1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
|
/*
* Samba compression library - LGPLv3
*
* Copyright © Catalyst IT 2022
*
* Written by Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
* and Joseph Sutton <josephsutton@catalyst.net.nz>
*
* ** NOTE! The following LGPL license applies to this file.
* ** It does NOT imply that all of Samba is released under the LGPL
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <talloc.h>
#include "replace.h"
#include "lzxpress_huffman.h"
#include "lib/util/stable_sort.h"
#include "lib/util/debug.h"
#include "lib/util/byteorder.h"
#include "lib/util/bytearray.h"
/*
* DEBUG_NO_LZ77_MATCHES toggles the encoding of matches as matches. If it is
* false the potential match is written as a series of literals, which is a
* valid but usually inefficient encoding. This is useful for isolating a
* problem to either the LZ77 or the Huffman stage.
*/
#ifndef DEBUG_NO_LZ77_MATCHES
#define DEBUG_NO_LZ77_MATCHES false
#endif
/*
* DEBUG_HUFFMAN_TREE forces the drawing of ascii art huffman trees during
* compression and decompression.
*
* These trees will also be drawn at DEBUG level 10, but that doesn't work
* with cmocka tests.
*/
#ifndef DEBUG_HUFFMAN_TREE
#define DEBUG_HUFFMAN_TREE false
#endif
#if DEBUG_HUFFMAN_TREE
#define DBG(...) fprintf(stderr, __VA_ARGS__)
#else
#define DBG(...) DBG_INFO(__VA_ARGS__)
#endif
#define LZXPRESS_ERROR -1LL
/*
* We won't encode a match length longer than MAX_MATCH_LENGTH.
*
* Reports are that Windows has a limit at 64M.
*/
#define MAX_MATCH_LENGTH (64 * 1024 * 1024)
struct bitstream {
const uint8_t *bytes;
size_t byte_pos;
size_t byte_size;
uint32_t bits;
int remaining_bits;
uint16_t *table;
};
#if ! defined __has_builtin
#define __has_builtin(x) 0
#endif
/*
* bitlen_nonzero_16() returns the bit number of the most significant bit, or
* put another way, the integer log base 2. Log(0) is undefined; the argument
* has to be non-zero!
* 1 -> 0
* 2,3 -> 1
* 4-7 -> 2
* 1024 -> 10, etc
*
* Probably this is handled by a compiler intrinsic function that maps to a
* dedicated machine instruction.
*/
static inline int bitlen_nonzero_16(uint16_t x)
{
#if __has_builtin(__builtin_clz)
/* __builtin_clz returns the number of leading zeros */
return (sizeof(unsigned int) * CHAR_BIT) - 1
- __builtin_clz((unsigned int) x);
#else
int count = -1;
while(x) {
x >>= 1;
count++;
}
return count;
#endif
}
struct lzxhuff_compressor_context {
const uint8_t *input_bytes;
size_t input_size;
size_t input_pos;
size_t prev_block_pos;
uint8_t *output;
size_t available_size;
size_t output_pos;
};
static int compare_huffman_node_count(struct huffman_node *a,
struct huffman_node *b)
{
return a->count - b->count;
}
static int compare_huffman_node_depth(struct huffman_node *a,
struct huffman_node *b)
{
int c = a->depth - b->depth;
if (c != 0) {
return c;
}
return (int)a->symbol - (int)b->symbol;
}
#define HASH_MASK ((1 << LZX_HUFF_COMP_HASH_BITS) - 1)
static inline uint16_t three_byte_hash(const uint8_t *bytes)
{
/*
* MS-XCA says "three byte hash", but does not specify it.
*
* This one is just cobbled together, but has quite good distribution
* in the 12-14 bit forms, which is what we care about most.
* e.g: 13 bit: median 2048, min 2022, max 2074, stddev 6.0
*/
uint16_t a = bytes[0];
uint16_t b = bytes[1] ^ 0x2e;
uint16_t c = bytes[2] ^ 0x55;
uint16_t ca = c - a;
uint16_t d = ((a + b) << 8) ^ (ca << 5) ^ (c + b) ^ (0xcab + a);
return d & HASH_MASK;
}
static inline uint16_t encode_match(size_t len, size_t offset)
{
uint16_t code = 256;
code |= MIN(len - 3, 15);
code |= bitlen_nonzero_16(offset) << 4;
return code;
}
/*
* debug_huffman_tree() uses debug_huffman_tree_print() to draw the Huffman
* tree in ascii art.
*
* Note that the Huffman tree is probably not the same as that implied by the
* canonical Huffman encoding that is finally used. That tree would be the
* same shape, but with the left and right toggled to sort the branches by
* length, after which the symbols for each length sorted by value.
*/
static void debug_huffman_tree_print(struct huffman_node *node,
int *trail, int depth)
{
if (node->left == NULL) {
/* time to print a row */
int j;
bool branched = false;
int row[17];
char c[100];
int s = node->symbol;
char code[17];
if (depth > 15) {
fprintf(stderr,
" \033[1;31m Max depth exceeded! (%d)\033[0m "
" symbol %#3x claimed depth %d count %d\n",
depth, node->symbol, node->depth, node->count);
return;
}
for (j = depth - 1; j >= 0; j--) {
if (branched) {
if (trail[j] == -1) {
row[j] = -3;
} else {
row[j] = -2;
}
} else if (trail[j] == -1) {
row[j] = -1;
branched = true;
} else {
row[j] = trail[j];
}
}
for (j = 0; j < depth; j++) {
switch (row[j]) {
case -3:
code[j] = '1';
fprintf(stderr, " ");
break;
case -2:
code[j] = '0';
fprintf(stderr, " │ ");
break;
case -1:
code[j] = '1';
fprintf(stderr, " ╰─");
break;
default:
code[j] = '0';
fprintf(stderr, "%5d─┬─", row[j]);
break;
}
}
code[depth] = 0;
if (s < 32) {
snprintf(c, sizeof(c),
"\033[1;32m%02x\033[0m \033[1;33m%c%c%c\033[0m",
s,
0xE2, 0x90, 0x80 + s); /* utf-8 for symbol */
} else if (s < 127) {
snprintf(c, sizeof(c),
"\033[1;32m%2x\033[0m '\033[10;32m%c\033[0m'",
s, s);
} else if (s < 256) {
snprintf(c, sizeof(c), "\033[1;32m%2x\033[0m", s);
} else {
uint16_t len = (s & 15) + 3;
uint16_t dbits = ((s >> 4) & 15) + 1;
snprintf(c, sizeof(c),
" \033[0;33mlen:%2d%s, "
"dist:%d-%d \033[0m \033[1;32m%3x\033[0m%s",
len,
len == 18 ? "+" : "",
1 << (dbits - 1),
(1 << dbits) - 1,
s,
s == 256 ? " \033[1;31mEOF\033[0m" : "");
}
fprintf(stderr, "──%5d %s \033[2;37m%s\033[0m\n",
node->count, c, code);
return;
}
trail[depth] = node->count;
debug_huffman_tree_print(node->left, trail, depth + 1);
trail[depth] = -1;
debug_huffman_tree_print(node->right, trail, depth + 1);
}
/*
* If DEBUG_HUFFMAN_TREE is defined true, debug_huffman_tree()
* will print a tree looking something like this:
*
* 7─┬─── 3 len:18+, dist:1-1 10f 0
* ╰─ 4─┬─ 2─┬─── 1 61 'a' 100
* │ ╰─── 1 62 'b' 101
* ╰─ 2─┬─── 1 63 'c' 110
* ╰─── 1 len: 3, dist:1-1 100 EOF 111
*
* This is based off a Huffman root node, and the tree may not be the same as
* the canonical tree.
