summaryrefslogtreecommitdiffstats
path: root/lib/compression/tests/test_lzx_huffman.c
blob: 7770535c1e99c196e1e141ba0245152e04152c49 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
/*
 * Samba compression library - LGPLv3
 *
 * Copyright © Catalyst IT 2022
 *
 * Written by Douglas Bagnall <douglas.bagnall@catalyst.net.nz>
 *
 *  ** NOTE! The following LGPL license applies to this file.
 *  ** It does NOT imply that all of Samba is released under the LGPL
 *
 *  This library is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU Lesser General Public
 *  License as published by the Free Software Foundation; either
 *  version 3 of the License, or (at your option) any later version.
 *
 *  This library is distributed in the hope that it will be useful,
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 *  Lesser General Public License for more details.
 *
 *  You should have received a copy of the GNU Lesser General Public
 *  License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <cmocka.h>
#include <stdbool.h>
#include <sys/stat.h>
#include "replace.h"
#include <talloc.h>
#include "lzxpress_huffman.h"
#include "lib/util/stable_sort.h"
#include "lib/util/data_blob.h"

/* set LZXHUFF_DEBUG_FILES to true to save round-trip files in /tmp. */
#define LZXHUFF_DEBUG_FILES false

/* set LZXHUFF_DEBUG_VERBOSE to true to print more. */
#define LZXHUFF_DEBUG_VERBOSE false


#if LZXHUFF_DEBUG_VERBOSE
#define debug_message(...) print_message(__VA_ARGS__)

#include <time.h>

struct timespec start = {0};
struct timespec end = {0};
static void debug_start_timer(void)
{
	clock_gettime(CLOCK_MONOTONIC, &start);
}

static void debug_end_timer(const char *name, size_t len)
{
	uint64_t ns;
	double secs;
	double rate;
	clock_gettime(CLOCK_MONOTONIC, &end);
	ns = end.tv_nsec;
	ns += end.tv_sec * 1000 * 1000 * 1000;
	ns -= start.tv_nsec;
	ns -= start.tv_sec * 1000 * 1000 * 1000;
	secs = ns / 1e9;
	rate = len / (secs * 1024 * 1024);
	debug_message("%s %zu bytes in %.2g: \033[1;35m%.2f\033[0m MB per second\n",
		      name, len, secs, rate);
}

#else
#define debug_message(...) /* debug_message */
#define debug_start_timer(...) /* debug_start_timer */
#define debug_end_timer(...) /* debug_end_timer */
#endif


struct lzx_pair {
	const char *name;
	DATA_BLOB compressed;
	DATA_BLOB decompressed;
};

struct lzx_file_pair {
	const char *name;
	const char *compressed_file;
	const char *decompressed_file;
};


#define DECOMP_DIR "testdata/compression/decompressed"
#define COMP_DIR "testdata/compression/compressed-huffman"
#define MORE_COMP_DIR "testdata/compression/compressed-more-huffman"


#define VARRGH(...) __VA_ARGS__

#define BLOB_FROM_ARRAY(...)                             \
	{                                                \
		.data = (uint8_t[]){__VA_ARGS__},          \
		.length = sizeof((uint8_t[]){__VA_ARGS__}) \
	}

#define BLOB_FROM_STRING(s)                                      \
	{                                                            \
		.data = discard_const_p(uint8_t, s),		     \
		.length = (sizeof(s) - 1)		     \
	}


const char * file_names[] = {
	"27826-8.txt",
	"5d049b4cb1bd933f5e8ex19",
	"638e61e96d54279981c3x5",
	"64k-minus-one-zeros",
	"64k-plus-one-zeros",
	"64k-zeros",
	"96f696a4e5ce56c61a3dx10",
	"9e0b6a12febf38e98f13",
	"abc-times-101",
	"abc-times-105",
	"abc-times-200",
	"and_rand",
	"and_rand-128k+",
	"b63289ccc7f218c0d56b",
	"beta-variate1-128k+",
	"beta-variate2-128k+",
	"beta-variate3-128k+",
	"decayed_alphabet_128k+",
	"decayed_alphabet_64k",
	"exp_shuffle",
	"exp_shuffle-128k+",
	"f00842317dc6d5695b02",
	"fib_shuffle",
	"fib_shuffle-128k+",
	"fuzzing-0fc2d461b56cd8103c91",
	"fuzzing-17c961778538cc10ab7c",
	"fuzzing-3591f9dc02bb00a54b60",
	"fuzzing-3ec3bca27bb9eb40c128",
	"fuzzing-80b4fa18ff5f8dd04862",
	"fuzzing-a3115a81d1ac500318f9",
	"generate-windows-test-vectors.c",
	"midsummer-nights-dream.txt",
	"notes-on-the-underground.txt",
	"pg22009.txt",
	"repeating",
	"repeating-exactly-64k",
	"setup.log",
	"skewed_choices",
	"skewed_choices-128k+",
	/* These ones were deathly slow in fuzzing at one point */
	"slow-015ddc36a71412ccc50d",
	"slow-100e9f966a7feb9ca40a",
	"slow-2a671c3cff4f1574cbab",
	"slow-33d90a24e70515b14cd0",
	"slow-49d8c05261e3f412fc72",
	"slow-50a249d2fe56873e56a0",
	"slow-63e9f0b52235fb0129fa",
	"slow-73b7f971d65908ac0095",
	"slow-8b61e3dd267908544531",
	"slow-9d1c5a079b0462986f1f",
	"slow-aa7262a821dabdcf04a6",
	"slow-b8a91d142b0d2af7f5ca",
	"slow-c79142457734bbc8d575",
	"slow-d736544545b90d83fe75",
	"slow-e3b9bdfaed7d1a606fdb",
	"slow-f3f1c02a9d006e5e1703",
	"square_series",
	"square_series-128k+",
	"trigram_128k+",
	"trigram_64k",
	"trigram_sum_128k+",
	"trigram_sum_64k",
	NULL
};

