summaryrefslogtreecommitdiffstats
path: root/lib/compression/lzxpress_huffman.c
diff options
context:
space:
mode:
Diffstat (limited to 'lib/compression/lzxpress_huffman.c')
-rw-r--r--lib/compression/lzxpress_huffman.c2045
1 files changed, 2045 insertions, 0 deletions
diff --git a/lib/compression/lzxpress_huffman.c b/lib/compression/lzxpress_huffman.c
new file mode 100644
index 0000000..e14419c
--- /dev/null
+++ b/lib/compression/lzxpress_huffman.c
@@ -0,0 +1,2045 @@
+/*
+ * Samba compression library - LGPLv3
+ *
+ * Copyright © Catalyst IT 2022
+ *
+ * Written by Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
+ * and Joseph Sutton <josephsutton@catalyst.net.nz>
+ *
+ * ** NOTE! The following LGPL license applies to this file.
+ * ** It does NOT imply that all of Samba is released under the LGPL
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 3 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <talloc.h>
+
+#include "replace.h"
+#include "lzxpress_huffman.h"
+#include "lib/util/stable_sort.h"
+#include "lib/util/debug.h"
+#include "lib/util/byteorder.h"
+#include "lib/util/bytearray.h"
+
+/*
+ * DEBUG_NO_LZ77_MATCHES toggles the encoding of matches as matches. If it is
+ * false the potential match is written as a series of literals, which is a
+ * valid but usually inefficient encoding. This is useful for isolating a
+ * problem to either the LZ77 or the Huffman stage.
+ */
+#ifndef DEBUG_NO_LZ77_MATCHES
+#define DEBUG_NO_LZ77_MATCHES false
+#endif
+
+/*
+ * DEBUG_HUFFMAN_TREE forces the drawing of ascii art huffman trees during
+ * compression and decompression.
+ *
+ * These trees will also be drawn at DEBUG level 10, but that doesn't work
+ * with cmocka tests.
+ */
+#ifndef DEBUG_HUFFMAN_TREE
+#define DEBUG_HUFFMAN_TREE false
+#endif
+
+#if DEBUG_HUFFMAN_TREE
+#define DBG(...) fprintf(stderr, __VA_ARGS__)
+#else
+#define DBG(...) DBG_INFO(__VA_ARGS__)
+#endif
+
+
+#define LZXPRESS_ERROR -1LL
+
+/*
+ * We won't encode a match length longer than MAX_MATCH_LENGTH.
+ *
+ * Reports are that Windows has a limit at 64M.
+ */
+#define MAX_MATCH_LENGTH (64 * 1024 * 1024)
+
+
+struct bitstream {
+ const uint8_t *bytes;
+ size_t byte_pos;
+ size_t byte_size;
+ uint32_t bits;
+ int remaining_bits;
+ uint16_t *table;
+};
+
+
+#if ! defined __has_builtin
+#define __has_builtin(x) 0
+#endif
+
+/*
+ * bitlen_nonzero_16() returns the bit number of the most significant bit, or
+ * put another way, the integer log base 2. Log(0) is undefined; the argument
+ * has to be non-zero!
+ * 1 -> 0
+ * 2,3 -> 1
+ * 4-7 -> 2
+ * 1024 -> 10, etc
+ *
+ * Probably this is handled by a compiler intrinsic function that maps to a
+ * dedicated machine instruction.
+ */
+
+static inline int bitlen_nonzero_16(uint16_t x)
+{
+#if __has_builtin(__builtin_clz)
+
+ /* __builtin_clz returns the number of leading zeros */
+ return (sizeof(unsigned int) * CHAR_BIT) - 1
+ - __builtin_clz((unsigned int) x);
+
+#else
+
+ int count = -1;
+ while(x) {
+ x >>= 1;
+ count++;
+ }
+ return count;
+
+#endif
+}
+
+
+struct lzxhuff_compressor_context {
+ const uint8_t *input_bytes;
+ size_t input_size;
+ size_t input_pos;
+ size_t prev_block_pos;
+ uint8_t *output;
+ size_t available_size;
+ size_t output_pos;
+};
+
+static int compare_huffman_node_count(struct huffman_node *a,
+ struct huffman_node *b)
+{
+ return a->count - b->count;
+}
+
+static int compare_huffman_node_depth(struct huffman_node *a,
+ struct huffman_node *b)
+{
+ int c = a->depth - b->depth;
+ if (c != 0) {
+ return c;
+ }
+ return (int)a->symbol - (int)b->symbol;
+}
+
+
+#define HASH_MASK ((1 << LZX_HUFF_COMP_HASH_BITS) - 1)
+
+static inline uint16_t three_byte_hash(const uint8_t *bytes)
+{
+ /*
+ * MS-XCA says "three byte hash", but does not specify it.
+ *
+ * This one is just cobbled together, but has quite good distribution
+ * in the 12-14 bit forms, which is what we care about most.
+ * e.g: 13 bit: median 2048, min 2022, max 2074, stddev 6.0
+ */
+ uint16_t a = bytes[0];
+ uint16_t b = bytes[1] ^ 0x2e;
+ uint16_t c = bytes[2] ^ 0x55;
+ uint16_t ca = c - a;
+ uint16_t d = ((a + b) << 8) ^ (ca << 5) ^ (c + b) ^ (0xcab + a);
+ return d & HASH_MASK;
+}
+
+
+static inline uint16_t encode_match(size_t len, size_t offset)
+{
+ uint16_t code = 256;
+ code |= MIN(len - 3, 15);
+ code |= bitlen_nonzero_16(offset) << 4;
+ return code;
+}
+
+/*
+ * debug_huffman_tree() uses debug_huffman_tree_print() to draw the Huffman
+ * tree in ascii art.
+ *
+ * Note that the Huffman tree is probably not the same as that implied by the
+ * canonical Huffman encoding that is finally used. That tree would be the
+ * same shape, but with the left and right toggled to sort the branches by
+ * length, after which the symbols for each length sorted by value.
+ */
+
+static void debug_huffman_tree_print(struct huffman_node *node,
+ int *trail, int depth)
+{
+ if (node->left == NULL) {
+ /* time to print a row */
+ int j;
+ bool branched = false;
+ int row[17];
+ char c[100];
+ int s = node->symbol;
+ char code[17];
+ if (depth > 15) {
+ fprintf(stderr,
+ " \033[1;31m Max depth exceeded! (%d)\033[0m "
+ " symbol %#3x claimed depth %d count %d\n",
+ depth, node->symbol, node->depth, node->count);
+ return;
+ }
+ for (j = depth - 1; j >= 0; j--) {
+ if (branched) {
+ if (trail[j] == -1) {
+ row[j] = -3;
+ } else {
+ row[j] = -2;
+ }
+ } else if (trail[j] == -1) {
+ row[j] = -1;
+ branched = true;
+ } else {
+ row[j] = trail[j];
+ }
+ }
+ for (j = 0; j < depth; j++) {
+ switch (row[j]) {
+ case -3:
+ code[j] = '1';
+ fprintf(stderr, " ");
+ break;
+ case -2:
+ code[j] = '0';
+ fprintf(stderr, " │ ");
+ break;
+ case -1:
+ code[j] = '1';
+ fprintf(stderr, " ╰─");
+ break;
+ default:
+ code[j] = '0';
+ fprintf(stderr, "%5d─┬─", row[j]);
+ break;
+ }
+ }
+ code[depth] = 0;
+ if (s < 32) {
+ snprintf(c, sizeof(c),
+ "\033[1;32m%02x\033[0m \033[1;33m%c%c%c\033[0m",
+ s,
+ 0xE2, 0x90, 0x80 + s); /* utf-8 for symbol */
+ } else if (s < 127) {
+ snprintf(c, sizeof(c),
+ "\033[1;32m%2x\033[0m '\033[10;32m%c\033[0m'",
+ s, s);
+ } else if (s < 256) {
+ snprintf(c, sizeof(c), "\033[1;32m%2x\033[0m", s);
+ } else {
+ uint16_t len = (s & 15) + 3;
+ uint16_t dbits = ((s >> 4) & 15) + 1;
+ snprintf(c, sizeof(c),
+ " \033[0;33mlen:%2d%s, "
+ "dist:%d-%d \033[0m \033[1;32m%3x\033[0m%s",
+ len,
+ len == 18 ? "+" : "",
+ 1 << (dbits - 1),
+ (1 << dbits) - 1,
+ s,
+ s == 256 ? " \033[1;31mEOF\033[0m" : "");
+
+ }
+
+ fprintf(stderr, "──%5d %s \033[2;37m%s\033[0m\n",
+ node->count, c, code);
+ return;
+ }
+ trail[depth] = node->count;
+ debug_huffman_tree_print(node->left, trail, depth + 1);
+ trail[depth] = -1;
+ debug_huffman_tree_print(node->right, trail, depth + 1);
+}
+
+
+/*
+ * If DEBUG_HUFFMAN_TREE is defined true, debug_huffman_tree()
+ * will print a tree looking something like this:
+ *
+ * 7─┬─── 3 len:18+, dist:1-1 10f 0
+ * ╰─ 4─┬─ 2─┬─── 1 61 'a' 100
+ * │ ╰─── 1 62 'b' 101
+ * ╰─ 2─┬─── 1 63 'c' 110
+ * ╰─── 1 len: 3, dist:1-1 100 EOF 111
+ *
+ * This is based off a Huffman root node, and the tree may not be the same as
+ * the canonical tree.