*/
static void debug_huffman_tree(struct huffman_node *root)
{
int trail[17];
debug_huffman_tree_print(root, trail, 0);
}
/*
* If DEBUG_HUFFMAN_TREE is defined true, debug_huffman_tree_from_table()
* will print something like this based on a decoding symbol table.
*
* Tree from decoding table 9 nodes → 5 codes
* 10000─┬─── 5000 len:18+, dist:1-1 10f 0
* ╰─ 5000─┬─ 2500─┬─── 1250 61 'a' 100
* │ ╰─── 1250 62 'b' 101
* ╰─ 2500─┬─── 1250 63 'c' 110
* ╰─── 1250 len: 3, dist:1-1 100 EOF 111
*
* This is the canonical form of the Huffman tree where the actual counts
* aren't known (we use "10000" to help indicate relative frequencies).
*/
static void debug_huffman_tree_from_table(uint16_t *table)
{
int trail[17];
struct huffman_node nodes[1024] = {{0}};
uint16_t codes[1024];
size_t n = 1;
size_t i = 0;
codes[0] = 0;
nodes[0].count = 10000;
while (i < n) {
uint16_t index = codes[i];
struct huffman_node *node = &nodes[i];
if (table[index] == 0xffff) {
/* internal node */
index <<= 1;
/* left */
index++;
codes[n] = index;
node->left = nodes + n;
nodes[n].count = node->count >> 1;
n++;
/*right*/
index++;
codes[n] = index;
node->right = nodes + n;
nodes[n].count = node->count >> 1;
n++;
} else {
/* leaf node */
node->symbol = table[index] & 511;
}
i++;
}
fprintf(stderr,
"\033[1;34m Tree from decoding table\033[0m "
"%zu nodes → %zu codes\n",
n, (n + 1) / 2);
debug_huffman_tree_print(nodes, trail, 0);
}
static bool depth_walk(struct huffman_node *n, uint32_t depth)
{
bool ok;
if (n->left == NULL) {
/* this is a leaf, record the depth */
n->depth = depth;
return true;
}
if (depth > 14) {
return false;
}
ok = (depth_walk(n->left, depth + 1) &&
depth_walk(n->right, depth + 1));
return ok;
}
static bool check_and_record_depths(struct huffman_node *root)
{
return depth_walk(root, 0);
}
static bool encode_values(struct huffman_node *leaves,
size_t n_leaves,
uint16_t symbol_values[512])
{
size_t i;
/*
* See, we have a leading 1 in our internal code representation, which
* indicates the code length.
*/
uint32_t code = 1;
uint32_t code_len = 0;
memset(symbol_values, 0, sizeof(uint16_t) * 512);
for (i = 0; i < n_leaves; i++) {
code <<= leaves[i].depth - code_len;
code_len = leaves[i].depth;
symbol_values[leaves[i].symbol] = code;
code++;
}
/*
* The last code should be 11111... with code_len + 1 ones. The final
* code++ will wrap this round to 1000... with code_len + 1 zeroes.
*/
if (code != 2 << code_len) {
return false;
}
return true;
}
static int generate_huffman_codes(struct huffman_node *leaf_nodes,
struct huffman_node *internal_nodes,
uint16_t symbol_values[512])
{
size_t head_leaf = 0;
size_t head_branch = 0;
size_t tail_branch = 0;
struct huffman_node *huffman_root = NULL;
size_t i, j;
size_t n_leaves = 0;
/*
* Before we sort the nodes, we can eliminate the unused ones.
*/
for (i = 0; i < 512; i++) {
if (leaf_nodes[i].count) {
leaf_nodes[n_leaves] = leaf_nodes[i];
n_leaves++;
}
}
if (n_leaves == 0) {
return LZXPRESS_ERROR;
}
if (n_leaves == 1) {
/*
* There is *almost* no way this should happen, and it would
* ruin the tree (because the shortest possible codes are 1
* bit long, and there are two of them).
*
* The only way to get here is in an internal block in a
* 3-or-more block message (i.e. > 128k), which consists
* entirely of a match starting in the previous block (if it
* was the end block, it would have the EOF symbol).
*
* What we do is add a dummy symbol which is this one XOR 256.
* It won't be used in the stream but will balance the tree.
*/
leaf_nodes[1] = leaf_nodes[0];
leaf_nodes[1].symbol ^= 0x100;
n_leaves = 2;
}
/* note, in sort we're using internal_nodes as auxiliary space */
stable_sort(leaf_nodes,
internal_nodes,
n_leaves,
sizeof(struct huffman_node),
(samba_compare_fn_t)compare_huffman_node_count);
/*
* This outer loop is for re-quantizing the counts if the tree is too
* tall (>15), which we need to do because the final encoding can't
* express a tree that deep.
*
* In theory, this should be a 'while (true)' loop, but we chicken
* out with 10 iterations, just in case.
*
* In practice it will almost always resolve in the first round; if
* not then, in the second or third. Remember we'll looking at 64k or
* less, so the rarest we can have is 1 in 64k; each round of
* quantization effectively doubles its frequency to 1 in 32k, 1 in
* 16k, etc, until we're treating the rare symbol as actually quite
* common.
*/
for (j = 0; j < 10; j++) {
bool less_than_15_bits;
while (true) {
struct huffman_node *a = NULL;
struct huffman_node *b = NULL;
size_t leaf_len = n_leaves - head_leaf;
size_t internal_len = tail_branch - head_branch;
if (leaf_len + internal_len == 1) {
/*
* We have the complete tree. The root will be
* an internal node unless there is just one
* symbol, which is already impossible.
*/
if (unlikely(leaf_len == 1)) {
return LZXPRESS_ERROR;
} else {
huffman_root = \
&internal_nodes[head_branch];
}
break;
}
/*
* We know here we have at least two nodes, and we
* want to select the two lowest scoring ones. Those
* have to be either a) the head of each queue, or b)
* the first two nodes of either queue.
*
* The complicating factors are: a) we need to check
* the length of each queue, and b) in the case of
* ties, we prefer to pair leaves with leaves.
*
* Note a complication we don't have: the leaf node
* queue never grows, and the subtree queue starts
* empty and cannot grow beyond n - 1. It feeds on
* itself. We don't need to think about overflow.
