summaryrefslogtreecommitdiffstats
path: root/lib/compression/tests/test_lzxpress_plain.c
blob: 1c147932d40d68f8e10850e1d1e764199b40ed15 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
/*
   Unix SMB/CIFS implementation.
   test suite for the compression functions

   Copyright (C) Jelmer Vernooij 2007

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.
*/

#include <stdarg.h>
#include <stddef.h>
#include <setjmp.h>
#include <sys/stat.h>
#include <cmocka.h>
#include "includes.h"
#include "talloc.h"
#include "lzxpress.h"
#include "lib/util/base64.h"


/* set LZX_DEBUG_FILES to true to save round-trip files in /tmp. */
#define LZX_DEBUG_FILES false

/* set LZX_DEBUG_VERBOSE to true to print more. */
#define LZX_DEBUG_VERBOSE false


#if LZX_DEBUG_VERBOSE
#define debug_message(...) print_message(__VA_ARGS__)

#include <time.h>

struct timespec start = {0};
struct timespec end = {0};
static void debug_start_timer(void)
{
	clock_gettime(CLOCK_MONOTONIC, &start);
}

static void debug_end_timer(const char *name, size_t len)
{
	uint64_t ns;
	double secs;
	double rate;
	clock_gettime(CLOCK_MONOTONIC, &end);
	ns = end.tv_nsec;
	ns += end.tv_sec * 1000 * 1000 * 1000;
	ns -= start.tv_nsec;
	ns -= start.tv_sec * 1000 * 1000 * 1000;
	secs = ns / 1e9;
	rate = len / (secs * 1024 * 1024);
	debug_message("%s %zu bytes in %.2g: \033[1;35m%.2f\033[0m MB per second\n",
		      name, len, secs, rate);
}

#else
#define debug_message(...) /* debug_message */
#define debug_start_timer(...) /* debug_start_timer */
#define debug_end_timer(...) /* debug_end_timer */
#endif


struct lzx_pair {
	const char *name;
	DATA_BLOB compressed;
	DATA_BLOB decompressed;
};

struct lzx_file_pair {
	const char *name;
	const char *compressed_file;
	const char *decompressed_file;
};


#define DECOMP_DIR "testdata/compression/decompressed"
#define COMP_DIR "testdata/compression/compressed-plain"
#define MORE_COMP_DIR "testdata/compression/compressed-more-plain"


#define BLOB_FROM_ARRAY(...)                             \
	{                                                \
		.data = (uint8_t[]){__VA_ARGS__},          \
		.length = sizeof((uint8_t[]){__VA_ARGS__}) \
	}

#define BLOB_FROM_STRING(s)                                      \
	{                                                            \
		.data = discard_const_p(uint8_t, s),		     \
		.length = (sizeof(s) - 1)		     \
	}


const char * file_names[] = {
	"generate-windows-test-vectors.c",
	"fib_shuffle-128k+",
	"fuzzing-0fc2d461b56cd8103c91",
	"fuzzing-3ec3bca27bb9eb40c128",
	"fuzzing-a3115a81d1ac500318f9",
	"fuzzing-3591f9dc02bb00a54b60",
	"27826-8.txt",
	"5d049b4cb1bd933f5e8ex19",
	"638e61e96d54279981c3x5",
	"64k-minus-one-zeros",
	"64k-plus-one-zeros",
	"64k-zeros",
	"96f696a4e5ce56c61a3dx10",
	"9e0b6a12febf38e98f13",
	"abc-times-101",
	"abc-times-105",
	"abc-times-200",
	"b63289ccc7f218c0d56b",
	"beta-variate1-128k+",
	"beta-variate3-128k+",
	"decayed_alphabet_128k+",
	"decayed_alphabet_64k",
	"f00842317dc6d5695b02",
	"fib_shuffle",
	"midsummer-nights-dream.txt",
	"notes-on-the-underground.txt",
	"pg22009.txt",
	"repeating",
	"repeating-exactly-64k",
	"setup.log",
	"slow-015ddc36a71412ccc50d",
	"slow-100e9f966a7feb9ca40a",
	"slow-2a671c3cff4f1574cbab",
	"slow-33d90a24e70515b14cd0",
	"slow-49d8c05261e3f412fc72",
	"slow-50a249d2fe56873e56a0",
	"slow-63e9f0b52235fb0129fa",
	"slow-73b7f971d65908ac0095",
	"slow-8b61e3dd267908544531",
	"slow-9d1c5a079b0462986f1f",
	"slow-aa7262a821dabdcf04a6",
	"slow-b8a91d142b0d2af7f5ca",
	"slow-c79142457734bbc8d575",
	"slow-d736544545b90d83fe75",
	"slow-e3b9bdfaed7d1a606fdb",
	"slow-f3f1c02a9d006e5e1703",
	"trigram_128k+",
	"trigram_64k",
	"trigram_sum_128k+",
	"trigram_sum_64k",
	NULL
};