+ */
+static void debug_huffman_tree(struct huffman_node *root)
+{
+ int trail[17];
+ debug_huffman_tree_print(root, trail, 0);
+}
+
+
+/*
+ * If DEBUG_HUFFMAN_TREE is defined true, debug_huffman_tree_from_table()
+ * will print something like this based on a decoding symbol table.
+ *
+ * Tree from decoding table 9 nodes → 5 codes
+ * 10000─┬─── 5000 len:18+, dist:1-1 10f 0
+ * ╰─ 5000─┬─ 2500─┬─── 1250 61 'a' 100
+ * │ ╰─── 1250 62 'b' 101
+ * ╰─ 2500─┬─── 1250 63 'c' 110
+ * ╰─── 1250 len: 3, dist:1-1 100 EOF 111
+ *
+ * This is the canonical form of the Huffman tree where the actual counts
+ * aren't known (we use "10000" to help indicate relative frequencies).
+ */
+static void debug_huffman_tree_from_table(uint16_t *table)
+{
+ int trail[17];
+ struct huffman_node nodes[1024] = {{0}};
+ uint16_t codes[1024];
+ size_t n = 1;
+ size_t i = 0;
+ codes[0] = 0;
+ nodes[0].count = 10000;
+
+ while (i < n) {
+ uint16_t index = codes[i];
+ struct huffman_node *node = &nodes[i];
+ if (table[index] == 0xffff) {
+ /* internal node */
+ index <<= 1;
+ /* left */
+ index++;
+ codes[n] = index;
+ node->left = nodes + n;
+ nodes[n].count = node->count >> 1;
+ n++;
+ /*right*/
+ index++;
+ codes[n] = index;
+ node->right = nodes + n;
+ nodes[n].count = node->count >> 1;
+ n++;
+ } else {
+ /* leaf node */
+ node->symbol = table[index] & 511;
+ }
+ i++;
+ }
+
+ fprintf(stderr,
+ "\033[1;34m Tree from decoding table\033[0m "
+ "%zu nodes → %zu codes\n",
+ n, (n + 1) / 2);
+ debug_huffman_tree_print(nodes, trail, 0);
+}
+
+
+static bool depth_walk(struct huffman_node *n, uint32_t depth)
+{
+ bool ok;
+ if (n->left == NULL) {
+ /* this is a leaf, record the depth */
+ n->depth = depth;
+ return true;
+ }
+ if (depth > 14) {
+ return false;
+ }
+ ok = (depth_walk(n->left, depth + 1) &&
+ depth_walk(n->right, depth + 1));
+
+ return ok;
+}
+
+
+static bool check_and_record_depths(struct huffman_node *root)
+{
+ return depth_walk(root, 0);
+}
+
+
+static bool encode_values(struct huffman_node *leaves,
+ size_t n_leaves,
+ uint16_t symbol_values[512])
+{
+ size_t i;
+ /*
+ * See, we have a leading 1 in our internal code representation, which
+ * indicates the code length.
+ */
+ uint32_t code = 1;
+ uint32_t code_len = 0;
+ memset(symbol_values, 0, sizeof(uint16_t) * 512);
+ for (i = 0; i < n_leaves; i++) {
+ code <<= leaves[i].depth - code_len;
+ code_len = leaves[i].depth;
+
+ symbol_values[leaves[i].symbol] = code;
+ code++;
+ }
+ /*
+ * The last code should be 11111... with code_len + 1 ones. The final
+ * code++ will wrap this round to 1000... with code_len + 1 zeroes.
+ */
+
+ if (code != 2 << code_len) {
+ return false;
+ }
+ return true;
+}
+
+
+static int generate_huffman_codes(struct huffman_node *leaf_nodes,
+ struct huffman_node *internal_nodes,
+ uint16_t symbol_values[512])
+{
+ size_t head_leaf = 0;
+ size_t head_branch = 0;
+ size_t tail_branch = 0;
+ struct huffman_node *huffman_root = NULL;
+ size_t i, j;
+ size_t n_leaves = 0;
+
+ /*
+ * Before we sort the nodes, we can eliminate the unused ones.
+ */
+ for (i = 0; i < 512; i++) {
+ if (leaf_nodes[i].count) {
+ leaf_nodes[n_leaves] = leaf_nodes[i];
+ n_leaves++;
+ }
+ }
+ if (n_leaves == 0) {
+ return LZXPRESS_ERROR;
+ }
+ if (n_leaves == 1) {
+ /*
+ * There is *almost* no way this should happen, and it would
+ * ruin the tree (because the shortest possible codes are 1
+ * bit long, and there are two of them).
+ *
+ * The only way to get here is in an internal block in a
+ * 3-or-more block message (i.e. > 128k), which consists
+ * entirely of a match starting in the previous block (if it
+ * was the end block, it would have the EOF symbol).
+ *
+ * What we do is add a dummy symbol which is this one XOR 256.
+ * It won't be used in the stream but will balance the tree.
+ */
+ leaf_nodes[1] = leaf_nodes[0];
+ leaf_nodes[1].symbol ^= 0x100;
+ n_leaves = 2;
+ }
+
+ /* note, in sort we're using internal_nodes as auxiliary space */
+ stable_sort(leaf_nodes,
+ internal_nodes,
+ n_leaves,
+ sizeof(struct huffman_node),
+ (samba_compare_fn_t)compare_huffman_node_count);
+
+ /*
+ * This outer loop is for re-quantizing the counts if the tree is too
+ * tall (>15), which we need to do because the final encoding can't
+ * express a tree that deep.
+ *
+ * In theory, this should be a 'while (true)' loop, but we chicken
+ * out with 10 iterations, just in case.
+ *
+ * In practice it will almost always resolve in the first round; if
+ * not then, in the second or third. Remember we'll looking at 64k or
+ * less, so the rarest we can have is 1 in 64k; each round of
+ * quantization effectively doubles its frequency to 1 in 32k, 1 in
+ * 16k, etc, until we're treating the rare symbol as actually quite
+ * common.
+ */
+ for (j = 0; j < 10; j++) {
+ bool less_than_15_bits;
+ while (true) {
+ struct huffman_node *a = NULL;
+ struct huffman_node *b = NULL;
+ size_t leaf_len = n_leaves - head_leaf;
+ size_t internal_len = tail_branch - head_branch;
+
+ if (leaf_len + internal_len == 1) {
+ /*
+ * We have the complete tree. The root will be
+ * an internal node unless there is just one
+ * symbol, which is already impossible.
+ */
+ if (unlikely(leaf_len == 1)) {
+ return LZXPRESS_ERROR;
+ } else {
+ huffman_root = \
+ &internal_nodes[head_branch];
+ }
+ break;
+ }
+ /*
+ * We know here we have at least two nodes, and we
+ * want to select the two lowest scoring ones. Those
+ * have to be either a) the head of each queue, or b)
+ * the first two nodes of either queue.