*/
if (leaf_len == 0) {
/* two from subtrees */
a = &internal_nodes[head_branch];
b = &internal_nodes[head_branch + 1];
head_branch += 2;
} else if (internal_len == 0) {
/* two from nodes */
a = &leaf_nodes[head_leaf];
b = &leaf_nodes[head_leaf + 1];
head_leaf += 2;
} else if (leaf_len == 1 && internal_len == 1) {
/* one of each */
a = &leaf_nodes[head_leaf];
b = &internal_nodes[head_branch];
head_branch++;
head_leaf++;
} else {
/*
* Take the lowest head, twice, checking for
* length after taking the first one.
*/
if (leaf_nodes[head_leaf].count >
internal_nodes[head_branch].count) {
a = &internal_nodes[head_branch];
head_branch++;
if (internal_len == 1) {
b = &leaf_nodes[head_leaf];
head_leaf++;
goto done;
}
} else {
a = &leaf_nodes[head_leaf];
head_leaf++;
if (leaf_len == 1) {
b = &internal_nodes[head_branch];
head_branch++;
goto done;
}
}
/* the other node */
if (leaf_nodes[head_leaf].count >
internal_nodes[head_branch].count) {
b = &internal_nodes[head_branch];
head_branch++;
} else {
b = &leaf_nodes[head_leaf];
head_leaf++;
}
}
done:
/*
* Now we add a new node to the subtrees list that
* combines the score of node_a and node_b, and points
* to them as children.
*/
internal_nodes[tail_branch].count = a->count + b->count;
internal_nodes[tail_branch].left = a;
internal_nodes[tail_branch].right = b;
tail_branch++;
if (tail_branch == n_leaves) {
/*
* We're not getting here, no way, never ever.
* Unless we made a terrible mistake.
*
* That is, in a binary tree with n leaves,
* there are ALWAYS n-1 internal nodes.
*/
return LZXPRESS_ERROR;
}
}
if (CHECK_DEBUGLVL(10) || DEBUG_HUFFMAN_TREE) {
debug_huffman_tree(huffman_root);
}
/*
* We have a tree, and need to turn it into a lookup table,
* and see if it is shallow enough (<= 15).
*/
less_than_15_bits = check_and_record_depths(huffman_root);
if (less_than_15_bits) {
/*
* Now the leaf nodes know how deep they are, and we
* no longer need the internal nodes.
*
* We need to sort the nodes of equal depth, so that
* they are sorted by depth first, and symbol value
* second. The internal_nodes can again be auxiliary
* memory.
*/
stable_sort(
leaf_nodes,
internal_nodes,
n_leaves,
sizeof(struct huffman_node),
(samba_compare_fn_t)compare_huffman_node_depth);
encode_values(leaf_nodes, n_leaves, symbol_values);
return n_leaves;
}
/*
* requantize by halving and rounding up, so that small counts
* become relatively bigger. This will lead to a flatter tree.
*/
for (i = 0; i < n_leaves; i++) {
leaf_nodes[i].count >>= 1;
leaf_nodes[i].count += 1;
}
head_leaf = 0;
head_branch = 0;
tail_branch = 0;
}
return LZXPRESS_ERROR;
}
/*
* LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS is how far ahead to search in the
* circular hash table for a match, before we give up. A bigger number will
* generally lead to better but slower compression, but a stupidly big number
* will just be worse.
*
* If you're fiddling with this, consider also fiddling with
* LZX_HUFF_COMP_HASH_BITS.
*/
#define LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS 5
static inline void store_match(uint16_t *hash_table,
uint16_t h,
uint16_t offset)
{
int i;
uint16_t o = hash_table[h];
uint16_t h2;
uint16_t worst_h;
int worst_score;
if (o == 0xffff) {
/* there is nothing there yet */
hash_table[h] = offset;
return;
}
for (i = 1; i < LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS; i++) {
h2 = (h + i) & HASH_MASK;
if (hash_table[h2] == 0xffff) {
hash_table[h2] = offset;
return;
}
}
/*
* There are no slots, but we really want to store this, so we'll kick
* out the one with the longest distance.
*/
worst_h = h;
worst_score = offset - o;
for (i = 1; i < LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS; i++) {
int score;
h2 = (h + i) & HASH_MASK;
o = hash_table[h2];
score = offset - o;
if (score > worst_score) {
worst_score = score;
worst_h = h2;
}
}
hash_table[worst_h] = offset;
}
/*
* Yes, struct match looks a lot like a DATA_BLOB.
*/
struct match {
const uint8_t *there;
size_t length;
};
static inline struct match lookup_match(uint16_t *hash_table,
uint16_t h,
const uint8_t *data,
const uint8_t *here,
size_t max_len)
{
int i;
uint16_t o = hash_table[h];
uint16_t h2;
size_t len;
const uint8_t *there = NULL;
struct match best = {0};
for (i = 0; i < LZX_HUFF_COMP_HASH_SEARCH_ATTEMPTS; i++) {
h2 = (h + i) & HASH_MASK;
o = hash_table[h2];
if (o == 0xffff) {
/*
* in setting this, we would never have stepped over
* an 0xffff, so we won't now.
*/
break;
}
there = data + o;
if (here - there > 65534 || there > here) {
continue;
}
/*
* When we already have a long match, we can try to avoid
* measuring out another long, but shorter match.
*/
if (best.length > 1000 &&
there[best.length - 1] != best.there[best.length - 1]) {
continue;
}
for (len = 0;
len < max_len && here[len] == there[len];
len++) {
/* counting */
}
if (len > 2) {
/*
* As a tiebreaker, we prefer the closer match which
* is likely to encode smaller (and certainly no worse).
*/
if (len > best.length ||
(len == best.length && there > best.there)) {
best.length = len;
best.there = there;
}
}
}
return best;
}
static ssize_t lz77_encode_block(struct lzxhuff_compressor_context *cmp_ctx,
struct lzxhuff_compressor_mem *cmp_mem,
uint16_t *hash_table,
uint16_t *prev_hash_table)
{
uint16_t *intermediate = cmp_mem->intermediate;
struct huffman_node *leaf_nodes = cmp_mem->leaf_nodes;
uint16_t *symbol_values = cmp_mem->symbol_values;
size_t i, j, intermediate_len;
const uint8_t *data = cmp_ctx->input_bytes + cmp_ctx->input_pos;
const uint8_t *prev_block = NULL;
size_t remaining_size = cmp_ctx->input_size - cmp_ctx->input_pos;
size_t block_end = MIN(65536, remaining_size);
struct match match;
int n_symbols;
if (cmp_ctx->input_size < cmp_ctx->input_pos) {
return LZXPRESS_ERROR;
}
if (cmp_ctx->prev_block_pos != cmp_ctx->input_pos) {
prev_block = cmp_ctx->input_bytes + cmp_ctx->prev_block_pos;
} else if (prev_hash_table != NULL) {
/* we've got confused! hash and block should go together */
return LZXPRESS_ERROR;
}
/*
* leaf_nodes is used to count the symbols seen, for later Huffman
* encoding.