static DATA_BLOB datablob_from_file(TALLOC_CTX *mem_ctx,
				    const char *filename)
{
	DATA_BLOB b = {0};
	FILE *fh = fopen(filename, "rb");
	int ret;
	struct stat s;
	size_t len;
	if (fh == NULL) {
		debug_message("could not open '%s'\n", filename);
		return b;
	}
	ret = fstat(fileno(fh), &s);
	if (ret != 0) {
		fclose(fh);
		return b;
	}
	b.data = talloc_array(mem_ctx, uint8_t, s.st_size);
	if (b.data == NULL) {
		fclose(fh);
		return b;
	}
	len = fread(b.data, 1, s.st_size, fh);
	if (ferror(fh) || len != s.st_size) {
		TALLOC_FREE(b.data);
	} else {
		b.length = len;
	}
	fclose(fh);
	return b;
}



static void test_lzxpress_plain_decompress_files(void **state)
{
	size_t i;
	int score = 0;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	for (i = 0; file_names[i] != NULL; i++) {
		char filename[200];
		uint8_t *dest = NULL;
		ssize_t written;
		TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
		struct lzx_pair p = {
			.name = file_names[i]
		};

		debug_message("%s\n", p.name);

		snprintf(filename, sizeof(filename),
			 "%s/%s.decomp", DECOMP_DIR, p.name);

		p.decompressed = datablob_from_file(tmp_ctx, filename);
		assert_non_null(p.decompressed.data);

		snprintf(filename, sizeof(filename),
			 "%s/%s.lzplain", COMP_DIR, p.name);

		p.compressed = datablob_from_file(tmp_ctx, filename);
		assert_non_null(p.compressed.data);

		dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length);
		debug_start_timer();
		written = lzxpress_decompress(p.compressed.data,
					      p.compressed.length,
					      dest,
					      p.decompressed.length);
		debug_end_timer("decompress", p.decompressed.length);
		if (written == p.decompressed.length &&
		    memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) {
			debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name);
			score++;
		} else {
			debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
				      p.name);
			debug_message("size %zd vs reference %zu\n",
				      written, p.decompressed.length);
		}
		talloc_free(tmp_ctx);
	}
	debug_message("%d/%zu correct\n", score, i);
	assert_int_equal(score, i);
}


static void test_lzxpress_plain_decompress_more_compressed_files(void **state)
{
	/*
	 * This tests the decompression of files that have been compressed on
	 * Windows with the level turned up (to 1, default for MS-XCA is 0).
	 *
	 * The format is identical, but it will have tried harder to find
	 * matches.
	 */
	size_t i;
	int score = 0;
	int found = 0;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	for (i = 0; file_names[i] != NULL; i++) {
		char filename[200];
		uint8_t *dest = NULL;
		ssize_t written;
		TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
		struct lzx_pair p = {
			.name = file_names[i]
		};