struct lzx_pair bidirectional_pairs[] = {

	{.name = "abc__100_repeats", /* [MS-XCA] 3.2 example 2. */
	 .decompressed = BLOB_FROM_STRING(
		 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
		 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
		 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
		 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
		 "abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
		 ),
	 .compressed = BLOB_FROM_ARRAY(
		 /*
		  * The 'a', 'b', and 'c' bytes are 0x61, 0x62, 0x63. No other
		  * symbols occur. That means we need 48 0x00 bytes for the
		  * first 96 symbol-nybbles, then some short codes, then zeros
		  * again for the rest of the literals.
		  */
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,
		 0x30, 0x23, /* a_ cb */
		 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, /* 100 bytes */
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0, /* here end the 0-255 literals (128 bytes) */
		 0x02, /* 'EOF' symbol 256 (byte 128 low) */
		 0,0,0,0,0, 0,0,0,0,0, 0,                    /* 140 bytes */
	         0,0,0,
		 0x20, /* codepoint 287 (byte 143 high) */
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,         /* 160 bytes */
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, /* 240 bytes */
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,
		 /*
		  * So that's the tree.
		  *
		  * length 2 codes for 'c', EOF, 287
		  * length 3 for 'a', 'b'.
		  *
		  * c:   00
		  * EOF: 01
		  * 287: 10
		  * a:   110
		  * b:   111
		  *
		  * thus the literal string "abc" is 110-111-00.
		  *
		  * Now for the lz77 match definitions for EOF and 287.
		  *
		  * Why 287? It encodes the match distance and offset.
		  *
		  * 287 - 256 = 31
		  *
		  * _length = 31 % 16 = 15
		  * _distance = 31 / 16 = 1
		  *
		  * (it's easier to look at the hex, 0x11f:
		  * 1xx means a match; x1x is _distance; xxf is _length)
		  *
		  * _distance 1 means a two bit distance (10 or 11; 2 or 3).
		  * That means the next bit will be the least significant bit
		  * of distance (1 in this case, meaning distance 3).
		  *
		  * if _length is 15, real length is included inline.
		  *
		  * 'EOF' == 256 means _length = 0, _distance = 0.
		  *
		  * _distance 0 means 1, so no further bits needed.
		  * _length 0 means length 3.
		  *
		  * but when used as EOF, this doesn't matter.
		  */
		 0xa8, 0xdc, 0x00, 0x00, 0xff, 0x26, 0x01
		  /* These remaining bytes are:
		  *
		  * 10101000 11011100 00000000 00000000 11111111
		  * 00100110 00000001
		  *
		  * and we read them as 16 chunks (i.e. flipping odd/even order)
		  *
		  * 110-111-00  10-1-01-000
		  *   a  b   c 287 | EOF
		  *                |
		  *                this is the 287 distance low bit.
		  *
		  * The last 3 bits are not used. The 287 length is sort of
		  * out of band, coming up soon (because 287 encodes length
		  * 15; most codes do not do this).
		  *
		  * 00000000 00000000
		  *
		  * This padding is there because the first 32 bits are read
		  * at the beginning of decoding. If there were more things to
		  * be encoded, they would be in here.
		  *
		  * 11111111
		  *
		  * This byte is pulled as the length for the 287 match.
		  * Because it is 0xff, we pull a further 2 bytes for the
		  * actual length, i.e. a 16 bit number greater than 270.
		  *
		  * 00000001 00100110
		  *
		  * that is 0x126 = 294 = the match length - 3 (because we're
		  * encoding ["abc", <copy from 3 back, 297 chars>, EOF]).
		  *
		  */
		 )
	},
	{.name = "abcdefghijklmnopqrstuvwxyz", /* [MS-XCA] 3.2 example 1. */
	 .decompressed = BLOB_FROM_STRING("abcdefghijklmnopqrstuvwxyz"),
	 .compressed = BLOB_FROM_ARRAY(
		 /*
		  * In this case there are no matches encoded as there are no
		  * repeated symbols. Including the EOF, there are 27 symbols
		  * all occurring exactly as frequently as each other (once).
		  * From that we would expect the codes to be mostly 5 bits
		  * long, because 27 < 2^5 (32), but greater than 2^4. And
		  * that's what we see.
		  */
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,
		 /* 14 non-zero bytes for 26 letters/nibbles */
		 0x50, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55, 0x55,
		 0x55, 0x55, 0x55, 0x45, 0x44, 0x04,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,   /* 80 */
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,
		 0x04,                                 /* 0x100 EOF */
		 /* no matches */
		 0,0,0,0,0, 0,0,0,0,0, 0,                    /* 140 */
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0,
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, /* 240 */
		 0,0,0,0,0, 0,0,0,0,0, 0,0,0,0,0, 0,