+ *
+ * The complicating factors are: a) we need to check
+ * the length of each queue, and b) in the case of
+ * ties, we prefer to pair leaves with leaves.
+ *
+ * Note a complication we don't have: the leaf node
+ * queue never grows, and the subtree queue starts
+ * empty and cannot grow beyond n - 1. It feeds on
+ * itself. We don't need to think about overflow.
+ */
+ if (leaf_len == 0) {
+ /* two from subtrees */
+ a = &internal_nodes[head_branch];
+ b = &internal_nodes[head_branch + 1];
+ head_branch += 2;
+ } else if (internal_len == 0) {
+ /* two from nodes */
+ a = &leaf_nodes[head_leaf];
+ b = &leaf_nodes[head_leaf + 1];
+ head_leaf += 2;
+ } else if (leaf_len == 1 && internal_len == 1) {
+ /* one of each */
+ a = &leaf_nodes[head_leaf];
+ b = &internal_nodes[head_branch];
+ head_branch++;
+ head_leaf++;
+ } else {
+ /*
+ * Take the lowest head, twice, checking for
+ * length after taking the first one.
+ */
+ if (leaf_nodes[head_leaf].count >
+ internal_nodes[head_branch].count) {
+ a = &internal_nodes[head_branch];
+ head_branch++;
+ if (internal_len == 1) {
+ b = &leaf_nodes[head_leaf];
+ head_leaf++;
+ goto done;
+ }
+ } else {
+ a = &leaf_nodes[head_leaf];
+ head_leaf++;
+ if (leaf_len == 1) {
+ b = &internal_nodes[head_branch];
+ head_branch++;
+ goto done;
+ }
+ }
+ /* the other node */
+ if (leaf_nodes[head_leaf].count >
+ internal_nodes[head_branch].count) {
+ b = &internal_nodes[head_branch];
+ head_branch++;
+ } else {
+ b = &leaf_nodes[head_leaf];
+ head_leaf++;
+ }
+ }
+ done:
+ /*
+ * Now we add a new node to the subtrees list that
+ * combines the score of node_a and node_b, and points
+ * to them as children.
+ */
+ internal_nodes[tail_branch].count = a->count + b->count;
+ internal_nodes[tail_branch].left = a;
+ internal_nodes[tail_branch].right = b;
+ tail_branch++;
+ if (tail_branch == n_leaves) {
+ /*
+ * We're not getting here, no way, never ever.
+ * Unless we made a terrible mistake.
+ *
+ * That is, in a binary tree with n leaves,
+ * there are ALWAYS n-1 internal nodes.
+ */
+ return LZXPRESS_ERROR;
+ }
+ }
+ if (CHECK_DEBUGLVL(10) || DEBUG_HUFFMAN_TREE) {
+ debug_huffman_tree(huffman_root);
+ }
+ /*
+ * We have a tree, and need to turn it into a lookup table,
+ * and see if it is shallow enough (<= 15).
+ */
+ less_than_15_bits = check_and_record_depths(huffman_root);
+ if (less_than_15_bits) {
+ /*
+ * Now the leaf nodes know how deep they are, and we
+ * no longer need the internal nodes.
+ *
+ * We need to sort the nodes of equal depth, so that
+ * they are sorted by depth first, and symbol value
+ * second. The internal_nodes can again be auxiliary
+ * memory.
+ */
+ stable_sort(
+ leaf_nodes,
+ internal_nodes,
+ n_leaves,
+ sizeof(struct huffman_node),
+ (samba_compare_fn_t)compare_huffman_node_depth);
+
+ encode_values(leaf_nodes, n_leaves, symbol_values);
+
+ return n_leaves;
+ }
+
+ /*
+ * requantize by halving and rounding up, so that small counts
+ * become relatively bigger. This will lead to a flatter tree.
+ */
+ for (i = 0; i < n_leaves; i++) {
+ leaf_nodes[i].count >>= 1;
+ leaf_nodes[i].count += 1;
+ }
+ head_leaf = 0;
+ head_branch = 0;
+ tail_branch = 0;
+ }
+ return LZXPRESS_ERROR;
+}
+
+/*
+ * LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS is how far ahead to search in the
+ * circular hash table for a match, before we give up. A bigger number will
+ * generally lead to better but slower compression, but a stupidly big number
+ * will just be worse.
+ *
+ * If you're fiddling with this, consider also fiddling with
+ * LZX_HUFF_COMP_HASH_BITS.
+ */
+#define LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS 5
+
+static inline void store_match(uint16_t *hash_table,
+ uint16_t h,
+ uint16_t offset)
+{
+ int i;
+ uint16_t o = hash_table[h];
+ uint16_t h2;
+ uint16_t worst_h;
+ int worst_score;
+
+ if (o == 0xffff) {
+ /* there is nothing there yet */
+ hash_table[h] = offset;
+ return;
+ }
+ for (i = 1; i < LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS; i++) {
+ h2 = (h + i) & HASH_MASK;
+ if (hash_table[h2] == 0xffff) {
+ hash_table[h2] = offset;
+ return;
+ }
+ }
+ /*
+ * There are no slots, but we really want to store this, so we'll kick
+ * out the one with the longest distance.
+ */
+ worst_h = h;
+ worst_score = offset - o;
+ for (i = 1; i < LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS; i++) {
+ int score;
+ h2 = (h + i) & HASH_MASK;
+ o = hash_table[h2];
+ score = offset - o;
+ if (score > worst_score) {
+ worst_score = score;
+ worst_h = h2;
+ }
+ }
+ hash_table[worst_h] = offset;
+}
+
+
+/*
+ * Yes, struct match looks a lot like a DATA_BLOB.
+ */
+struct match {
+ const uint8_t *there;
+ size_t length;
+};
+
+
+static inline struct match lookup_match(uint16_t *hash_table,
+ uint16_t h,
+ const uint8_t *data,
+ const uint8_t *here,
+ size_t max_len)
+{
+ int i;
+ uint16_t o = hash_table[h];
+ uint16_t h2;
+ size_t len;
+ const uint8_t *there = NULL;
+ struct match best = {0};
+
+ for (i = 0; i < LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS; i++) {
+ h2 = (h + i) & HASH_MASK;
+ o = hash_table[h2];
+ if (o == 0xffff) {
+ /*
+ * in setting this, we would never have stepped over
+ * an 0xffff, so we won't now.
+ */
+ break;
+ }
+ there = data + o;
+ if (here - there > 65534 || there > here) {
+ continue;
+ }
+
+ /*
+ * When we already have a long match, we can try to avoid
+ * measuring out another long, but shorter match.
+ */
+ if (best.length > 1000 &&
+ there[best.length - 1] != best.there[best.length - 1]) {
+ continue;
+ }
+
+ for (len = 0;
+ len < max_len && here[len] == there[len];
+ len++) {
+ /* counting */
+ }
+ if (len > 2) {
+ /*
+ * As a tiebreaker, we prefer the closer match which
+ * is likely to encode smaller (and certainly no worse).
+ */
+ if (len > best.length ||
+ (len == best.length && there > best.there)) {
+ best.length = len;
+ best.there = there;
+ }
+ }
+ }
+ return best;
+}
+
+
+
+static ssize_t lz77_encode_block(struct lzxhuff_compressor_context *cmp_ctx,
+ struct lzxhuff_compressor_mem *cmp_mem,
+ uint16_t *hash_table,
+ uint16_t *prev_hash_table)
+{
+ uint16_t *intermediate = cmp_mem->intermediate;
+ struct huffman_node *leaf_nodes = cmp_mem->leaf_nodes;
+ uint16_t *symbol_values = cmp_mem->symbol_values;
+ size_t i, j, intermediate_len;
+ const uint8_t *data = cmp_ctx->input_bytes + cmp_ctx->input_pos;
+ const uint8_t *prev_block = NULL;
+ size_t remaining_size = cmp_ctx->input_size - cmp_ctx->input_pos;
+ size_t block_end = MIN(65536, remaining_size);
+ struct match match;
+ int n_symbols;
+
+ if (cmp_ctx->input_size < cmp_ctx->input_pos) {
+ return LZXPRESS_ERROR;
+ }
+
+ if (cmp_ctx->prev_block_pos != cmp_ctx->input_pos) {
+ prev_block = cmp_ctx->input_bytes + cmp_ctx->prev_block_pos;
+ } else if (prev_hash_table != NULL) {
+ /* we've got confused! hash and block should go together */
+ return LZXPRESS_ERROR;
+ }
+
+ /*
+ * leaf_nodes is used to count the symbols seen, for later Huffman
+ * encoding.