		debug_message("%s\n", p.name);

		snprintf(filename, sizeof(filename),
			 "%s/%s.decomp", DECOMP_DIR, p.name);

		p.decompressed = datablob_from_file(tmp_ctx, filename);
		assert_non_null(p.decompressed.data);

		snprintf(filename, sizeof(filename),
			 "%s/%s.lzplain", MORE_COMP_DIR, p.name);

		p.compressed = datablob_from_file(tmp_ctx, filename);
		if (p.compressed.data == NULL) {
			/*
			 * We don't have all the vectors in the
			 * more-compressed directory, which is OK, we skip
			 * them.
			 */
			continue;
		}
		found++;
		dest = talloc_array(tmp_ctx, uint8_t, p.decompressed.length);
		debug_start_timer();
		written = lzxpress_decompress(p.compressed.data,
					      p.compressed.length,
					      dest,
					      p.decompressed.length);
		debug_end_timer("decompress", p.decompressed.length);
		if (written != -1 &&
		    written == p.decompressed.length &&
		    memcmp(dest, p.decompressed.data, p.decompressed.length) == 0) {
			debug_message("\033[1;32mdecompressed %s!\033[0m\n", p.name);
			score++;
		} else {
			debug_message("\033[1;31mfailed to decompress %s!\033[0m\n",
				      p.name);
			debug_message("size %zd vs reference %zu\n",
				      written, p.decompressed.length);
		}
		talloc_free(tmp_ctx);
	}
	debug_message("%d/%d correct\n", score, found);
	assert_int_equal(score, found);
}


/*
 * attempt_round_trip() tests whether a data blob can survive a compression
 * and decompression cycle. If save_name is not NULL and LZX_DEBUG_FILES
 * evals to true, the various stages are saved in files with that name and the
 * '-original', '-compressed', and '-decompressed' suffixes. If ref_compressed
 * has data, it'll print a message saying whether the compressed data matches
 * that.
 */

static ssize_t attempt_round_trip(TALLOC_CTX *mem_ctx,
				  DATA_BLOB original,
				  const char *save_name,
				  DATA_BLOB ref_compressed)
{
	TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
	DATA_BLOB compressed = data_blob_talloc(tmp_ctx, NULL,
						original.length * 8 / 7 + 8);
	DATA_BLOB decompressed = data_blob_talloc(tmp_ctx, NULL,
						  original.length);
	ssize_t comp_written, decomp_written;
	debug_start_timer();
	comp_written = lzxpress_compress(original.data,
					 original.length,
					 compressed.data,
					 compressed.length);
	debug_end_timer("compress", original.length);
	if (comp_written <= 0) {
		talloc_free(tmp_ctx);
		return -1;
	}

	if (ref_compressed.data != NULL) {
		/*
		 * This is informational, not an assertion; there are
		 * ~infinite legitimate ways to compress the data, many as
		 * good as each other (think of compression as a language, not
		 * a format).
		 */
		debug_message("compressed size %zd vs reference %zu\n",
			      comp_written, ref_compressed.length);

		if (comp_written == compressed.length &&
		    memcmp(compressed.data, ref_compressed.data, comp_written) == 0) {
			debug_message("\033[1;32mbyte identical!\033[0m\n");
		}
	}
	debug_start_timer();
	decomp_written = lzxpress_decompress(compressed.data,
					     comp_written,
					     decompressed.data,
					     decompressed.length);
	debug_end_timer("decompress", original.length);
	if (save_name != NULL && LZX_DEBUG_FILES) {
		char s[300];
		FILE *fh = NULL;

		snprintf(s, sizeof(s), "%s-original", save_name);
		fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
		fh = fopen(s, "w");
		fwrite(original.data, 1, original.length, fh);
		fclose(fh);