		 0xd8, 0x52, 0x3e, 0xd7, 0x94, 0x11, 0x5b, 0xe9,
		 0x19, 0x5f, 0xf9, 0xd6, 0x7c, 0xdf, 0x8d, 0x04,
		 0x00, 0x00, 0x00, 0x00)
	},
	{0}
};


static void test_lzxpress_huffman_decompress(void **state)
{
	size_t i;
	ssize_t written;
	uint8_t *dest = NULL;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	for (i = 0; bidirectional_pairs[i].name != NULL; i++) {
		struct lzx_pair p = bidirectional_pairs[i];
		dest = talloc_array(mem_ctx, uint8_t, p.decompressed.length);

		debug_message("%s compressed %zu decomp %zu\n", p.name,
			      p.compressed.length,
			      p.decompressed.length);

		written = lzxpress_huffman_decompress(p.compressed.data,
						      p.compressed.length,
						      dest,
						      p.decompressed.length);
		assert_int_not_equal(written, -1);
		assert_int_equal(written, p.decompressed.length);

		assert_memory_equal(dest, p.decompressed.data, p.decompressed.length);
		talloc_free(dest);
	}
}

static void test_lzxpress_huffman_compress(void **state)
{
	size_t i;
	ssize_t written;
	uint8_t *dest = NULL;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	for (i = 0; bidirectional_pairs[i].name != NULL; i++) {
		struct lzx_pair p = bidirectional_pairs[i];
		debug_message("%s compressed %zu decomp %zu\n", p.name,
			      p.compressed.length,
			      p.decompressed.length);

		written = lzxpress_huffman_compress_talloc(mem_ctx,
							   p.decompressed.data,
							   p.decompressed.length,
							   &dest);

		assert_int_not_equal(written, -1);
		assert_int_equal(written, p.compressed.length);
		assert_memory_equal(dest, p.compressed.data, p.compressed.length);
		talloc_free(dest);
	}
}


static DATA_BLOB datablob_from_file(TALLOC_CTX *mem_ctx,
				    const char *filename)
{
	DATA_BLOB b = {0};
	FILE *fh = fopen(filename, "rb");
	int ret;
	struct stat s;
	size_t len;
	if (fh == NULL) {
		debug_message("could not open '%s'\n", filename);
		return b;
	}
	ret = fstat(fileno(fh), &s);
	if (ret != 0) {
		fclose(fh);
		return b;
	}
	b.data = talloc_array(mem_ctx, uint8_t, s.st_size);
	if (b.data == NULL) {
		fclose(fh);
		return b;
	}
	len = fread(b.data, 1, s.st_size, fh);
	if (ferror(fh) || len != s.st_size) {
		TALLOC_FREE(b.data);
	} else {
		b.length = len;
	}
	fclose(fh);
	return b;
}



static void test_lzxpress_huffman_decompress_files(void **state)
{
	size_t i;
	int score = 0;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	for (i = 0; file_names[i] != NULL; i++) {
		char filename[200];
		uint8_t *dest = NULL;
		ssize_t written;
		TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
		struct lzx_pair p = {
			.name = file_names[i]
		};

		debug_message("%s\n", p.name);

		snprintf(filename, sizeof(filename),
			 "%s/%s.decomp", DECOMP_DIR, p.name);

		p.decompressed = datablob_from_file(tmp_ctx, filename);
		assert_non_null(p.decompressed.data);

		snprintf(filename, sizeof(filename),
			 "%s/%s.lzhuff", COMP_DIR, p.name);

		p.compressed = datablob_from_file(tmp_ctx, filename);
		assert_non_null(p.compressed.data);

		dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length);
		debug_start_timer();
		written = lzxpress_huffman_decompress(p.compressed.data,
						      p.compressed.length,
						      dest,
						      p.decompressed.length);
		debug_end_timer("decompress", p.decompressed.length);
		if (written != -1 &&
		    written == p.decompressed.length &&
		    memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) {
			debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name);
			score++;
		} else {
			debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
				      p.name);
			debug_message("size %zd vs reference %zu\n",
				      written, p.decompressed.length);
		}
		talloc_free(tmp_ctx);
	}
	debug_message("%d/%zu correct\n", score, i);
	assert_int_equal(score, i);
}