*/
for (i = 0; i < 512; i++) {
leaf_nodes[i] = (struct huffman_node) {
.symbol = i
};
}
j = 0;
if (remaining_size < 41 || DEBUG_NO_LZ77_MATCHES) {
/*
* There is no point doing a hash table and looking for
* matches in this tiny block (remembering we are committed to
* using 32 bits, so there's a good chance we wouldn't even
* save a byte). The threshold of 41 matches Windows.
* If remaining_size < 3, we *can't* do the hash.
*/
i = 0;
} else {
/*
* We use 0xffff as the unset value for table, because it is
* not a valid match offset (and 0x0 is).
*/
memset(hash_table, 0xff, sizeof(cmp_mem->hash_table1));
for (i = 0; i <= block_end - 3; i++) {
uint16_t code;
const uint8_t *here = data + i;
uint16_t h = three_byte_hash(here);
size_t max_len = MIN(remaining_size - i, MAX_MATCH_LENGTH);
match = lookup_match(hash_table,
h,
data,
here,
max_len);
if (match.there == NULL && prev_hash_table != NULL) {
/*
* If this is not the first block,
* backreferences can look into the previous
* block (but only as far as 65535 bytes, so
* the end of this block cannot see the start
* of the last one).
*/
match = lookup_match(prev_hash_table,
h,
prev_block,
here,
remaining_size - i);
}
store_match(hash_table, h, i);
if (match.there == NULL) {
/* add a literal and move on. */
uint8_t c = data[i];
leaf_nodes[c].count++;
intermediate[j] = c;
j++;
continue;
}
/* a real match */
if (match.length <= 65538) {
intermediate[j] = 0xffff;
intermediate[j + 1] = match.length - 3;
intermediate[j + 2] = here - match.there;
j += 3;
} else {
size_t m = match.length - 3;
intermediate[j] = 0xfffe;
intermediate[j + 1] = m & 0xffff;
intermediate[j + 2] = m >> 16;
intermediate[j + 3] = here - match.there;
j += 4;
}
code = encode_match(match.length, here - match.there);
leaf_nodes[code].count++;
i += match.length - 1; /* `- 1` for the loop i++ */
/*
* A match can take us past the intended block length,
* extending the block. We don't need to do anything
* special for this case -- the loops will naturally
* do the right thing.
*/
}
}
/*
* There might be some bytes at the end.
*/
for (; i < block_end; i++) {
leaf_nodes[data[i]].count++;
intermediate[j] = data[i];
j++;
}
if (i == remaining_size) {
/* add a trailing EOF marker (256) */
intermediate[j] = 0xffff;
intermediate[j + 1] = 0;
intermediate[j + 2] = 1;
j += 3;
leaf_nodes[256].count++;
}
intermediate_len = j;
cmp_ctx->prev_block_pos = cmp_ctx->input_pos;
cmp_ctx->input_pos += i;
/* fill in the symbols table */
n_symbols = generate_huffman_codes(leaf_nodes,
cmp_mem->internal_nodes,
symbol_values);
if (n_symbols < 0) {
return n_symbols;
}
return intermediate_len;
}
static ssize_t write_huffman_table(uint16_t symbol_values[512],
uint8_t *output,
size_t available_size)
{
size_t i;
if (available_size < 256) {
return LZXPRESS_ERROR;
}
for (i = 0; i < 256; i++) {
uint8_t b = 0;
uint16_t even = symbol_values[i * 2];
uint16_t odd = symbol_values[i * 2 + 1];
if (even != 0) {
b = bitlen_nonzero_16(even);
}
if (odd != 0) {
b |= bitlen_nonzero_16(odd) << 4;
}
output[i] = b;
}
return i;
}
struct write_context {
uint8_t *dest;
size_t dest_len;
size_t head; /* where lengths go */
size_t next_code; /* where symbol stream goes */
size_t pending_next_code; /* will be next_code */
unsigned bit_len;
uint32_t bits;
};
/*
* Write out 16 bits, little-endian, for write_huffman_codes()
*
* As you'll notice, there's a bit to do.
*
* We are collecting up bits in a uint32_t, then when there are 16 of them we
* write out a word into the stream, using a trio of offsets (wc->next_code,
* wc->pending_next_code, and wc->head) which dance around ensuring that the
* bitstream and the interspersed lengths are in the right places relative to
* each other.
*/
static inline bool write_bits(struct write_context *wc,
uint16_t code, uint16_t length)
{
wc->bits <<= length;
wc->bits |= code;
wc->bit_len += length;
if (wc->bit_len > 16) {
uint32_t w = wc->bits >> (wc->bit_len - 16);
wc->bit_len -= 16;
if (wc->next_code + 2 > wc->dest_len ||
unlikely(wc->bit_len > 16)) {
return false;
}
wc->dest[wc->next_code] = w & 0xff;
wc->dest[wc->next_code + 1] = (w >> 8) & 0xff;
wc->next_code = wc->pending_next_code;
wc->pending_next_code = wc->head;
wc->head += 2;
}
return true;
}
static inline bool write_code(struct write_context *wc, uint16_t code)
{
int code_bit_len = bitlen_nonzero_16(code);
if (unlikely(code == 0)) {
return false;
}
code &= (1 << code_bit_len) - 1;
return write_bits(wc, code, code_bit_len);
}
static inline bool write_byte(struct write_context *wc, uint8_t byte)
{
if (wc->head + 1 > wc->dest_len) {
return false;
}
wc->dest[wc->head] = byte;
wc->head++;
return true;
}
static inline bool write_long_len(struct write_context *wc, size_t len)
{
if (len < 65535) {
if (wc->head + 3 > wc->dest_len) {
return false;
}
wc->dest[wc->head] = 255;
wc->dest[wc->head + 1] = len & 255;
wc->dest[wc->head + 2] = len >> 8;
wc->head += 3;
} else {
if (wc->head + 7 > wc->dest_len) {
return false;
}
wc->dest[wc->head] = 255;
wc->dest[wc->head + 1] = 0;
wc->dest[wc->head + 2] = 0;
wc->dest[wc->head + 3] = len & 255;
wc->dest[wc->head + 4] = (len >> 8) & 255;
wc->dest[wc->head + 5] = (len >> 16) & 255;
wc->dest[wc->head + 6] = (len >> 24) & 255;
wc->head += 7;
}
return true;
}
static ssize_t write_compressed_bytes(uint16_t symbol_values[512],
uint16_t *intermediate,
size_t intermediate_len,
uint8_t *dest,
size_t dest_len)
{
bool ok;
size_t i;
size_t end;
struct write_context wc = {
.head = 4,
.pending_next_code = 2,
.dest = dest,
.dest_len = dest_len
};
for (i = 0; i < intermediate_len; i++) {
uint16_t c = intermediate[i];
size_t len;
uint16_t distance;
uint16_t code_len = 0;
uint16_t code_dist = 0;
if (c < 256) {
ok = write_code(&wc, symbol_values[c]);
if (!ok) {
return LZXPRESS_ERROR;
}
continue;
}
if (c == 0xfffe) {
if (i > intermediate_len - 4) {
return LZXPRESS_ERROR;
}
len = intermediate[i + 1];
len |= (uint32_t)intermediate[i + 2] << 16;
distance = intermediate[i + 3];
i += 3;
} else if (c == 0xffff) {
if (i > intermediate_len - 3) {
return LZXPRESS_ERROR;
}
len = intermediate[i + 1];
distance = intermediate[i + 2];
i += 2;
} else {
return LZXPRESS_ERROR;
}
if (unlikely(distance == 0)) {
return LZXPRESS_ERROR;
}
/* len has already had 3 subtracted */
if (len >= 15) {
/*
* We are going to need to write extra length
* bytes into the stream, but we don't do it
* now, we do it after the code has been
* written (and before the distance bits).