+ */
+ for (i = 0; i < 512; i++) {
+ leaf_nodes[i] = (struct huffman_node) {
+ .symbol = i
+ };
+ }
+
+ j = 0;
+
+ if (remaining_size < 41 || DEBUG_NO_LZ77_MATCHES) {
+ /*
+ * There is no point doing a hash table and looking for
+ * matches in this tiny block (remembering we are committed to
+ * using 32 bits, so there's a good chance we wouldn't even
+ * save a byte). The threshold of 41 matches Windows.
+ * If remaining_size < 3, we *can't* do the hash.
+ */
+ i = 0;
+ } else {
+ /*
+ * We use 0xffff as the unset value for table, because it is
+ * not a valid match offset (and 0x0 is).
+ */
+ memset(hash_table, 0xff, sizeof(cmp_mem->hash_table1));
+
+ for (i = 0; i <= block_end - 3; i++) {
+ uint16_t code;
+ const uint8_t *here = data + i;
+ uint16_t h = three_byte_hash(here);
+ size_t max_len = MIN(remaining_size - i, MAX_MATCH_LENGTH);
+ match = lookup_match(hash_table,
+ h,
+ data,
+ here,
+ max_len);
+
+ if (match.there == NULL && prev_hash_table != NULL) {
+ /*
+ * If this is not the first block,
+ * backreferences can look into the previous
+ * block (but only as far as 65535 bytes, so
+ * the end of this block cannot see the start
+ * of the last one).
+ */
+ match = lookup_match(prev_hash_table,
+ h,
+ prev_block,
+ here,
+ remaining_size - i);
+ }
+
+ store_match(hash_table, h, i);
+
+ if (match.there == NULL) {
+ /* add a literal and move on. */
+ uint8_t c = data[i];
+ leaf_nodes[c].count++;
+ intermediate[j] = c;
+ j++;
+ continue;
+ }
+
+ /* a real match */
+ if (match.length <= 65538) {
+ intermediate[j] = 0xffff;
+ intermediate[j + 1] = match.length - 3;
+ intermediate[j + 2] = here - match.there;
+ j += 3;
+ } else {
+ size_t m = match.length - 3;
+ intermediate[j] = 0xfffe;
+ intermediate[j + 1] = m & 0xffff;
+ intermediate[j + 2] = m >> 16;
+ intermediate[j + 3] = here - match.there;
+ j += 4;
+ }
+ code = encode_match(match.length, here - match.there);
+ leaf_nodes[code].count++;
+ i += match.length - 1; /* `- 1` for the loop i++ */
+ /*
+ * A match can take us past the intended block length,
+ * extending the block. We don't need to do anything
+ * special for this case -- the loops will naturally
+ * do the right thing.
+ */
+ }
+ }
+
+ /*
+ * There might be some bytes at the end.
+ */
+ for (; i < block_end; i++) {
+ leaf_nodes[data[i]].count++;
+ intermediate[j] = data[i];
+ j++;
+ }
+
+ if (i == remaining_size) {
+ /* add a trailing EOF marker (256) */
+ intermediate[j] = 0xffff;
+ intermediate[j + 1] = 0;
+ intermediate[j + 2] = 1;
+ j += 3;
+ leaf_nodes[256].count++;
+ }
+
+ intermediate_len = j;
+
+ cmp_ctx->prev_block_pos = cmp_ctx->input_pos;
+ cmp_ctx->input_pos += i;
+
+ /* fill in the symbols table */
+ n_symbols = generate_huffman_codes(leaf_nodes,
+ cmp_mem->internal_nodes,
+ symbol_values);
+ if (n_symbols < 0) {
+ return n_symbols;
+ }
+
+ return intermediate_len;
+}
+
+
+
+static ssize_t write_huffman_table(uint16_t symbol_values[512],
+ uint8_t *output,
+ size_t available_size)
+{
+ size_t i;
+
+ if (available_size < 256) {
+ return LZXPRESS_ERROR;
+ }
+
+ for (i = 0; i < 256; i++) {
+ uint8_t b = 0;
+ uint16_t even = symbol_values[i * 2];
+ uint16_t odd = symbol_values[i * 2 + 1];
+ if (even != 0) {
+ b = bitlen_nonzero_16(even);
+ }
+ if (odd != 0) {
+ b |= bitlen_nonzero_16(odd) << 4;
+ }
+ output[i] = b;
+ }
+ return i;
+}
+
+
+struct write_context {
+ uint8_t *dest;
+ size_t dest_len;
+ size_t head; /* where lengths go */
+ size_t next_code; /* where symbol stream goes */
+ size_t pending_next_code; /* will be next_code */
+ unsigned bit_len;
+ uint32_t bits;
+};
+
+/*
+ * Write out 16 bits, little-endian, for write_huffman_codes()
+ *
+ * As you'll notice, there's a bit to do.
+ *
+ * We are collecting up bits in a uint32_t, then when there are 16 of them we
+ * write out a word into the stream, using a trio of offsets (wc->next_code,
+ * wc->pending_next_code, and wc->head) which dance around ensuring that the
+ * bitstream and the interspersed lengths are in the right places relative to
+ * each other.
+ */
+
+static inline bool write_bits(struct write_context *wc,
+ uint16_t code, uint16_t length)
+{
+ wc->bits <<= length;
+ wc->bits |= code;
+ wc->bit_len += length;
+ if (wc->bit_len > 16) {
+ uint32_t w = wc->bits >> (wc->bit_len - 16);
+ wc->bit_len -= 16;
+ if (wc->next_code + 2 > wc->dest_len ||
+ unlikely(wc->bit_len > 16)) {
+ return false;
+ }
+ wc->dest[wc->next_code] = w & 0xff;
+ wc->dest[wc->next_code + 1] = (w >> 8) & 0xff;
+ wc->next_code = wc->pending_next_code;
+ wc->pending_next_code = wc->head;
+ wc->head += 2;
+ }
+ return true;
+}
+
+
+static inline bool write_code(struct write_context *wc, uint16_t code)
+{
+ int code_bit_len = bitlen_nonzero_16(code);
+ if (unlikely(code == 0)) {
+ return false;
+ }
+ code &= (1 << code_bit_len) - 1;
+ return write_bits(wc, code, code_bit_len);
+}
+
+static inline bool write_byte(struct write_context *wc, uint8_t byte)
+{
+ if (wc->head + 1 > wc->dest_len) {
+ return false;
+ }
+ wc->dest[wc->head] = byte;
+ wc->head++;
+ return true;
+}
+
+
+static inline bool write_long_len(struct write_context *wc, size_t len)
+{
+ if (len < 65535) {
+ if (wc->head + 3 > wc->dest_len) {
+ return false;
+ }
+ wc->dest[wc->head] = 255;
+ wc->dest[wc->head + 1] = len & 255;
+ wc->dest[wc->head + 2] = len >> 8;
+ wc->head += 3;
+ } else {
+ if (wc->head + 7 > wc->dest_len) {
+ return false;
+ }
+ wc->dest[wc->head] = 255;
+ wc->dest[wc->head + 1] = 0;
+ wc->dest[wc->head + 2] = 0;
+ wc->dest[wc->head + 3] = len & 255;
+ wc->dest[wc->head + 4] = (len >> 8) & 255;
+ wc->dest[wc->head + 5] = (len >> 16) & 255;
+ wc->dest[wc->head + 6] = (len >> 24) & 255;
+ wc->head += 7;
+ }
+ return true;
+}
+
+static ssize_t write_compressed_bytes(uint16_t symbol_values[512],
+ uint16_t *intermediate,
+ size_t intermediate_len,
+ uint8_t *dest,
+ size_t dest_len)
+{
+ bool ok;
+ size_t i;
+ size_t end;
+ struct write_context wc = {
+ .head = 4,
+ .pending_next_code = 2,
+ .dest = dest,
+ .dest_len = dest_len
+ };
+ for (i = 0; i < intermediate_len; i++) {
+ uint16_t c = intermediate[i];
+ size_t len;
+ uint16_t distance;
+ uint16_t code_len = 0;
+ uint16_t code_dist = 0;
+ if (c < 256) {
+ ok = write_code(&wc, symbol_values[c]);
+ if (!ok) {
+ return LZXPRESS_ERROR;
+ }
+ continue;
+ }
+
+ if (c == 0xfffe) {
+ if (i > intermediate_len - 4) {
+ return LZXPRESS_ERROR;
+ }
+
+ len = intermediate[i + 1];
+ len |= (uint32_t)intermediate[i + 2] << 16;
+ distance = intermediate[i + 3];
+ i += 3;
+ } else if (c == 0xffff) {
+ if (i > intermediate_len - 3) {
+ return LZXPRESS_ERROR;
+ }
+ len = intermediate[i + 1];
+ distance = intermediate[i + 2];
+ i += 2;
+ } else {
+ return LZXPRESS_ERROR;
+ }
+ if (unlikely(distance == 0)) {
+ return LZXPRESS_ERROR;
+ }
+ /* len has already had 3 subtracted */
+ if (len >= 15) {
+ /*
+ * We are going to need to write extra length
+ * bytes into the stream, but we don't do it
+ * now, we do it after the code has been
+ * written (and before the distance bits).