static void test_lzxpress_huffman_decompress_more_compressed_files(void **state)
{
	/*
	 * This tests the decompression of files that have been compressed on
	 * Windows with the level turned up (to 1, default for MS-XCA is 0).
	 *
	 * The format is identical, but it will have tried harder to find
	 * matches.
	 */
	size_t i;
	int score = 0;
	int found = 0;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	for (i = 0; file_names[i] != NULL; i++) {
		char filename[200];
		uint8_t *dest = NULL;
		ssize_t written;
		TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
		struct lzx_pair p = {
			.name = file_names[i]
		};

		debug_message("%s\n", p.name);

		snprintf(filename, sizeof(filename),
			 "%s/%s.decomp", DECOMP_DIR, p.name);

		p.decompressed = datablob_from_file(tmp_ctx, filename);
		assert_non_null(p.decompressed.data);

		snprintf(filename, sizeof(filename),
			 "%s/%s.lzhuff", MORE_COMP_DIR, p.name);

		p.compressed = datablob_from_file(tmp_ctx, filename);
		if (p.compressed.data == NULL) {
			/*
			 * We don't have all the vectors in the
			 * more-compressed directory, which is OK, we skip
			 * them.
			 */
			continue;
		}
		found++;
		dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length);
		debug_start_timer();
		written = lzxpress_huffman_decompress(p.compressed.data,
						      p.compressed.length,
						      dest,
						      p.decompressed.length);
		debug_end_timer("decompress", p.decompressed.length);
		if (written == p.decompressed.length &&
		    memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) {
			debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name);
			score++;
		} else {
			debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
				      p.name);
			debug_message("size %zd vs reference %zu\n",
				      written, p.decompressed.length);
		}
		talloc_free(tmp_ctx);
	}
	debug_message("%d/%d correct\n", score, found);
	assert_int_equal(score, found);
}


/*
 * attempt_round_trip() tests whether a data blob can survive a compression
 * and decompression cycle. If save_name is not NULL and LZXHUFF_DEBUG_FILES
 * evals to true, the various stages are saved in files with that name and the
 * '-original', '-compressed', and '-decompressed' suffixes. If ref_compressed
 * has data, it'll print a message saying whether the compressed data matches
 * that.
 */

static ssize_t attempt_round_trip(TALLOC_CTX *mem_ctx,
				  DATA_BLOB original,
				  const char *save_name,
				  DATA_BLOB ref_compressed)
{
	TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
	DATA_BLOB compressed = data_blob_talloc(tmp_ctx, NULL,
						original.length * 4 / 3 + 260);
	DATA_BLOB decompressed = data_blob_talloc(tmp_ctx, NULL,
						original.length);
	ssize_t comp_written, decomp_written;
	debug_start_timer();
	comp_written = lzxpress_huffman_compress_talloc(tmp_ctx,
							original.data,
							original.length,
							&compressed.data);
	debug_end_timer("compress", original.length);
	if (comp_written <= 0) {
		talloc_free(tmp_ctx);
		return -1;
	}

	if (ref_compressed.data != NULL) {
		/*
		 * This is informational, not an assertion; there are
		 * ~infinite legitimate ways to compress the data, many as
		 * good as each other (think of compression as a language, not
		 * a format).
		 */
		debug_message("compressed size %zd vs reference %zu\n",
			      comp_written, ref_compressed.length);

		if (comp_written == compressed.length &&
		    memcmp(compressed.data, ref_compressed.data, comp_written) == 0) {
			debug_message("\033[1;32mbyte identical!\033[0m\n");
		}
	}
	debug_start_timer();
	decomp_written = lzxpress_huffman_decompress(compressed.data,
						     comp_written,
						     decompressed.data,
						     original.length);
	debug_end_timer("decompress", original.length);
	if (save_name != NULL && LZXHUFF_DEBUG_FILES) {
		char s[300];
		FILE *fh = NULL;

		snprintf(s, sizeof(s), "%s-original", save_name);
		fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
		fh = fopen(s, "w");
		fwrite(original.data, 1, original.length, fh);
		fclose(fh);

		snprintf(s, sizeof(s), "%s-compressed", save_name);
		fprintf(stderr, "Saving %zu bytes to %s\n", comp_written, s);
		fh = fopen(s, "w");
		fwrite(compressed.data, 1, comp_written, fh);
		fclose(fh);
		/*
		 * We save the decompressed file using original.length, not
		 * the returned size. If these differ, the returned size will
		 * be -1. By saving the whole buffer we can see at what point
		 * it went haywire.
		 */
		snprintf(s, sizeof(s), "%s-decompressed", save_name);
		fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
		fh = fopen(s, "w");
		fwrite(decompressed.data, 1, original.length, fh);
		fclose(fh);
	}

	if (original.length != decomp_written ||
	    memcmp(decompressed.data,
		   original.data,
		   original.length) != 0) {
		debug_message("\033[1;31mgot %zd, expected %zu\033[0m\n",
			      decomp_written,
			      original.length);
		talloc_free(tmp_ctx);
		return -1;
	}
	talloc_free(tmp_ctx);
	return comp_written;
}