		snprintf(s, sizeof(s), "%s-compressed", save_name);
		fprintf(stderr, "Saving %zu bytes to %s\n", comp_written, s);
		fh = fopen(s, "w");
		fwrite(compressed.data, 1, comp_written, fh);
		fclose(fh);
		/*
		 * We save the decompressed file using original.length, not
		 * the returned size. If these differ, the returned size will
		 * be -1. By saving the whole buffer we can see at what point
		 * it went haywire.
		 */
		snprintf(s, sizeof(s), "%s-decompressed", save_name);
		fprintf(stderr, "Saving %zu bytes to %s\n", original.length, s);
		fh = fopen(s, "w");
		fwrite(decompressed.data, 1, original.length, fh);
		fclose(fh);
	}

	if (original.length != decomp_written ||
	    memcmp(decompressed.data,
		   original.data,
		   original.length) != 0) {
		debug_message("\033[1;31mgot %zd, expected %zu\033[0m\n",
			      decomp_written,
			      original.length);
		talloc_free(tmp_ctx);
		return -1;
	}
	talloc_free(tmp_ctx);
	return comp_written;
}


static void test_lzxpress_plain_round_trip_files(void **state)
{
	size_t i;
	int score = 0;
	ssize_t compressed_total = 0;
	ssize_t reference_total = 0;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	for (i = 0; file_names[i] != NULL; i++) {
		char filename[200];
		char *debug_files = NULL;
		TALLOC_CTX *tmp_ctx = talloc_new(mem_ctx);
		ssize_t comp_size;
		struct lzx_pair p = {
			.name = file_names[i]
		};
		debug_message("-------------------\n");
		debug_message("%s\n", p.name);

		snprintf(filename, sizeof(filename),
			 "%s/%s.decomp", DECOMP_DIR, p.name);

		p.decompressed = datablob_from_file(tmp_ctx, filename);
		assert_non_null(p.decompressed.data);

		snprintf(filename, sizeof(filename),
			 "%s/%s.lzplain", COMP_DIR, p.name);

		p.compressed = datablob_from_file(tmp_ctx, filename);
		if (p.compressed.data == NULL) {
			debug_message(
				"Could not load %s reference file %s\n",
				p.name, filename);
			debug_message("%s decompressed %zu\n", p.name,
				      p.decompressed.length);
		} else {
			debug_message("%s: reference compressed %zu decomp %zu\n",
				      p.name,
				      p.compressed.length,
				      p.decompressed.length);
		}
		if (1) {
			/*
			 * We're going to save copies in /tmp.
			 */
			snprintf(filename, sizeof(filename),
				 "/tmp/lzxplain-%s", p.name);
			debug_files = filename;
		}

		comp_size = attempt_round_trip(mem_ctx, p.decompressed,
					       debug_files,
					       p.compressed);
		if (comp_size > 0) {
			debug_message("\033[1;32mround trip!\033[0m\n");
			score++;
			if (p.compressed.length) {
				compressed_total += comp_size;
				reference_total += p.compressed.length;
			}
		}
		talloc_free(tmp_ctx);
	}
	debug_message("%d/%zu correct\n", score, i);
	print_message("\033[1;34mtotal compressed size: %zu\033[0m\n",
		      compressed_total);
	print_message("total reference size:  %zd \n", reference_total);
	print_message("diff:                  %7zd \n",
		      reference_total - compressed_total);
	assert_true(reference_total != 0);
	print_message("ratio: \033[1;3%dm%.2f\033[0m \n",
		      2 + (compressed_total >= reference_total),
		      ((double)compressed_total) / reference_total);
	/*
	 * Assert that the compression is better than Windows. Unlike the
	 * Huffman variant, where things are very even, here we do much better
	 * than Windows without especially trying.
	 */
	assert_true(compressed_total <= reference_total);

	assert_int_equal(score, i);
	talloc_free(mem_ctx);
}


/*
 * Bob Jenkins' Small Fast RNG.
 *
 * We don't need it to be this good, but we do need it to be reproduceable
 * across platforms, which rand() etc aren't.
 *
 * http://burtleburtle.net/bob/rand/smallprng.html
 */

struct jsf_rng {
	uint32_t a;
	uint32_t b;
	uint32_t c;
	uint32_t d;
};