*/
code_len = 15;
} else {
code_len = len;
}
code_dist = bitlen_nonzero_16(distance);
c = 256 | (code_dist << 4) | code_len;
if (c > 511) {
return LZXPRESS_ERROR;
}
ok = write_code(&wc, symbol_values[c]);
if (!ok) {
return LZXPRESS_ERROR;
}
if (code_len == 15) {
if (len >= 270) {
ok = write_long_len(&wc, len);
} else {
ok = write_byte(&wc, len - 15);
}
if (! ok) {
return LZXPRESS_ERROR;
}
}
if (code_dist != 0) {
uint16_t dist_bits = distance - (1 << code_dist);
ok = write_bits(&wc, dist_bits, code_dist);
if (!ok) {
return LZXPRESS_ERROR;
}
}
}
/*
* There are some intricacies around flushing the bits and returning
* the length.
*
* If the returned length is not exactly right and there is another
* block, that block will read its huffman table from the wrong place,
* and have all the symbol codes out by a multiple of 4.
*/
end = wc.head;
if (wc.bit_len == 0) {
end -= 2;
}
ok = write_bits(&wc, 0, 16 - wc.bit_len);
if (!ok) {
return LZXPRESS_ERROR;
}
for (i = 0; i < 2; i++) {
/*
* Flush out the bits with zeroes. It doesn't matter if we do
* a round too many, as we have buffer space, and have already
* determined the returned length (end).
*/
ok = write_bits(&wc, 0, 16);
if (!ok) {
return LZXPRESS_ERROR;
}
}
return end;
}
static ssize_t lzx_huffman_compress_block(struct lzxhuff_compressor_context *cmp_ctx,
struct lzxhuff_compressor_mem *cmp_mem,
size_t block_no)
{
ssize_t intermediate_size;
uint16_t *hash_table = NULL;
uint16_t *back_window_hash_table = NULL;
ssize_t bytes_written;
if (cmp_ctx->available_size - cmp_ctx->output_pos < 260) {
/* huffman block + 4 bytes */
return LZXPRESS_ERROR;
}
/*
* For LZ77 compression, we keep a hash table for the previous block,
* via alternation after the first block.
*
* LZ77 writes into the intermediate buffer in the cmp_mem context.
*/
if (block_no == 0) {
hash_table = cmp_mem->hash_table1;
back_window_hash_table = NULL;
} else if (block_no & 1) {
hash_table = cmp_mem->hash_table2;
back_window_hash_table = cmp_mem->hash_table1;
} else {
hash_table = cmp_mem->hash_table1;
back_window_hash_table = cmp_mem->hash_table2;
}
intermediate_size = lz77_encode_block(cmp_ctx,
cmp_mem,
hash_table,
back_window_hash_table);
if (intermediate_size < 0) {
return intermediate_size;
}
/*
* Write the 256 byte Huffman table, based on the counts gained in
* LZ77 phase.
*/
bytes_written = write_huffman_table(
cmp_mem->symbol_values,
cmp_ctx->output + cmp_ctx->output_pos,
cmp_ctx->available_size - cmp_ctx->output_pos);
if (bytes_written != 256) {
return LZXPRESS_ERROR;
}
cmp_ctx->output_pos += 256;
/*
* Write the compressed bytes using the LZ77 matches and Huffman codes
* worked out in the previous steps.
*/
bytes_written = write_compressed_bytes(
cmp_mem->symbol_values,
cmp_mem->intermediate,
intermediate_size,
cmp_ctx->output + cmp_ctx->output_pos,
cmp_ctx->available_size - cmp_ctx->output_pos);
if (bytes_written < 0) {
return bytes_written;
}
cmp_ctx->output_pos += bytes_written;
return bytes_written;
}
/*
* lzxpress_huffman_max_compressed_size()
*
* Return the most bytes the compression can take, to allow
* pre-allocation.
*/
size_t lzxpress_huffman_max_compressed_size(size_t input_size)
{
/*
* In the worst case, the output size should be about the same as the
* input size, plus the 256 byte header per 64k block. We aim for
* ample, but within the order of magnitude.
*/
return input_size + (input_size / 8) + 270;
}
/*
* lzxpress_huffman_compress_talloc()
*
* This is the convenience function that allocates the compressor context and
* output memory for you. The return value is the number of bytes written to
* the location indicated by the output pointer.
*
* The maximum input_size is effectively around 227MB due to the need to guess
* an upper bound on the output size that hits an internal limitation in
* talloc.
*
* @param mem_ctx TALLOC_CTX parent for the compressed buffer.
* @param input_bytes memory to be compressed.
* @param input_size length of the input buffer.
* @param output destination pointer for the compressed data.
*
* @return the number of bytes written or -1 on error.
*/
ssize_t lzxpress_huffman_compress_talloc(TALLOC_CTX *mem_ctx,
const uint8_t *input_bytes,
size_t input_size,
uint8_t **output)
{
struct lzxhuff_compressor_mem *cmp = NULL;
size_t alloc_size = lzxpress_huffman_max_compressed_size(input_size);
ssize_t output_size;
*output = talloc_array(mem_ctx, uint8_t, alloc_size);
if (*output == NULL) {
return LZXPRESS_ERROR;
}
cmp = talloc(mem_ctx, struct lzxhuff_compressor_mem);
if (cmp == NULL) {
TALLOC_FREE(*output);
return LZXPRESS_ERROR;
}
output_size = lzxpress_huffman_compress(cmp,
input_bytes,
input_size,
*output,
alloc_size);
talloc_free(cmp);
if (output_size < 0) {
TALLOC_FREE(*output);
return LZXPRESS_ERROR;
}
*output = talloc_realloc(mem_ctx, *output, uint8_t, output_size);
if (*output == NULL) {
return LZXPRESS_ERROR;
}
return output_size;
}
/*
* lzxpress_huffman_compress()
*
* This is the inconvenience function, slightly faster and fiddlier than
* lzxpress_huffman_compress_talloc().