static void test_lzxpress_huffman_round_trip(void **state)
{
	size_t i;
	int score = 0;
	ssize_t compressed_total = 0;
	ssize_t reference_total = 0;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	for (i = 0; file_names[i] != NULL; i++) {
		char filename[200];
		char *debug_files = NULL;
		TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
		ssize_t comp_size;
		struct lzx_pair p = {
			.name = file_names[i]
		};
		debug_message("-------------------\n");
		debug_message("%s\n", p.name);

		snprintf(filename, sizeof(filename),
			 "%s/%s.decomp", DECOMP_DIR, p.name);

		p.decompressed = datablob_from_file(tmp_ctx, filename);
		assert_non_null(p.decompressed.data);

		snprintf(filename, sizeof(filename),
			 "%s/%s.lzhuff", COMP_DIR, p.name);

		p.compressed = datablob_from_file(tmp_ctx, filename);
		if (p.compressed.data == NULL) {
			debug_message(
				"Could not load %s reference file %s\n",
				p.name, filename);
			debug_message("%s decompressed %zu\n", p.name,
				      p.decompressed.length);
		} else {
			debug_message("%s: reference compressed %zu decomp %zu\n",
				      p.name,
				      p.compressed.length,
				      p.decompressed.length);
		}
		if (1) {
			/*
			 * We're going to save copies in /tmp.
			 */
			snprintf(filename, sizeof(filename),
				 "/tmp/lzxhuffman-%s", p.name);
			debug_files = filename;
		}

		comp_size = attempt_round_trip(mem_ctx, p.decompressed,
					       debug_files,
					       p.compressed);
		if (comp_size > 0) {
			debug_message("\033[1;32mround trip!\033[0m\n");
			score++;
			if (p.compressed.length) {
				compressed_total += comp_size;
				reference_total += p.compressed.length;
			}
		}
		talloc_free(tmp_ctx);
	}
	debug_message("%d/%zu correct\n", score, i);
	print_message("\033[1;34mtotal compressed size: %zu\033[0m\n",
		      compressed_total);
	print_message("total reference size:  %zd \n", reference_total);
	print_message("diff:                  %7zd \n",
		      reference_total - compressed_total);
	assert_true(reference_total != 0);
	print_message("ratio: \033[1;3%dm%.2f\033[0m \n",
		      2 + (compressed_total >= reference_total),
		      ((double)compressed_total) / reference_total);
	/*
	 * Assert that the compression is *about* as good as Windows. Of course
	 * it doesn't matter if we do better, but mysteriously getting better
	 * is usually a sign that something is wrong.
	 *
	 * At the time of writing, compressed_total is 2674004, or 10686 more
	 * than the Windows reference total. That's < 0.5% difference, we're
	 * asserting at 2%.
	 */
	assert_true(labs(compressed_total - reference_total) <
		    compressed_total / 50);

	assert_int_equal(score, i);
	talloc_free(mem_ctx);
}

/*
 * Bob Jenkins' Small Fast RNG.
 *
 * We don't need it to be this good, but we do need it to be reproduceable
 * across platforms, which rand() etc aren't.
 *
 * http://burtleburtle.net/bob/rand/smallprng.html
 */

struct jsf_rng {
	uint32_t a;
	uint32_t b;
	uint32_t c;
	uint32_t d;
};

#define ROTATE32(x, k) (((x) << (k)) | ((x) >> (32 - (k))))

static uint32_t jsf32(struct jsf_rng *x) {
	uint32_t e = x->a - ROTATE32(x->b, 27);
	x->a = x->b ^ ROTATE32(x->c, 17);
	x->b = x->c + x->d;
	x->c = x->d + e;
	x->d = e + x->a;
	return x->d;
}

static void jsf32_init(struct jsf_rng *x, uint32_t seed) {
	size_t i;
	x->a = 0xf1ea5eed;
	x->b = x->c = x->d = seed;
	for (i = 0; i < 20; ++i) {
		jsf32(x);
	}
}


static void test_lzxpress_huffman_long_gpl_round_trip(void **state)
{
	/*
	 * We use a kind of model-free Markov model to generate a massively
	 * extended pastiche of the GPLv3 (chosen because it is right there in
	 * "COPYING" and won't change often).
	 *
	 * The point is to check a round trip of a very long message with
	 * multiple repetitions on many scales, without having to add a very
	 * large file.
	 */
	size_t i, j, k;
	uint8_t c;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB gpl = datablob_from_file(mem_ctx, "COPYING");
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
	DATA_BLOB ref = {0};
	ssize_t comp_size;
	struct jsf_rng rng;

	if (gpl.data == NULL) {
		print_message("could not read COPYING\n");
		fail();
	}

	jsf32_init(&rng, 1);

	j = 1;
	original.data[0] = gpl.data[0];
	for (i = 1; i < original.length; i++) {
		size_t m;
		char p = original.data[i - 1];
		c = gpl.data[j];
		original.data[i] = c;
		j++;
		m = (j + jsf32(&rng)) % (gpl.length - 50);
		for (k = m; k < m + 30; k++) {
			if (p == gpl.data[k] &&
			    c == gpl.data[k + 1]) {
				j = k + 2;
				break;
			}
		}
		if (j == gpl.length) {
			j = 1;
		}
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/gpl", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size < original.length);