#define ROTATE32(x, k) (((x) << (k)) | ((x) >> (32 - (k))))

static uint32_t jsf32(struct jsf_rng *x) {
	uint32_t e = x->a - ROTATE32(x->b, 27);
	x->a = x->b ^ ROTATE32(x->c, 17);
	x->b = x->c + x->d;
	x->c = x->d + e;
	x->d = e + x->a;
	return x->d;
}

static void jsf32_init(struct jsf_rng *x, uint32_t seed) {
	size_t i;
	x->a = 0xf1ea5eed;
	x->b = x->c = x->d = seed;
	for (i = 0; i < 20; ++i) {
		jsf32(x);
	}
}


static void test_lzxpress_plain_long_gpl_round_trip(void **state)
{
	/*
	 * We use a kind of model-free Markov model to generate a massively
	 * extended pastiche of the GPLv3 (chosen because it is right there in
	 * "COPYING" and won't change often).
	 *
	 * The point is to check a round trip of a very long message with
	 * multiple repetitions on many scales, without having to add a very
	 * large file.
	 */
	size_t i, j, k;
	uint8_t c;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB gpl = datablob_from_file(mem_ctx, "COPYING");
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
	DATA_BLOB ref = {0};
	ssize_t comp_size;
	struct jsf_rng rng;


	jsf32_init(&rng, 1);

	j = 1;
	original.data[0] = gpl.data[0];
	for (i = 1; i < original.length; i++) {
		size_t m;
		char p = original.data[i - 1];
		c = gpl.data[j];
		original.data[i] = c;
		j++;
		m = (j + jsf32(&rng)) % (gpl.length - 50);
		for (k = m; k < m + 30; k++) {
			if (p == gpl.data[k] &&
			    c == gpl.data[k + 1]) {
				j = k + 2;
				break;
			}
		}
		if (j == gpl.length) {
			j = 1;
		}
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/gpl", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size < original.length);

	talloc_free(mem_ctx);
}


static void test_lzxpress_plain_long_random_graph_round_trip(void **state)
{
	size_t i;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
	DATA_BLOB ref = {0};
	/*
	 * There's a random trigram graph, with each pair of sequential bytes
	 * pointing to a successor. This would probably fall into a fairly
	 * simple loop, but we introduce damage into the system, randomly
	 * flipping about 1 bit in 64.
	 *
	 * The result is semi-structured and compressible.
	 */
	uint8_t *d = original.data;
	uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
	uint32_t *table32 = (void*)table;
	ssize_t comp_size;
	struct jsf_rng rng;

	jsf32_init(&rng, 1);
	for (i = 0; i < (65536 / 4); i++) {
		table32[i] = jsf32(&rng);
	}

	d[0] = 'a';
	d[1] = 'b';

	for (i = 2; i < original.length; i++) {
		uint16_t k = (d[i - 2] << 8) | d[i - 1];
		uint32_t damage = jsf32(&rng) & jsf32(&rng) & jsf32(&rng);
		damage &= (damage >> 16);
		k ^= damage & 0xffff;
		d[i] = table[k];
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-graph", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size < original.length);

	talloc_free(mem_ctx);
}


static void test_lzxpress_plain_chaos_graph_round_trip(void **state)
{
	size_t i;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
	DATA_BLOB ref = {0};
	/*
	 * There's a random trigram graph, with each pair of sequential bytes
	 * pointing to a successor. This would probably fall into a fairly
	 * simple loop, but we keep changing the graph. The result is long
	 * periods of stability separatd by bursts of noise.
	 */
	uint8_t *d = original.data;
	uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
	uint32_t *table32 = (void*)table;
	ssize_t comp_size;
	struct jsf_rng rng;