+ */
+ code_len = 15;
+ } else {
+ code_len = len;
+ }
+ code_dist = bitlen_nonzero_16(distance);
+ c = 256 | (code_dist << 4) | code_len;
+ if (c > 511) {
+ return LZXPRESS_ERROR;
+ }
+
+ ok = write_code(&wc, symbol_values[c]);
+ if (!ok) {
+ return LZXPRESS_ERROR;
+ }
+
+ if (code_len == 15) {
+ if (len >= 270) {
+ ok = write_long_len(&wc, len);
+ } else {
+ ok = write_byte(&wc, len - 15);
+ }
+ if (! ok) {
+ return LZXPRESS_ERROR;
+ }
+ }
+ if (code_dist != 0) {
+ uint16_t dist_bits = distance - (1 << code_dist);
+ ok = write_bits(&wc, dist_bits, code_dist);
+ if (!ok) {
+ return LZXPRESS_ERROR;
+ }
+ }
+ }
+ /*
+ * There are some intricacies around flushing the bits and returning
+ * the length.
+ *
+ * If the returned length is not exactly right and there is another
+ * block, that block will read its huffman table from the wrong place,
+ * and have all the symbol codes out by a multiple of 4.
+ */
+ end = wc.head;
+ if (wc.bit_len == 0) {
+ end -= 2;
+ }
+ ok = write_bits(&wc, 0, 16 - wc.bit_len);
+ if (!ok) {
+ return LZXPRESS_ERROR;
+ }
+ for (i = 0; i < 2; i++) {
+ /*
+ * Flush out the bits with zeroes. It doesn't matter if we do
+ * a round too many, as we have buffer space, and have already
+ * determined the returned length (end).
+ */
+ ok = write_bits(&wc, 0, 16);
+ if (!ok) {
+ return LZXPRESS_ERROR;
+ }
+ }
+ return end;
+}
+
+
+static ssize_t lzx_huffman_compress_block(struct lzxhuff_compressor_context *cmp_ctx,
+ struct lzxhuff_compressor_mem *cmp_mem,
+ size_t block_no)
+{
+ ssize_t intermediate_size;
+ uint16_t *hash_table = NULL;
+ uint16_t *back_window_hash_table = NULL;
+ ssize_t bytes_written;
+
+ if (cmp_ctx->available_size - cmp_ctx->output_pos < 260) {
+ /* huffman block + 4 bytes */
+ return LZXPRESS_ERROR;
+ }
+
+ /*
+ * For LZ77 compression, we keep a hash table for the previous block,
+ * via alternation after the first block.
+ *
+ * LZ77 writes into the intermediate buffer in the cmp_mem context.
+ */
+ if (block_no == 0) {
+ hash_table = cmp_mem->hash_table1;
+ back_window_hash_table = NULL;
+ } else if (block_no & 1) {
+ hash_table = cmp_mem->hash_table2;
+ back_window_hash_table = cmp_mem->hash_table1;
+ } else {
+ hash_table = cmp_mem->hash_table1;
+ back_window_hash_table = cmp_mem->hash_table2;
+ }
+
+ intermediate_size = lz77_encode_block(cmp_ctx,
+ cmp_mem,
+ hash_table,
+ back_window_hash_table);
+
+ if (intermediate_size < 0) {
+ return intermediate_size;
+ }
+
+ /*
+ * Write the 256 byte Huffman table, based on the counts gained in
+ * LZ77 phase.
+ */
+ bytes_written = write_huffman_table(
+ cmp_mem->symbol_values,
+ cmp_ctx->output + cmp_ctx->output_pos,
+ cmp_ctx->available_size - cmp_ctx->output_pos);
+
+ if (bytes_written != 256) {
+ return LZXPRESS_ERROR;
+ }
+ cmp_ctx->output_pos += 256;
+
+ /*
+ * Write the compressed bytes using the LZ77 matches and Huffman codes
+ * worked out in the previous steps.
+ */
+ bytes_written = write_compressed_bytes(
+ cmp_mem->symbol_values,
+ cmp_mem->intermediate,
+ intermediate_size,
+ cmp_ctx->output + cmp_ctx->output_pos,
+ cmp_ctx->available_size - cmp_ctx->output_pos);
+
+ if (bytes_written < 0) {
+ return bytes_written;
+ }
+
+ cmp_ctx->output_pos += bytes_written;
+ return bytes_written;
+}
+
+/*
+ * lzxpress_huffman_max_compressed_size()
+ *
+ * Return the most bytes the compression can take, to allow
+ * pre-allocation.
+ */
+size_t lzxpress_huffman_max_compressed_size(size_t input_size)
+{
+ /*
+ * In the worst case, the output size should be about the same as the
+ * input size, plus the 256 byte header per 64k block. We aim for
+ * ample, but within the order of magnitude.
+ */
+ return input_size + (input_size / 8) + 270;
+}
+
+/*
+ * lzxpress_huffman_compress_talloc()
+ *
+ * This is the convenience function that allocates the compressor context and
+ * output memory for you. The return value is the number of bytes written to
+ * the location indicated by the output pointer.
+ *
+ * The maximum input_size is effectively around 227MB due to the need to guess
+ * an upper bound on the output size that hits an internal limitation in
+ * talloc.
+ *
+ * @param mem_ctx TALLOC_CTX parent for the compressed buffer.
+ * @param input_bytes memory to be compressed.
+ * @param input_size length of the input buffer.
+ * @param output destination pointer for the compressed data.
+ *
+ * @return the number of bytes written or -1 on error.
+ */
+
+ssize_t lzxpress_huffman_compress_talloc(TALLOC_CTX *mem_ctx,
+ const uint8_t *input_bytes,
+ size_t input_size,
+ uint8_t **output)
+{
+ struct lzxhuff_compressor_mem *cmp = NULL;
+ size_t alloc_size = lzxpress_huffman_max_compressed_size(input_size);
+
+ ssize_t output_size;
+
+ *output = talloc_array(mem_ctx, uint8_t, alloc_size);
+ if (*output == NULL) {
+ return LZXPRESS_ERROR;
+ }
+
+ cmp = talloc(mem_ctx, struct lzxhuff_compressor_mem);
+ if (cmp == NULL) {
+ TALLOC_FREE(*output);
+ return LZXPRESS_ERROR;
+ }
+
+ output_size = lzxpress_huffman_compress(cmp,
+ input_bytes,
+ input_size,
+ *output,
+ alloc_size);
+
+ talloc_free(cmp);
+
+ if (output_size < 0) {
+ TALLOC_FREE(*output);
+ return LZXPRESS_ERROR;
+ }
+
+ *output = talloc_realloc(mem_ctx, *output, uint8_t, output_size);
+ if (*output == NULL) {
+ return LZXPRESS_ERROR;
+ }
+
+ return output_size;
+}
+
+/*
+ * lzxpress_huffman_compress()
+ *
+ * This is the inconvenience function, slightly faster and fiddlier than
+ * lzxpress_huffman_compress_talloc().