*
* To use this, you need to have allocated (but not initialised) a `struct
* lzxhuff_compressor_mem`, and an output buffer. If the buffer is not big
* enough (per `output_size`), you'll get a negative return value, otherwise
* the number of bytes actually consumed, which will always be at least 260.
*
* The `struct lzxhuff_compressor_mem` is reusable -- it is basically a
* collection of uninitialised memory buffers. The total size is less than
* 150k, so stack allocation is plausible.
*
* input_size and available_size are limited to the minimum of UINT32_MAX and
* SSIZE_MAX. On 64 bit machines that will be UINT32_MAX, or 4GB.
*
* @param cmp_mem a struct lzxhuff_compressor_mem.
* @param input_bytes memory to be compressed.
* @param input_size length of the input buffer.
* @param output destination for the compressed data.
* @param available_size allocated output bytes.
*
* @return the number of bytes written or -1 on error.
*/
ssize_t lzxpress_huffman_compress(struct lzxhuff_compressor_mem *cmp_mem,
const uint8_t *input_bytes,
size_t input_size,
uint8_t *output,
size_t available_size)
{
size_t i = 0;
struct lzxhuff_compressor_context cmp_ctx = {
.input_bytes = input_bytes,
.input_size = input_size,
.input_pos = 0,
.prev_block_pos = 0,
.output = output,
.available_size = available_size,
.output_pos = 0
};
if (input_size == 0) {
/*
* We can't deal with this for a number of reasons (e.g. it
* breaks the Huffman tree), and the output will be infinitely
* bigger than the input. The caller needs to go and think
* about what they're trying to do here.
*/
return LZXPRESS_ERROR;
}
if (input_size > SSIZE_MAX ||
input_size > UINT32_MAX ||
available_size > SSIZE_MAX ||
available_size > UINT32_MAX ||
available_size == 0) {
/*
* We use negative ssize_t to return errors, which is limiting
* on 32 bit machines; otherwise we adhere to Microsoft's 4GB
* limit.
*
* lzxpress_huffman_compress_talloc() will not get this far,
* having already have failed on talloc's 256 MB limit.
*/
return LZXPRESS_ERROR;
}
if (cmp_mem == NULL ||
output == NULL ||
input_bytes == NULL) {
return LZXPRESS_ERROR;
}
while (cmp_ctx.input_pos < cmp_ctx.input_size) {
ssize_t ret;
ret = lzx_huffman_compress_block(&cmp_ctx,
cmp_mem,
i);
if (ret < 0) {
return ret;
}
i++;
}
return cmp_ctx.output_pos;
}
static void debug_tree_codes(struct bitstream *input)
{
/*
*/
size_t head = 0;
size_t tail = 2;
size_t ffff_count = 0;
struct q {
uint16_t tree_code;
uint16_t code_code;
};
struct q queue[65536];
char bits[17];
uint16_t *t = input->table;
queue[0].tree_code = 1;
queue[0].code_code = 2;
queue[1].tree_code = 2;
queue[1].code_code = 3;
while (head < tail) {
struct q q = queue[head];
uint16_t x = t[q.tree_code];
if (x != 0xffff) {
int k;
uint16_t j = q.code_code;
size_t offset = bitlen_nonzero_16(j) - 1;
if (unlikely(j == 0)) {
DBG("BROKEN code is 0!\n");
return;
}
for (k = 0; k <= offset; k++) {
bool b = (j >> (offset - k)) & 1;
bits[k] = b ? '1' : '0';
}
bits[k] = 0;
DBG("%03x %s\n", x & 511, bits);
head++;
continue;
}
ffff_count++;
queue[tail].tree_code = q.tree_code * 2 + 1;
queue[tail].code_code = q.code_code * 2;
tail++;
queue[tail].tree_code = q.tree_code * 2 + 1 + 1;
queue[tail].code_code = q.code_code * 2 + 1;
tail++;
head++;
}
DBG("0xffff count: %zu\n", ffff_count);
}
/**
* Determines the sort order of one prefix_code_symbol relative to another
*/
static int compare_uint16(const uint16_t *a, const uint16_t *b)
{
if (*a < *b) {
return -1;
}
if (*a > *b) {
return 1;
}
return 0;
}
static bool fill_decomp_table(struct bitstream *input)
{
/*
* There are 512 symbols, each encoded in 4 bits, which indicates
* their depth in the Huffman tree. The even numbers get the lower
* nibble of each byte, so that the byte hex values look backwards
* (i.e. 0xab encodes b then a). These are allocated Huffman codes in
* order of appearance, per depth.
*
* For example, if the first two bytes were:
*
* 0x23 0x53
*
* the first four codes have the lengths 3, 2, 3, 5.
* Let's call them A, B, C, D.
*
* Suppose there is no other codeword with length 1 (which is
* necessarily true in this example) or 2, but there might be others
* of length 3 or 4. Then we can say this about the codes:
*
* _ --*--_
* / \
* 0 1
* / \ / \
* 0 1 0 1
* B |\ / \ |\
* 0 1 0 1 0 1
* A C |\ /| | |\
*
* pos bits code
* A 3 010
* B 2 00
* C 3 011
* D 5 1????
*
* B has the shortest code, so takes the leftmost branch, 00. That
* ends the branch -- nothing else can start with 00. There are no
* more 2s, so we look at the 3s, starting as far left as possible. So
* A takes 010 and C takes 011. That means everything else has to
* start with 1xx. We don't know how many codewords of length 3 or 4
* there are; if there are none, D would end up with 10000, the
* leftmost available code of length 5. If the compressor is any good,
* there should be no unused leaf nodes left dangling at the end.
*
* (this is "Canonical Huffman Coding").
*
*
* But what symbols do these codes actually stand for?
* --------------------------------------------------
*
* Good question. The first 256 codes stand for the corresponding
* literal bytes. The codes from 256 to 511 stand for LZ77 matches,
* which have a distance and a length, encoded in a strange way that
* isn't entirely the purview of this function.
*
* What does the value 0 mean?
* ---------------------------
*
* The code does not occur. For example, if the next byte in the
* example above was 0x07, that would give the byte 0x04 a 7-long
* code, and no code to the 0x05 byte, which means we there is no way
* we going to see a 5 in the decoded stream.
*
* Isn't LZ77 + Huffman what zip/gzip/zlib do?
* -------------------------------------------
*
* Yes, DEFLATE is LZ77 + Huffman, but the details are quite different.