	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_long_random_graph_round_trip(void **state)
{
	size_t i;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
	DATA_BLOB ref = {0};
	/*
	 * There's a random trigram graph, with each pair of sequential bytes
	 * pointing to a successor. This would probably fall into a fairly
	 * simple loop, but we introduce damage into the system, randomly
	 * flipping about 1 bit in 64.
	 *
	 * The result is semi-structured and compressible.
	 */
	uint8_t *d = original.data;
	uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
	uint32_t *table32 = (void*)table;
	ssize_t comp_size;
	struct jsf_rng rng;

	jsf32_init(&rng, 1);
	for (i = 0; i < (65536 / 4); i++) {
		table32[i] = jsf32(&rng);
	}

	d[0] = 'a';
	d[1] = 'b';

	for (i = 2; i < original.length; i++) {
		uint16_t k = (d[i - 2] << 8) | d[i - 1];
		uint32_t damage = jsf32(&rng) & jsf32(&rng) & jsf32(&rng);
		damage &= (damage >> 16);
		k ^= damage & 0xffff;
		d[i] = table[k];
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-graph", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size < original.length);

	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_chaos_graph_round_trip(void **state)
{
	size_t i;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
	DATA_BLOB ref = {0};
	/*
	 * There's a random trigram graph, with each pair of sequential bytes
	 * pointing to a successor. This would probably fall into a fairly
	 * simple loop, but we keep changing the graph. The result is long
	 * periods of stability separatd by bursts of noise.
	 */
	uint8_t *d = original.data;
	uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
	uint32_t *table32 = (void*)table;
	ssize_t comp_size;
	struct jsf_rng rng;

	jsf32_init(&rng, 1);
	for (i = 0; i < (65536 / 4); i++) {
		table32[i] = jsf32(&rng);
	}

	d[0] = 'a';
	d[1] = 'b';

	for (i = 2; i < original.length; i++) {
		uint16_t k = (d[i - 2] << 8) | d[i - 1];
		uint32_t damage = jsf32(&rng);
		d[i] = table[k];
		if ((damage >> 29) == 0) {
			uint16_t index = damage & 0xffff;
			uint8_t value = (damage >> 16) & 0xff;
			table[index] = value;
		}
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/chaos-graph", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size < original.length);

	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_sparse_random_graph_round_trip(void **state)
{
	size_t i;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
	DATA_BLOB ref = {0};
	/*
	 * There's a random trigram graph, with each pair of sequential bytes
	 * pointing to a successor. This will fall into a fairly simple loops,
	 * but we introduce damage into the system, randomly mangling about 1
	 * byte in 65536.
	 *
	 * The result has very long repetitive runs, which should lead to
	 * oversized blocks.
	 */
	uint8_t *d = original.data;
	uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
	uint32_t *table32 = (void*)table;
	ssize_t comp_size;
	struct jsf_rng rng;

	jsf32_init(&rng, 3);
	for (i = 0; i < (65536 / 4); i++) {
		table32[i] = jsf32(&rng);
	}

	d[0] = 'a';
	d[1] = 'b';

	for (i = 2; i < original.length; i++) {
		uint16_t k = (d[i - 2] << 8) | d[i - 1];
		uint32_t damage = jsf32(&rng);
		if ((damage & 0xffff0000) == 0) {
			k ^= damage & 0xffff;
		}
		d[i] = table[k];
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/sparse-random-graph", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size < original.length);

	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_random_noise_round_trip(void **state)
{
	size_t i;
	size_t len = 1024 * 1024;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len);
	DATA_BLOB ref = {0};
	ssize_t comp_size;
	/*
	 * We are filling this up with incompressible noise, but we can assert
	 * quite tight bounds on how badly it will fail to compress.
	 *
	 * Specifically, with randomly distributed codes, the Huffman table
	 * should come out as roughly even, averaging 8 bit codes. Then there
	 * will be a 256 byte table every 64k, which is a 1/256 overhead (i.e.
	 * the compressed length will be 257/256 the original *on average*).
	 * We assert it is less than 1 in 200 but more than 1 in 300.
	 */
	uint32_t *d32 = (uint32_t*)((void*)original.data);
	struct jsf_rng rng;
	jsf32_init(&rng, 2);

	for (i = 0; i < (len / 4); i++) {
		d32[i] = jsf32(&rng);
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-noise", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size > original.length + original.length / 300);
	assert_true(comp_size < original.length + original.length / 200);
	debug_message("original size %zu; compressed size %zd; ratio %.3f\n",
		      len, comp_size, ((double)comp_size) / len);