+ *
+ * To use this, you need to have allocated (but not initialised) a `struct
+ * lzxhuff_compressor_mem`, and an output buffer. If the buffer is not big
+ * enough (per `output_size`), you'll get a negative return value, otherwise
+ * the number of bytes actually consumed, which will always be at least 260.
+ *
+ * The `struct lzxhuff_compressor_mem` is reusable -- it is basically a
+ * collection of uninitialised memory buffers. The total size is less than
+ * 150k, so stack allocation is plausible.
+ *
+ * input_size and available_size are limited to the minimum of UINT32_MAX and
+ * SSIZE_MAX. On 64 bit machines that will be UINT32_MAX, or 4GB.
+ *
+ * @param cmp_mem a struct lzxhuff_compressor_mem.
+ * @param input_bytes memory to be compressed.
+ * @param input_size length of the input buffer.
+ * @param output destination for the compressed data.
+ * @param available_size allocated output bytes.
+ *
+ * @return the number of bytes written or -1 on error.
+ */
+ssize_t lzxpress_huffman_compress(struct lzxhuff_compressor_mem *cmp_mem,
+ const uint8_t *input_bytes,
+ size_t input_size,
+ uint8_t *output,
+ size_t available_size)
+{
+ size_t i = 0;
+ struct lzxhuff_compressor_context cmp_ctx = {
+ .input_bytes = input_bytes,
+ .input_size = input_size,
+ .input_pos = 0,
+ .prev_block_pos = 0,
+ .output = output,
+ .available_size = available_size,
+ .output_pos = 0
+ };
+
+ if (input_size == 0) {
+ /*
+ * We can't deal with this for a number of reasons (e.g. it
+ * breaks the Huffman tree), and the output will be infinitely
+ * bigger than the input. The caller needs to go and think
+ * about what they're trying to do here.
+ */
+ return LZXPRESS_ERROR;
+ }
+
+ if (input_size > SSIZE_MAX ||
+ input_size > UINT32_MAX ||
+ available_size > SSIZE_MAX ||
+ available_size > UINT32_MAX ||
+ available_size == 0) {
+ /*
+ * We use negative ssize_t to return errors, which is limiting
+ * on 32 bit machines; otherwise we adhere to Microsoft's 4GB
+ * limit.
+ *
+ * lzxpress_huffman_compress_talloc() will not get this far,
+ * having already have failed on talloc's 256 MB limit.
+ */
+ return LZXPRESS_ERROR;
+ }
+
+ if (cmp_mem == NULL ||
+ output == NULL ||
+ input_bytes == NULL) {
+ return LZXPRESS_ERROR;
+ }
+
+ while (cmp_ctx.input_pos < cmp_ctx.input_size) {
+ ssize_t ret;
+ ret = lzx_huffman_compress_block(&cmp_ctx,
+ cmp_mem,
+ i);
+ if (ret < 0) {
+ return ret;
+ }
+ i++;
+ }
+
+ return cmp_ctx.output_pos;
+}
+
+static void debug_tree_codes(struct bitstream *input)
+{
+ /*
+ */
+ size_t head = 0;
+ size_t tail = 2;
+ size_t ffff_count = 0;
+ struct q {
+ uint16_t tree_code;
+ uint16_t code_code;
+ };
+ struct q queue[65536];
+ char bits[17];
+ uint16_t *t = input->table;
+ queue[0].tree_code = 1;
+ queue[0].code_code = 2;
+ queue[1].tree_code = 2;
+ queue[1].code_code = 3;
+ while (head < tail) {
+ struct q q = queue[head];
+ uint16_t x = t[q.tree_code];
+ if (x != 0xffff) {
+ int k;
+ uint16_t j = q.code_code;
+ size_t offset = bitlen_nonzero_16(j) - 1;
+ if (unlikely(j == 0)) {
+ DBG("BROKEN code is 0!\n");
+ return;
+ }
+
+ for (k = 0; k <= offset; k++) {
+ bool b = (j >> (offset - k)) & 1;
+ bits[k] = b ? '1' : '0';
+ }
+ bits[k] = 0;
+ DBG("%03x %s\n", x & 511, bits);
+ head++;
+ continue;
+ }
+ ffff_count++;
+ queue[tail].tree_code = q.tree_code * 2 + 1;
+ queue[tail].code_code = q.code_code * 2;
+ tail++;
+ queue[tail].tree_code = q.tree_code * 2 + 1 + 1;
+ queue[tail].code_code = q.code_code * 2 + 1;
+ tail++;
+ head++;
+ }
+ DBG("0xffff count: %zu\n", ffff_count);
+}
+
+/**
+ * Determines the sort order of one prefix_code_symbol relative to another
+ */
+static int compare_uint16(const uint16_t *a, const uint16_t *b)
+{
+ if (*a < *b) {
+ return -1;
+ }
+ if (*a > *b) {
+ return 1;
+ }
+ return 0;
+}
+
+
+static bool fill_decomp_table(struct bitstream *input)
+{
+ /*
+ * There are 512 symbols, each encoded in 4 bits, which indicates
+ * their depth in the Huffman tree. The even numbers get the lower
+ * nibble of each byte, so that the byte hex values look backwards
+ * (i.e. 0xab encodes b then a). These are allocated Huffman codes in
+ * order of appearance, per depth.
+ *
+ * For example, if the first two bytes were:
+ *
+ * 0x23 0x53
+ *
+ * the first four codes have the lengths 3, 2, 3, 5.
+ * Let's call them A, B, C, D.
+ *
+ * Suppose there is no other codeword with length 1 (which is
+ * necessarily true in this example) or 2, but there might be others
+ * of length 3 or 4. Then we can say this about the codes:
+ *
+ * _ --*--_
+ * / \
+ * 0 1
+ * / \ / \
+ * 0 1 0 1
+ * B |\ / \ |\
+ * 0 1 0 1 0 1
+ * A C |\ /| | |\
+ *
+ * pos bits code
+ * A 3 010
+ * B 2 00
+ * C 3 011
+ * D 5 1????
+ *
+ * B has the shortest code, so takes the leftmost branch, 00. That
+ * ends the branch -- nothing else can start with 00. There are no
+ * more 2s, so we look at the 3s, starting as far left as possible. So
+ * A takes 010 and C takes 011. That means everything else has to
+ * start with 1xx. We don't know how many codewords of length 3 or 4
+ * there are; if there are none, D would end up with 10000, the
+ * leftmost available code of length 5. If the compressor is any good,
+ * there should be no unused leaf nodes left dangling at the end.
+ *
+ * (this is "Canonical Huffman Coding").
+ *
+ *
+ * But what symbols do these codes actually stand for?
+ * --------------------------------------------------
+ *
+ * Good question. The first 256 codes stand for the corresponding
+ * literal bytes. The codes from 256 to 511 stand for LZ77 matches,
+ * which have a distance and a length, encoded in a strange way that
+ * isn't entirely the purview of this function.
+ *
+ * What does the value 0 mean?
+ * ---------------------------
+ *
+ * The code does not occur. For example, if the next byte in the
+ * example above was 0x07, that would give the byte 0x04 a 7-long
+ * code, and no code to the 0x05 byte, which means we there is no way
+ * we going to see a 5 in the decoded stream.
+ *
+ * Isn't LZ77 + Huffman what zip/gzip/zlib do?
+ * -------------------------------------------
+ *
+ * Yes, DEFLATE is LZ77 + Huffman, but the details are quite different.