	jsf32_init(&rng, 1);
	for (i = 0; i < (65536 / 4); i++) {
		table32[i] = jsf32(&rng);
	}

	d[0] = 'a';
	d[1] = 'b';

	for (i = 2; i < original.length; i++) {
		uint16_t k = (d[i - 2] << 8) | d[i - 1];
		uint32_t damage = jsf32(&rng);
		d[i] = table[k];
		if ((damage >> 29) == 0) {
			uint16_t index = damage & 0xffff;
			uint8_t value = (damage >> 16) & 0xff;
			table[index] = value;
		}
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/chaos-graph", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size < original.length);

	talloc_free(mem_ctx);
}


static void test_lzxpress_plain_sparse_random_graph_round_trip(void **state)
{
	size_t i;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, 5 * 1024 * 1024);
	DATA_BLOB ref = {0};
	/*
	 * There's a random trigram graph, with each pair of sequential bytes
	 * pointing to a successor. This will fall into a fairly simple loops,
	 * but we introduce damage into the system, randomly mangling about 1
	 * byte in 65536.
	 *
	 * The result has very long repetitive runs, which should lead to
	 * oversized blocks.
	 */
	uint8_t *d = original.data;
	uint8_t *table = talloc_array(mem_ctx, uint8_t, 65536);
	uint32_t *table32 = (void*)table;
	ssize_t comp_size;
	struct jsf_rng rng;

	jsf32_init(&rng, 3);
	for (i = 0; i < (65536 / 4); i++) {
		table32[i] = jsf32(&rng);
	}

	d[0] = 'a';
	d[1] = 'b';

	for (i = 2; i < original.length; i++) {
		uint16_t k = (d[i - 2] << 8) | d[i - 1];
		uint32_t damage = jsf32(&rng);
		if ((damage & 0xffff0000) == 0) {
			k ^= damage & 0xffff;
		}
		d[i] = table[k];
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/sparse-random-graph", ref);
	assert_true(comp_size > 0);
	assert_true(comp_size < original.length);

	talloc_free(mem_ctx);
}


static void test_lzxpress_plain_random_noise_round_trip(void **state)
{
	size_t i;
	size_t len = 10 * 1024 * 1024;
	TALLOC_CTX *mem_ctx = talloc_new(NULL);
	DATA_BLOB original = data_blob_talloc(mem_ctx, NULL, len);
	DATA_BLOB ref = {0};
	ssize_t comp_size;
	/*
	 * We are filling this up with incompressible noise, but we can assert
	 * quite tight bounds on how badly it will fail to compress.
	 *
	 * There is one additional bit for each code, which says whether the
	 * code is a literal byte or a match. If *all* codes are literal
	 * bytes, the length should be 9/8 the original (with rounding
	 * issues regarding the indicator bit blocks).
	 *
	 * If some matches are found the length will be a bit less. We would
	 * expect one 3 byte match per 1 << 24 tries, but we try 8192 times
	 * per position. That means there'll a match 1/2048 of the time at
	 * best. 255 times out of 256 this will be exactly a 3 byte match,
	 * encoded as two bytes, so we could get a 1 / 2048 saving on top of
	 * the 1/8 cost. There'll be a smattering of longer matches too, and
	 * the potential for complicated maths to account for those, but we'll
	 * skimp on that by allowing for a 1/1500 saving.
	 *
	 * With the hash table, we take a shortcut in the "8192 tries", and
	 * the size of the table makes a difference in how we perform, with 13
	 * bits (8192 slots) naturally being luckier than 12. Ultimately,
	 * either way, the compressed file is still 12.5% bigger than the
	 * original.
	 */
	size_t limit = len * 9 / 8 + 4;

	uint32_t *d32 = (uint32_t*)((void*)original.data);
	struct jsf_rng rng;
	jsf32_init(&rng, 2);

