the `Writeable` into a fully owned `String`:
///
/// ```
/// use writeable::Writeable;
///
/// fn make_string(w: &impl Writeable) -> String {
/// w.write_to_string().into_owned()
/// }
/// ```
fn write_to_string(&self) -> Cow<str> {
let hint = self.writeable_length_hint();
if hint.is_zero() {
return Cow::Borrowed("");
}
let mut output = String::with_capacity(hint.capacity());
let _ = self.write_to(&mut output);
Cow::Owned(output)
}
}
/// Implements [`Display`](core::fmt::Display) for types that implement [`Writeable`].
///
/// It's recommended to do this for every [`Writeable`] type, as it will add
/// support for `core::fmt` features like [`fmt!`](std::fmt),
/// [`print!`](std::print), [`write!`](std::write), etc.
#[macro_export]
macro_rules! impl_display_with_writeable {
($type:ty) => {
/// This trait is implemented for compatibility with [`fmt!`](alloc::fmt).
/// To create a string, [`Writeable::write_to_string`] is usually more efficient.
impl core::fmt::Display for $type {
#[inline]
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
$crate::Writeable::write_to(&self, f)
}
}
};
}
/// Testing macros for types implementing Writeable. The first argument should be a
/// `Writeable`, the second argument a string, and the third argument (*_parts_eq only)
/// a list of parts (`[(usize, usize, Part)]`).
///
/// The macros tests for equality of string content, parts (*_parts_eq only), and
/// verify the size hint.
///
/// # Examples
///
/// ```
/// # use writeable::Writeable;
/// # use writeable::LengthHint;
/// # use writeable::Part;
/// # use writeable::assert_writeable_eq;
/// # use writeable::assert_writeable_parts_eq;
/// # use std::fmt::{self, Write};
///
/// const WORD: Part = Part {
/// category: "foo",
/// value: "word",
/// };
///
/// struct Demo;
/// impl Writeable for Demo {
/// fn write_to_parts<S: writeable::PartsWrite + ?Sized>(
/// &self,
/// sink: &mut S,
/// ) -> fmt::Result {
/// sink.with_part(WORD, |w| w.write_str("foo"))
/// }
/// fn writeable_length_hint(&self) -> LengthHint {
/// LengthHint::exact(3)
/// }
/// }
///
/// writeable::impl_display_with_writeable!(Demo);
///
/// assert_writeable_eq!(&Demo, "foo");
/// assert_writeable_eq!(&Demo, "foo", "Message: {}", "Hello World");
///
/// assert_writeable_parts_eq!(&Demo, "foo", [(0, 3, WORD)]);
/// assert_writeable_parts_eq!(
/// &Demo,
/// "foo",
/// [(0, 3, WORD)],
/// "Message: {}",
/// "Hello World"
/// );
/// ```
#[macro_export]
macro_rules! assert_writeable_eq {
($actual_writeable:expr, $expected_str:expr $(,)?) => {
$crate::assert_writeable_eq!($actual_writeable, $expected_str, "");
};
($actual_writeable:expr, $expected_str:expr, $($arg:tt)+) => {{
let actual_writeable = &$actual_writeable;
let (actual_str, _) = $crate::writeable_to_parts_for_test(actual_writeable).unwrap();
assert_eq!(actual_str, $expected_str, $($arg)*);
assert_eq!(actual_str, $crate::Writeable::write_to_string(actual_writeable), $($arg)+);
let length_hint = $crate::Writeable::writeable_length_hint(actual_writeable);
assert!(
length_hint.0 <= actual_str.len(),
"hint lower bound {} larger than actual length {}: {}",
length_hint.0, actual_str.len(), format!($($arg)*),
);
if let Some(upper) = length_hint.1 {
assert!(
actual_str.len() <= upper,
"hint upper bound {} smaller than actual length {}: {}",
length_hint.0, actual_str.len(), format!($($arg)*),
);
}
assert_eq!(actual_writeable.to_string(), $expected_str);
}};
}
/// See [`assert_writeable_eq`].
#[macro_export]
macro_rules! assert_writeable_parts_eq {
($actual_writeable:expr, $expected_str:expr, $expected_parts:expr $(,)?) => {
$crate::assert_writeable_parts_eq!($actual_writeable, $expected_str, $expected_parts, "");
};
($actual_writeable:expr, $expected_str:expr, $expected_parts:expr, $($arg:tt)+) => {{
let actual_writeable = &$actual_writeable;
let (actual_str, actual_parts) = $crate::writeable_to_parts_for_test(actual_writeable).unwrap();
assert_eq!(actual_str, $expected_str, $($arg)+);
assert_eq!(actual_str, $crate::Writeable::write_to_string(actual_writeable), $($arg)+);
assert_eq!(actual_parts, $expected_parts, $($arg)+);
let length_hint = $crate::Writeable::writeable_length_hint(actual_writeable);
assert!(length_hint.0 <= actual_str.len(), $($arg)+);
if let Some(upper) = length_hint.1 {
assert!(actual_str.len() <= upper, $($arg)+);
}
assert_eq!(actual_writeable.to_string(), $expected_str);
}};
}
#[doc(hidden)]
#[allow(clippy::type_complexity)]
pub fn writeable_to_parts_for_test<W: Writeable>(
writeable: &W,
) -> Result<(String, Vec<(usize, usize, Part)>), fmt::Error> {
struct State {
string: alloc::string::String,
parts: Vec<(usize, usize, Part)>,
}
impl fmt::Write for State {
fn write_str(&mut self, s: &str) -> fmt::Result {
self.string.write_str(s)
}
fn write_char(&mut self, c: char) -> fmt::Result {
self.string.write_char(c)
}
}
impl PartsWrite for State {
type SubPartsWrite = Self;
fn with_part(
&mut self,
part: Part,
mut f: impl FnMut(&mut Self::SubPartsWrite) -> fmt::Result,
) -> fmt::Result {
let start = self.string.len();
f(self)?;
let end = self.string.len();
if start < end {
self.parts.push((start, end, part));
}
Ok(())
}
}
let mut state = State {
string: alloc::string::String::new(),
parts: Vec::new(),
};
writeable.write_to_parts(&mut state)?;
// Sort by first open and last closed
state
.parts
.sort_unstable_by_key(|(begin, end, _)| (*begin, end.wrapping_neg()));
Ok((state.string, state.parts))
}
|