+ */
+ uint16_t symbols[512];
+ uint16_t sort_mem[512];
+ size_t i, n_symbols;
+ ssize_t code;
+ uint16_t len = 0, prev_len;
+ const uint8_t *table_bytes = input->bytes + input->byte_pos;
+
+ if (input->byte_pos + 260 > input->byte_size) {
+ return false;
+ }
+
+ n_symbols = 0;
+ for (i = 0; i < 256; i++) {
+ uint16_t even = table_bytes[i] & 15;
+ uint16_t odd = table_bytes[i] >> 4;
+ if (even != 0) {
+ symbols[n_symbols] = (even << 9) + i * 2;
+ n_symbols++;
+ }
+ if (odd != 0) {
+ symbols[n_symbols] = (odd << 9) + i * 2 + 1;
+ n_symbols++;
+ }
+ }
+ input->byte_pos += 256;
+ if (n_symbols == 0) {
+ return false;
+ }
+
+ stable_sort(symbols, sort_mem, n_symbols, sizeof(uint16_t),
+ (samba_compare_fn_t)compare_uint16);
+
+ /*
+ * we're using an implicit binary tree, as you'd see in a heap.
+ * table[0] = unused
+ * table[1] = '0'
+ * table[2] = '1'
+ * table[3] = '00' <-- '00' and '01' are children of '0'
+ * table[4] = '01' <-- '0' is [0], children are [0 * 2 + {1,2}]
+ * table[5] = '10'
+ * table[6] = '11'
+ * table[7] = '000'
+ * table[8] = '001'
+ * table[9] = '010'
+ * table[10]= '011'
+ * table[11]= '100
+ *'
+ * table[1 << n - 1] = '0' * n
+ * table[1 << n - 1 + x] = n-bit wide x (left padded with '0')
+ * table[1 << n - 2] = '1' * (n - 1)
+ *
+ * table[i]->left = table[i*2 + 1]
+ * table[i]->right = table[i*2 + 2]
+ * table[0xffff] = unused (16 '0's, max len is 15)
+ *
+ * therefore e.g. table[70] = table[64 - 1 + 7]
+ * = table[1 << 6 - 1 + 7]
+ * = '000111' (binary 7, widened to 6 bits)
+ *
+ * and if '000111' is a code,
+ * '00011', '0001', '000', '00', '0' are unavailable prefixes.
+ * 34 16 7 3 1 are their indices
+ * and (i - 1) >> 1 is the path back from 70 through these.
+ *
+ * the lookup is
+ *
+ * 1 start with i = 0
+ * 2 extract a symbol bit (i = (i << 1) + bit + 1)
+ * 3 is table[i] == 0xffff?
+ * 4 yes -- goto 2
+ * 4 table[i] & 511 is the symbol, stop
+ *
+ * and the construction (here) is sort of the reverse.
+ *
+ * Most of this table is free space that can never be reached, and
+ * most of the activity is at the beginning (since all codes start
+ * there, and by design the shortest codes are the most common).
+ */
+ for (i = 0; i < 32; i++) {
+ /* prefill the table head */
+ input->table[i] = 0xffff;
+ }
+ code = -1;
+ prev_len = 0;
+ for (i = 0; i < n_symbols; i++) {
+ uint16_t s = symbols[i];
+ uint16_t prefix;
+ len = (s >> 9) & 15;
+ s &= 511;
+ code++;
+ while (len != prev_len) {
+ code <<= 1;
+ code++;
+ prev_len++;
+ }
+
+ if (code >= 65535) {
+ return false;
+ }
+ input->table[code] = s;
+ for(prefix = (code - 1) >> 1;
+ prefix > 31;
+ prefix = (prefix - 1) >> 1) {
+ input->table[prefix] = 0xffff;
+ }
+ }
+ if (CHECK_DEBUGLVL(10)) {
+ debug_tree_codes(input);
+ }
+
+ /*
+ * check that the last code encodes 11111..., with right number of
+ * ones, pointing to the right symbol -- otherwise we have a dangling
+ * uninitialised symbol.
+ */
+ if (code != (1 << (len + 1)) - 2) {
+ return false;
+ }
+ return true;
+}
+
+
+#define CHECK_READ_32(dest) \
+ do { \
+ if (input->byte_pos + 4 > input->byte_size) { \
+ return LZXPRESS_ERROR; \
+ } \
+ dest = PULL_LE_U32(input->bytes, input->byte_pos); \
+ input->byte_pos += 4; \
+ } while (0)
+
+#define CHECK_READ_16(dest) \
+ do { \
+ if (input->byte_pos + 2 > input->byte_size) { \
+ return LZXPRESS_ERROR; \
+ } \
+ dest = PULL_LE_U16(input->bytes, input->byte_pos); \
+ input->byte_pos += 2; \
+ } while (0)
+
+#define CHECK_READ_8(dest) \
+ do { \
+ if (input->byte_pos >= input->byte_size) { \
+ return LZXPRESS_ERROR; \
+ } \
+ dest = PULL_LE_U8(input->bytes, input->byte_pos); \
+ input->byte_pos++; \
+ } while(0)
+
+
+static inline ssize_t pull_bits(struct bitstream *input)
+{
+ if (input->byte_pos + 1 < input->byte_size) {
+ uint16_t tmp;
+ CHECK_READ_16(tmp);
+ input->remaining_bits += 16;
+ input->bits <<= 16;
+ input->bits |= tmp;
+ } else if (input->byte_pos < input->byte_size) {
+ uint8_t tmp;
+ CHECK_READ_8(tmp);
+ input->remaining_bits += 8;
+ input->bits <<= 8;
+ input->bits |= tmp;
+ } else {
+ return LZXPRESS_ERROR;
+ }
+ return 0;
+}
+
+
+/*
+ * Decompress a block. The actual decompressed size is returned (or -1 on
+ * error). The putative block length is 64k (or shorter, if the message ends
+ * first), but a match can run over the end, extending the block. That's why
+ * we need the overall output size as well as the block size. A match encoded
+ * in this block can point back to previous blocks, but not before the
+ * beginning of the message, so we also need the previously decoded size.
+ *
+ * The compressed block will have 256 bytes for the Huffman table, and at
+ * least 4 bytes of (possibly padded) encoded values.
+ */
+static ssize_t lzx_huffman_decompress_block(struct bitstream *input,
+ uint8_t *output,
+ size_t block_size,
+ size_t output_size,
+ size_t previous_size)
+{
+ size_t output_pos = 0;
+ uint16_t symbol;
+ size_t index;
+ uint16_t distance_bits_wanted = 0;
+ size_t distance = 0;
+ size_t length = 0;
+ bool ok;
+ uint32_t tmp;
+ bool seen_eof_marker = false;
+
+ ok = fill_decomp_table(input);
+ if (! ok) {
+ return LZXPRESS_ERROR;
+ }
+ if (CHECK_DEBUGLVL(10) || DEBUG_HUFFMAN_TREE) {
+ debug_huffman_tree_from_table(input->table);
+ }
+ /*
+ * Always read 32 bits at the start, even if we don't need them.
+ */
+ CHECK_READ_16(tmp);
+ CHECK_READ_16(input->bits);
+ input->bits |= tmp << 16;
+ input->remaining_bits = 32;
+
+ /*
+ * This loop iterates over individual *bits*. These are read from
+ * little-endian 16 bit words, most significant bit first.
+ *
+ * At points in the bitstream, the following are possible:
+ *
+ * # the source word is empty and needs to be refilled from the input
+ * stream.
+ * # an incomplete codeword is being extended.
+ * # a codeword is resolved, either as a literal or a match.
+ * # a literal is written.
+ * # a match is collecting distance bits.
+ * # the output stream is copied, as specified by a match.
+ * # input bytes are read for match lengths.
+ *
+ * Note that we *don't* specifically check for the EOF marker (symbol
+ * 256) in this loop, because the precondition for stopping for the
+ * EOF marker is that the output buffer is full (otherwise, you
+ * wouldn't know which 256 is EOF, rather than an actual symbol), and
+ * we *always* want to stop when the buffer is full. So we work out if
+ * there is an EOF in another loop after we stop writing.