	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_overlong_matches(void **state)
{
	size_t i, j = 0;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 1024 * 1024);
	DATA_BLOB ref = {0};
	uint8_t *d = original.data;
	char filename[300];
	/*
	 * We are testing with something like "aaaaaaaaaaaaaaaaaaaaaaabbbbb"
	 * where typically the number of "a"s is > 65536, and the number of
	 * "b"s is < 42.
	 */
	ssize_t na[] = {65535, 65536, 65537, 65559, 65575, 200000, -1};
	ssize_t nb[] = {1, 2, 20, 39, 40, 41, 42, -1};
	int score = 0;
	ssize_t comp_size;

	for (i = 0; na[i] >= 0; i++) {
		ssize_t a = na[i];
		memset(d, 'a', a);
		for (j = 0; nb[j] >= 0; j++) {
			ssize_t b = nb[j];
			memset(d + a, 'b', b);
			original.length = a + b;
			snprintf(filename, sizeof(filename),
				 "/tmp/overlong-%zd-%zd", a, b);
			comp_size = attempt_round_trip(mem_ctx,
						       original,
						       filename, ref);
			if (comp_size > 0) {
				score++;
			}
		}
	}
	debug_message("%d/%zu correct\n", score, i * j);
	assert_int_equal(score, i * j);
	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_overlong_matches_abc(void **state)
{
	size_t i, j = 0, k = 0;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 1024 * 1024);
	DATA_BLOB ref = {0};
	uint8_t *d = original.data;
	char filename[300];
	/*
	 * We are testing with something like "aaaabbbbcc" where typically
	 * the number of "a"s + "b"s is around 65536, and the number of "c"s
	 * is < 43.
	 */
	ssize_t nab[] = {1, 21, 32767, 32768, 32769, -1};
	ssize_t nc[] = {1, 2, 20, 39, 40, 41, 42, -1};
	int score = 0;
	ssize_t comp_size;

	for (i = 0; nab[i] >= 0; i++) {
		ssize_t a = nab[i];
		memset(d, 'a', a);
		for (j = 0; nab[j] >= 0; j++) {
			ssize_t b = nab[j];
			memset(d + a, 'b', b);
			for (k = 0; nc[k] >= 0; k++) {
				ssize_t c = nc[k];
				memset(d + a + b, 'c', c);
				original.length = a + b + c;
				snprintf(filename, sizeof(filename),
					 "/tmp/overlong-abc-%zd-%zd-%zd",
					 a, b, c);
				comp_size = attempt_round_trip(mem_ctx,
							       original,
							       filename, ref);
				if (comp_size > 0) {
					score++;
				}
			}
		}
	}
	debug_message("%d/%zu correct\n", score, i * j * k);
	assert_int_equal(score, i * j * k);
	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_extremely_compressible_middle(void **state)
{
	size_t len = 192 * 1024;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len);
	DATA_BLOB ref = {0};
	ssize_t comp_size;
	/*
	 * When a middle block (i.e. not the first and not the last of >= 3),
	 * can be entirely expressed as a match starting in the previous
	 * block, the Huffman tree would end up with 1 element, which does not
	 * work for the code construction. It really wants to use both bits.
	 * So we need to ensure we have some way of dealing with this.
	 */
	memset(original.data, 'a', 0x10000 - 1);
	memset(original.data + 0x10000 - 1, 'b', 0x10000 + 1);
	memset(original.data + 0x20000, 'a', 0x10000);
	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/compressible-middle", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size < 1024);
	debug_message("original size %zu; compressed size %zd; ratio %.3f\n",
		      len, comp_size, ((double)comp_size) / len);

	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_max_length_limit(void **state)
{
	size_t len = 65 * 1024 * 1024;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc_zero(mem_ctx, len);
	DATA_BLOB ref = {0};
	ssize_t comp_size;
	/*
	 * Reputedly Windows has a 64MB limit in the maximum match length it
	 * will encode. We follow this, and test that here with nearly 65 MB
	 * of zeros between two letters; this should be encoded in three
	 * blocks:
	 *
	 * 1. 'a', 64M × '\0'
	 * 2. (1M - 2) × '\0' -- finishing off what would have been the same match
	 * 3. 'b' EOF
	 *
	 * Which we can assert by saying the length is > 768, < 1024.
	 */
	original.data[0] = 'a';
	original.data[len - 1] = 'b';
	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/max-length-limit", ref);
	assert_true(comp_size > 0x300);
	assert_true(comp_size < 0x400);
	debug_message("original size %zu; compressed size %zd; ratio %.3f\n",
		      len, comp_size, ((double)comp_size) / len);