*/
uint16_t symbols[512];
uint16_t sort_mem[512];
size_t i, n_symbols;
ssize_t code;
uint16_t len = 0, prev_len;
const uint8_t *table_bytes = input->bytes + input->byte_pos;
if (input->byte_pos + 260 > input->byte_size) {
return false;
}
n_symbols = 0;
for (i = 0; i < 256; i++) {
uint16_t even = table_bytes[i] & 15;
uint16_t odd = table_bytes[i] >> 4;
if (even != 0) {
symbols[n_symbols] = (even << 9) + i * 2;
n_symbols++;
}
if (odd != 0) {
symbols[n_symbols] = (odd << 9) + i * 2 + 1;
n_symbols++;
}
}
input->byte_pos += 256;
if (n_symbols == 0) {
return false;
}
stable_sort(symbols, sort_mem, n_symbols, sizeof(uint16_t),
(samba_compare_fn_t)compare_uint16);
/*
* we're using an implicit binary tree, as you'd see in a heap.
* table[0] = unused
* table[1] = '0'
* table[2] = '1'
* table[3] = '00' <-- '00' and '01' are children of '0'
* table[4] = '01' <-- '0' is [0], children are [0 * 2 + {1,2}]
* table[5] = '10'
* table[6] = '11'
* table[7] = '000'
* table[8] = '001'
* table[9] = '010'
* table[10]= '011'
* table[11]= '100
*'
* table[1 << n - 1] = '0' * n
* table[1 << n - 1 + x] = n-bit wide x (left padded with '0')
* table[1 << n - 2] = '1' * (n - 1)
*
* table[i]->left = table[i*2 + 1]
* table[i]->right = table[i*2 + 2]
* table[0xffff] = unused (16 '0's, max len is 15)
*
* therefore e.g. table[70] = table[64 - 1 + 7]
* = table[1 << 6 - 1 + 7]
* = '000111' (binary 7, widened to 6 bits)
*
* and if '000111' is a code,
* '00011', '0001', '000', '00', '0' are unavailable prefixes.
* 34 16 7 3 1 are their indices
* and (i - 1) >> 1 is the path back from 70 through these.
*
* the lookup is
*
* 1 start with i = 0
* 2 extract a symbol bit (i = (i << 1) + bit + 1)
* 3 is table[i] == 0xffff?
* 4 yes -- goto 2
* 4 table[i] & 511 is the symbol, stop
*
* and the construction (here) is sort of the reverse.
*
* Most of this table is free space that can never be reached, and
* most of the activity is at the beginning (since all codes start
* there, and by design the shortest codes are the most common).
*/
for (i = 0; i < 32; i++) {
/* prefill the table head */
input->table[i] = 0xffff;
}
code = -1;
prev_len = 0;
for (i = 0; i < n_symbols; i++) {
uint16_t s = symbols[i];
uint16_t prefix;
len = (s >> 9) & 15;
s &= 511;
code++;
while (len != prev_len) {
code <<= 1;
code++;
prev_len++;
}
if (code >= 65535) {
return false;
}
input->table[code] = s;
for(prefix = (code - 1) >> 1;
prefix > 31;
prefix = (prefix - 1) >> 1) {
input->table[prefix] = 0xffff;
}
}
if (CHECK_DEBUGLVL(10)) {
debug_tree_codes(input);
}
/*
* check that the last code encodes 11111..., with right number of
* ones, pointing to the right symbol -- otherwise we have a dangling
* uninitialised symbol.
*/
if (code != (1 << (len + 1)) - 2) {
return false;
}
return true;
}
#define CHECK_READ_32(dest) \
do { \
if (input->byte_pos + 4 > input->byte_size) { \
return LZXPRESS_ERROR; \
} \
dest = PULL_LE_U32(input->bytes, input->byte_pos); \
input->byte_pos += 4; \
} while (0)
#define CHECK_READ_16(dest) \
do { \
if (input->byte_pos + 2 > input->byte_size) { \
return LZXPRESS_ERROR; \
} \
dest = PULL_LE_U16(input->bytes, input->byte_pos); \
input->byte_pos += 2; \
} while (0)
#define CHECK_READ_8(dest) \
do { \
if (input->byte_pos >= input->byte_size) { \
return LZXPRESS_ERROR; \
} \
dest = PULL_LE_U8(input->bytes, input->byte_pos); \
input->byte_pos++; \
} while(0)
static inline ssize_t pull_bits(struct bitstream *input)
{
if (input->byte_pos + 1 < input->byte_size) {
uint16_t tmp;
CHECK_READ_16(tmp);
input->remaining_bits += 16;
input->bits <<= 16;
input->bits |= tmp;
} else if (input->byte_pos < input->byte_size) {
uint8_t tmp;
CHECK_READ_8(tmp);
input->remaining_bits += 8;
input->bits <<= 8;
input->bits |= tmp;
} else {
return LZXPRESS_ERROR;
}
return 0;
}
/*
* Decompress a block. The actual decompressed size is returned (or -1 on
* error). The putative block length is 64k (or shorter, if the message ends
* first), but a match can run over the end, extending the block. That's why
* we need the overall output size as well as the block size. A match encoded
* in this block can point back to previous blocks, but not before the
* beginning of the message, so we also need the previously decoded size.
*
* The compressed block will have 256 bytes for the Huffman table, and at
* least 4 bytes of (possibly padded) encoded values.
*/
static ssize_t lzx_huffman_decompress_block(struct bitstream *input,
uint8_t *output,
size_t block_size,
size_t output_size,
size_t previous_size)
{
size_t output_pos = 0;
uint16_t symbol;
size_t index;
uint16_t distance_bits_wanted = 0;
size_t distance = 0;
size_t length = 0;
bool ok;
uint32_t tmp;
bool seen_eof_marker = false;
ok = fill_decomp_table(input);
if (! ok) {
return LZXPRESS_ERROR;
}
if (CHECK_DEBUGLVL(10) || DEBUG_HUFFMAN_TREE) {
debug_huffman_tree_from_table(input->table);
}
/*
* Always read 32 bits at the start, even if we don't need them.
*/
CHECK_READ_16(tmp);
CHECK_READ_16(input->bits);
input->bits |= tmp << 16;
input->remaining_bits = 32;
/*
* This loop iterates over individual *bits*. These are read from
* little-endian 16 bit words, most significant bit first.
*
* At points in the bitstream, the following are possible:
*
* # the source word is empty and needs to be refilled from the input
* stream.
* # an incomplete codeword is being extended.
* # a codeword is resolved, either as a literal or a match.
* # a literal is written.
* # a match is collecting distance bits.
* # the output stream is copied, as specified by a match.
* # input bytes are read for match lengths.
*
* Note that we *don't* specifically check for the EOF marker (symbol
* 256) in this loop, because the precondition for stopping for the
* EOF marker is that the output buffer is full (otherwise, you
* wouldn't know which 256 is EOF, rather than an actual symbol), and
* we *always* want to stop when the buffer is full. So we work out if
* there is an EOF in another loop after we stop writing.