+ */
+
+ index = 0;
+ while (output_pos < block_size) {
+ uint16_t b;
+ if (input->remaining_bits == 16) {
+ ssize_t ret = pull_bits(input);
+ if (ret) {
+ return ret;
+ }
+ }
+ input->remaining_bits--;
+
+ b = (input->bits >> input->remaining_bits) & 1;
+ if (length == 0) {
+ /* not in a match; pulling a codeword */
+ index <<= 1;
+ index += b + 1;
+ if (input->table[index] == 0xffff) {
+ /* incomplete codeword, the common case */
+ continue;
+ }
+ /* found the symbol, reset the code string */
+ symbol = input->table[index] & 511;
+ index = 0;
+ if (symbol < 256) {
+ /* a literal, the easy case */
+ output[output_pos] = symbol;
+ output_pos++;
+ continue;
+ }
+
+ /* the beginning of a match */
+ distance_bits_wanted = (symbol >> 4) & 15;
+ distance = 1 << distance_bits_wanted;
+ length = symbol & 15;
+ if (length == 15) {
+ CHECK_READ_8(tmp);
+ length += tmp;
+ if (length == 255 + 15) {
+ /*
+ * note, we discard (don't add) the
+ * length so far.
+ */
+ CHECK_READ_16(length);
+ if (length == 0) {
+ CHECK_READ_32(length);
+ }
+ }
+ }
+ length += 3;
+ } else {
+ /* we are pulling extra distance bits */
+ distance_bits_wanted--;
+ distance |= b << distance_bits_wanted;
+ }
+
+ if (distance_bits_wanted == 0) {
+ /*
+ * We have a complete match, and it is time to do the
+ * copy (byte by byte, because the ranges can overlap,
+ * and we might need to copy bytes we just copied in).
+ *
+ * It is possible that this match will extend beyond
+ * the end of the expected block. That's fine, so long
+ * as it doesn't extend past the total output size.
+ */
+ size_t i;
+ size_t end = output_pos + length;
+ uint8_t *here = output + output_pos;
+ uint8_t *there = here - distance;
+ if (end > output_size ||
+ previous_size + output_pos < distance ||
+ unlikely(end < output_pos || there > here)) {
+ return LZXPRESS_ERROR;
+ }
+ for (i = 0; i < length; i++) {
+ here[i] = there[i];
+ }
+ output_pos += length;
+ distance = 0;
+ length = 0;
+ }
+ }
+
+ if (length != 0 || index != 0) {
+ /* it seems like we've hit an early end, mid-code */
+ return LZXPRESS_ERROR;
+ }
+
+ if (input->byte_pos + 256 < input->byte_size) {
+ /*
+ * This block is over, but it clearly isn't the last block, so
+ * we don't want to look for the EOF.
+ */
+ return output_pos;
+ }
+ /*
+ * We won't write any more, but we try to read some more to make sure
+ * we're finishing in a good place. That means we want to see a 256
+ * symbol and then some number of zeroes, possibly zero, but as many
+ * as 32.
+ *
+ * In this we are perhaps a bit stricter than Windows, which
+ * apparently does not insist on the EOF marker, nor on a lack of
+ * trailing bytes.
+ */
+ while (true) {
+ uint16_t b;
+ if (input->remaining_bits == 16) {
+ ssize_t ret;
+ if (input->byte_pos == input->byte_size) {
+ /* FIN */
+ break;
+ }
+ ret = pull_bits(input);
+ if (ret) {
+ return ret;
+ }
+ }
+ input->remaining_bits--;
+ b = (input->bits >> input->remaining_bits) & 1;
+ if (seen_eof_marker) {
+ /*
+ * we have read an EOF symbols. Now we just want to
+ * see zeroes.
+ */
+ if (b != 0) {
+ return LZXPRESS_ERROR;
+ }
+ continue;
+ }
+
+ /* we're pulling in a symbol, which had better be 256 */
+ index <<= 1;
+ index += b + 1;
+ if (input->table[index] == 0xffff) {
+ continue;
+ }
+
+ symbol = input->table[index] & 511;
+ if (symbol != 256) {
+ return LZXPRESS_ERROR;
+ }
+ seen_eof_marker = true;
+ continue;
+ }
+
+ if (! seen_eof_marker) {
+ return LZXPRESS_ERROR;
+ }
+
+ return output_pos;
+}
+
+static ssize_t lzxpress_huffman_decompress_internal(struct bitstream *input,
+ uint8_t *output,
+ size_t output_size)
+{
+ size_t output_pos = 0;
+
+ if (input->byte_size < 260) {
+ return LZXPRESS_ERROR;
+ }
+
+ while (input->byte_pos < input->byte_size) {
+ ssize_t block_output_pos;
+ ssize_t block_output_size;
+ size_t remaining_output_size = output_size - output_pos;
+
+ block_output_size = MIN(65536, remaining_output_size);
+
+ block_output_pos = lzx_huffman_decompress_block(
+ input,
+ output + output_pos,
+ block_output_size,
+ remaining_output_size,
+ output_pos);
+
+ if (block_output_pos < block_output_size) {
+ return LZXPRESS_ERROR;
+ }
+ output_pos += block_output_pos;
+ if (output_pos > output_size) {
+ /* not expecting to get here. */
+ return LZXPRESS_ERROR;
+ }
+ }
+
+ if (input->byte_pos != input->byte_size) {
+ return LZXPRESS_ERROR;
+ }
+
+ return output_pos;
+}
+
+
+/*
+ * lzxpress_huffman_decompress()
+ *
+ * output_size must be the expected length of the decompressed data.
+ * input_size and output_size are limited to the minimum of UINT32_MAX and
+ * SSIZE_MAX. On 64 bit machines that will be UINT32_MAX, or 4GB.
+ *
+ * @param input_bytes memory to be decompressed.
+ * @param input_size length of the compressed buffer.
+ * @param output destination for the decompressed data.
+ * @param output_size exact expected length of the decompressed data.
+ *
+ * @return the number of bytes written or -1 on error.
+ */
+
+ssize_t lzxpress_huffman_decompress(const uint8_t *input_bytes,
+ size_t input_size,
+ uint8_t *output,
+ size_t output_size)
+{
+ uint16_t table[65536];
+ struct bitstream input = {
+ .bytes = input_bytes,
+ .byte_size = input_size,
+ .byte_pos = 0,
+ .bits = 0,
+ .remaining_bits = 0,
+ .table = table
+ };
+
+ if (input_size > SSIZE_MAX ||
+ input_size > UINT32_MAX ||
+ output_size > SSIZE_MAX ||
+ output_size > UINT32_MAX ||
+ input_size == 0 ||
+ output_size == 0 ||
+ input_bytes == NULL ||
+ output == NULL) {
+ /*
+ * We use negative ssize_t to return errors, which is limiting
+ * on 32 bit machines, and the 4GB limit exists on Windows.
+ */
+ return LZXPRESS_ERROR;
+ }
+
+ return lzxpress_huffman_decompress_internal(&input,
+ output,
+ output_size);
+}
+
+
+/**
+ * lzxpress_huffman_decompress_talloc()
+ *
+ * The caller must provide the exact size of the expected output.
+ *
+ * The input_size is limited to the minimum of UINT32_MAX and SSIZE_MAX, but
+ * output_size is limited to 256MB due to a limit in talloc. This effectively
+ * limits input_size too, as non-crafted compressed data will not exceed the
+ * decompressed size by very much.
+ *
+ * @param mem_ctx TALLOC_CTX parent for the decompressed buffer.
+ * @param input_bytes memory to be decompressed.
+ * @param input_size length of the compressed buffer.
+ * @param output_size expected decompressed size.
+ *
+ * @return a talloc'ed buffer exactly output_size in length, or NULL.
+ */
+
+uint8_t *lzxpress_huffman_decompress_talloc(TALLOC_CTX *mem_ctx,
+ const uint8_t *input_bytes,
+ size_t input_size,
+ size_t output_size)
+{
+ ssize_t result;
+ uint8_t *output = NULL;
+ struct bitstream input = {
+ .bytes = input_bytes,
+ .byte_size = input_size
+ };
+
+ output = talloc_array(mem_ctx, uint8_t, output_size);
+ if (output == NULL) {
+ return NULL;
+ }
+
+ input.table = talloc_array(mem_ctx, uint16_t, 65536);
+ if (input.table == NULL) {
+ talloc_free(output);
+ return NULL;
+ }
+ result = lzxpress_huffman_decompress_internal(&input,
+ output,
+ output_size);
+ talloc_free(input.table);
+
+ if (result != output_size) {
+ talloc_free(output);
+ return NULL;
+ }
+ return output;
+}