	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_short_boring_strings(void **state)
{
	size_t len = 64 * 1024;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len);
	DATA_BLOB ref = {0};
	ssize_t comp_size;
	ssize_t lengths[] = {
		1, 2, 20, 39, 40, 41, 42, 256, 270, 273, 274, 1000, 64000, -1};
	char filename[300];
	size_t i;
	/*
	 * How do short repetitive strings work? We're poking at the limit
	 * around which LZ77 comprssion is turned on.
	 *
	 * For this test we don't change the blob memory between runs, just
	 * the declared length.
	 */
	memset(original.data, 'a', len);
	for (i = 0; lengths[i] >= 0; i++) {
		original.length = lengths[i];
		snprintf(filename, sizeof(filename),
			 "/tmp/short-boring-%zu",
			 original.length);
		comp_size = attempt_round_trip(mem_ctx, original, filename, ref);
		if (original.length < 41) {
			assert_true(comp_size > 256 + original.length / 8);
		} else if (original.length < 274) {
			assert_true(comp_size == 261);
		} else {
			assert_true(comp_size == 263);
		}
		assert_true(comp_size < 261 + original.length / 8);
	}
	/* let's just show we didn't change the original */
	for (i = 0; i < len; i++) {
		if (original.data[i] != 'a') {
			fail_msg("input data[%zu] was changed! (%2x, expected %2x)\n",
				 i, original.data[i], 'a');
		}
	}

	talloc_free(mem_ctx);
}


static void test_lzxpress_huffman_compress_empty_or_null(void **state)
{
	/*
	 * We expect these to fail with a -1, except the last one, which does
	 * the real thing.
	 */
	ssize_t ret;
	const uint8_t *input = bidirectional_pairs[0].decompressed.data;
	size_t ilen = bidirectional_pairs[0].decompressed.length;
	size_t olen = bidirectional_pairs[0].compressed.length;
	uint8_t output[olen];
	struct lzxhuff_compressor_mem cmp_mem;

	ret = lzxpress_huffman_compress(&cmp_mem, input, 0, output, olen);
	assert_int_equal(ret, -1LL);
	ret = lzxpress_huffman_compress(&cmp_mem, input, ilen, output, 0);
	assert_int_equal(ret, -1LL);

	ret = lzxpress_huffman_compress(&cmp_mem, NULL, ilen, output, olen);
	assert_int_equal(ret, -1LL);
	ret = lzxpress_huffman_compress(&cmp_mem, input, ilen, NULL, olen);
	assert_int_equal(ret, -1LL);
	ret = lzxpress_huffman_compress(NULL, input, ilen, output, olen);
	assert_int_equal(ret, -1LL);

	ret = lzxpress_huffman_compress(&cmp_mem, input, ilen, output, olen);
	assert_int_equal(ret, olen);
}


static void test_lzxpress_huffman_decompress_empty_or_null(void **state)
{
	/*
	 * We expect these to fail with a -1, except the last one.
	 */
	ssize_t ret;
	const uint8_t *input = bidirectional_pairs[0].compressed.data;
	size_t ilen = bidirectional_pairs[0].compressed.length;
	size_t olen = bidirectional_pairs[0].decompressed.length;
	uint8_t output[olen];

	ret = lzxpress_huffman_decompress(input, 0, output, olen);
	assert_int_equal(ret, -1LL);
	ret = lzxpress_huffman_decompress(input, ilen, output, 0);
	assert_int_equal(ret, -1LL);

	ret = lzxpress_huffman_decompress(NULL, ilen, output, olen);
	assert_int_equal(ret, -1LL);
	ret = lzxpress_huffman_decompress(input, ilen, NULL, olen);
	assert_int_equal(ret, -1LL);

	ret = lzxpress_huffman_decompress(input, ilen, output, olen);
	assert_int_equal(ret, olen);
}


int main(void) {
	const struct CMUnitTest tests[] = {
		cmocka_unit_test(test_lzxpress_huffman_short_boring_strings),
		cmocka_unit_test(test_lzxpress_huffman_max_length_limit),
		cmocka_unit_test(test_lzxpress_huffman_extremely_compressible_middle),
		cmocka_unit_test(test_lzxpress_huffman_long_random_graph_round_trip),
		cmocka_unit_test(test_lzxpress_huffman_chaos_graph_round_trip),
		cmocka_unit_test(test_lzxpress_huffman_sparse_random_graph_round_trip),
		cmocka_unit_test(test_lzxpress_huffman_round_trip),
		cmocka_unit_test(test_lzxpress_huffman_decompress_files),
		cmocka_unit_test(test_lzxpress_huffman_decompress_more_compressed_files),
		cmocka_unit_test(test_lzxpress_huffman_compress),
		cmocka_unit_test(test_lzxpress_huffman_decompress),
		cmocka_unit_test(test_lzxpress_huffman_long_gpl_round_trip),
		cmocka_unit_test(test_lzxpress_huffman_long_random_graph_round_trip),
		cmocka_unit_test(test_lzxpress_huffman_random_noise_round_trip),
		cmocka_unit_test(test_lzxpress_huffman_overlong_matches_abc),
		cmocka_unit_test(test_lzxpress_huffman_overlong_matches),
		cmocka_unit_test(test_lzxpress_huffman_decompress_empty_or_null),
		cmocka_unit_test(test_lzxpress_huffman_compress_empty_or_null),
	};
	if (!isatty(1)) {
		cmocka_set_message_output(CM_OUTPUT_SUBUNIT);
	}

	return cmocka_run_group_tests(tests, NULL, NULL);
}