*/
index = 0;
while (output_pos < block_size) {
uint16_t b;
if (input->remaining_bits == 16) {
ssize_t ret = pull_bits(input);
if (ret) {
return ret;
}
}
input->remaining_bits--;
b = (input->bits >> input->remaining_bits) & 1;
if (length == 0) {
/* not in a match; pulling a codeword */
index <<= 1;
index += b + 1;
if (input->table[index] == 0xffff) {
/* incomplete codeword, the common case */
continue;
}
/* found the symbol, reset the code string */
symbol = input->table[index] & 511;
index = 0;
if (symbol < 256) {
/* a literal, the easy case */
output[output_pos] = symbol;
output_pos++;
continue;
}
/* the beginning of a match */
distance_bits_wanted = (symbol >> 4) & 15;
distance = 1 << distance_bits_wanted;
length = symbol & 15;
if (length == 15) {
CHECK_READ_8(tmp);
length += tmp;
if (length == 255 + 15) {
/*
* note, we discard (don't add) the
* length so far.
*/
CHECK_READ_16(length);
if (length == 0) {
CHECK_READ_32(length);
}
}
}
length += 3;
} else {
/* we are pulling extra distance bits */
distance_bits_wanted--;
distance |= b << distance_bits_wanted;
}
if (distance_bits_wanted == 0) {
/*
* We have a complete match, and it is time to do the
* copy (byte by byte, because the ranges can overlap,
* and we might need to copy bytes we just copied in).
*
* It is possible that this match will extend beyond
* the end of the expected block. That's fine, so long
* as it doesn't extend past the total output size.
*/
size_t i;
size_t end = output_pos + length;
uint8_t *here = output + output_pos;
uint8_t *there = here - distance;
if (end > output_size ||
previous_size + output_pos < distance ||
unlikely(end < output_pos || there > here)) {
return LZXPRESS_ERROR;
}
for (i = 0; i < length; i++) {
here[i] = there[i];
}
output_pos += length;
distance = 0;
length = 0;
}
}
if (length != 0 || index != 0) {
/* it seems like we've hit an early end, mid-code */
return LZXPRESS_ERROR;
}
if (input->byte_pos + 256 < input->byte_size) {
/*
* This block is over, but it clearly isn't the last block, so
* we don't want to look for the EOF.
*/
return output_pos;
}
/*
* We won't write any more, but we try to read some more to make sure
* we're finishing in a good place. That means we want to see a 256
* symbol and then some number of zeroes, possibly zero, but as many
* as 32.
*
* In this we are perhaps a bit stricter than Windows, which
* apparently does not insist on the EOF marker, nor on a lack of
* trailing bytes.
*/
while (true) {
uint16_t b;
if (input->remaining_bits == 16) {
ssize_t ret;
if (input->byte_pos == input->byte_size) {
/* FIN */
break;
}
ret = pull_bits(input);
if (ret) {
return ret;
}
}
input->remaining_bits--;
b = (input->bits >> input->remaining_bits) & 1;
if (seen_eof_marker) {
/*
* we have read an EOF symbols. Now we just want to
* see zeroes.
*/
if (b != 0) {
return LZXPRESS_ERROR;
}
continue;
}
/* we're pulling in a symbol, which had better be 256 */
index <<= 1;
index += b + 1;
if (input->table[index] == 0xffff) {
continue;
}
symbol = input->table[index] & 511;
if (symbol != 256) {
return LZXPRESS_ERROR;
}
seen_eof_marker = true;
continue;
}
if (! seen_eof_marker) {
return LZXPRESS_ERROR;
}
return output_pos;
}
static ssize_t lzxpress_huffman_decompress_internal(struct bitstream *input,
uint8_t *output,
size_t output_size)
{
size_t output_pos = 0;
if (input->byte_size < 260) {
return LZXPRESS_ERROR;
}
while (input->byte_pos < input->byte_size) {
ssize_t block_output_pos;
ssize_t block_output_size;
size_t remaining_output_size = output_size - output_pos;
block_output_size = MIN(65536, remaining_output_size);
block_output_pos = lzx_huffman_decompress_block(
input,
output + output_pos,
block_output_size,
remaining_output_size,
output_pos);
if (block_output_pos < block_output_size) {
return LZXPRESS_ERROR;
}
output_pos += block_output_pos;
if (output_pos > output_size) {
/* not expecting to get here. */
return LZXPRESS_ERROR;
}
}
if (input->byte_pos != input->byte_size) {
return LZXPRESS_ERROR;
}
return output_pos;
}
/*
* lzxpress_huffman_decompress()
*
* output_size must be the expected length of the decompressed data.
* input_size and output_size are limited to the minimum of UINT32_MAX and
* SSIZE_MAX. On 64 bit machines that will be UINT32_MAX, or 4GB.
*
* @param input_bytes memory to be decompressed.
* @param input_size length of the compressed buffer.
* @param output destination for the decompressed data.
* @param output_size exact expected length of the decompressed data.
*
* @return the number of bytes written or -1 on error.
*/
ssize_t lzxpress_huffman_decompress(const uint8_t *input_bytes,
size_t input_size,
uint8_t *output,
size_t output_size)
{
uint16_t table[65536];
struct bitstream input = {
.bytes = input_bytes,
.byte_size = input_size,
.byte_pos = 0,
.bits = 0,
.remaining_bits = 0,
.table = table
};
if (input_size > SSIZE_MAX ||
input_size > UINT32_MAX ||
output_size > SSIZE_MAX ||
output_size > UINT32_MAX ||
input_size == 0 ||
output_size == 0 ||
input_bytes == NULL ||
output == NULL) {
/*
* We use negative ssize_t to return errors, which is limiting
* on 32 bit machines, and the 4GB limit exists on Windows.
*/
return LZXPRESS_ERROR;
}
return lzxpress_huffman_decompress_internal(&input,
output,
output_size);
}
/**
* lzxpress_huffman_decompress_talloc()
*
* The caller must provide the exact size of the expected output.
*
* The input_size is limited to the minimum of UINT32_MAX and SSIZE_MAX, but
* output_size is limited to 256MB due to a limit in talloc. This effectively
* limits input_size too, as non-crafted compressed data will not exceed the
* decompressed size by very much.
*
* @param mem_ctx TALLOC_CTX parent for the decompressed buffer.
* @param input_bytes memory to be decompressed.
* @param input_size length of the compressed buffer.
* @param output_size expected decompressed size.
*
* @return a talloc'ed buffer exactly output_size in length, or NULL.
*/
uint8_t *lzxpress_huffman_decompress_talloc(TALLOC_CTX *mem_ctx,
const uint8_t *input_bytes,
size_t input_size,
size_t output_size)
{
ssize_t result;
uint8_t *output = NULL;
struct bitstream input = {
.bytes = input_bytes,
.byte_size = input_size
};
output = talloc_array(mem_ctx, uint8_t, output_size);
if (output == NULL) {
return NULL;
}
input.table = talloc_array(mem_ctx, uint16_t, 65536);
if (input.table == NULL) {
talloc_free(output);
return NULL;
}
result = lzxpress_huffman_decompress_internal(&input,
output,
output_size);
talloc_free(input.table);
if (result != output_size) {
talloc_free(output);
return NULL;
}
return output;
}
|