	for (i = 0; i < (len / 4); i++) {
		d32[i] = jsf32(&rng);
	}

	comp_size = attempt_round_trip(mem_ctx, original, "/tmp/random-noise", ref);
	debug_message("original size %zu; compressed size %zd; ratio %.5f\n",
		      len, comp_size, ((double)comp_size) / len);
	debug_message("expected range %zu - %zu\n",
		      limit - limit / 1500, limit);

	assert_true(comp_size > 0);
	assert_true(comp_size < limit);
	assert_true(comp_size >= limit - limit / 1500);
	talloc_free(mem_ctx);
}


/* Tests based on [MS-XCA] 3.1 Examples */
static void test_msft_data1(void **state)
{
	TALLOC_CTX *tmp_ctx = talloc_new(NULL);

	const char *fixed_data = "abcdefghijklmnopqrstuvwxyz";
	const uint8_t fixed_out[] = {
		0x3f, 0x00, 0x00, 0x00, 0x61, 0x62, 0x63, 0x64,
		0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
		0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74,
		0x75, 0x76, 0x77, 0x78, 0x79, 0x7a };

	ssize_t c_size;
	uint8_t *out, *out2;

	out  = talloc_size(tmp_ctx, 2048);
	memset(out, 0x42, talloc_get_size(out));

	c_size = lzxpress_compress((const uint8_t *)fixed_data,
				   strlen(fixed_data),
				   out,
				   talloc_get_size(out));
	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, sizeof(fixed_out));
	assert_memory_equal(out, fixed_out, c_size);
	out2  = talloc_size(tmp_ctx, strlen(fixed_data));
	c_size = lzxpress_decompress(out,
				     sizeof(fixed_out),
				     out2,
				     talloc_get_size(out2));
	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, strlen(fixed_data));
	assert_memory_equal(out2, fixed_data, c_size);

	talloc_free(tmp_ctx);
}


static void test_msft_data2(void **state)
{
	TALLOC_CTX *tmp_ctx = talloc_new(NULL);

	const char *fixed_data =
		"abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
		"abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
		"abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
		"abcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabcabc"
		"abcabcabcabcabcabcabcabc";
	const uint8_t fixed_out[] = {
		0xff, 0xff, 0xff, 0x1f, 0x61, 0x62, 0x63, 0x17,
		0x00, 0x0f, 0xff, 0x26, 0x01};

	ssize_t c_size;
	uint8_t *out, *out2;

	out  = talloc_size(tmp_ctx, 2048);
	memset(out, 0x42, talloc_get_size(out));

	c_size = lzxpress_compress((const uint8_t *)fixed_data,
				   strlen(fixed_data),
				   out,
				   talloc_get_size(out));
	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, sizeof(fixed_out));
	assert_memory_equal(out, fixed_out, c_size);

	out2  = talloc_size(tmp_ctx, strlen(fixed_data));
	c_size = lzxpress_decompress(out,
				     sizeof(fixed_out),
				     out2,
				     talloc_get_size(out2));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, strlen(fixed_data));
	assert_memory_equal(out2, fixed_data, c_size);

	talloc_free(tmp_ctx);
}

/*
  test lzxpress
 */
static void test_lzxpress(void **state)
{
	TALLOC_CTX *tmp_ctx = talloc_new(NULL);
	const char *fixed_data = "this is a test. and this is a test too";
	const uint8_t fixed_out[] = {
		0xff, 0x21, 0x00, 0x04, 0x74, 0x68, 0x69, 0x73,
		0x20, 0x10, 0x00, 0x61, 0x20, 0x74, 0x65, 0x73,
		0x74, 0x2E, 0x20, 0x61, 0x6E, 0x64, 0x20, 0x9F,
		0x00, 0x04, 0x20, 0x74, 0x6F, 0x6F };

	const uint8_t fixed_out_old_version[] = {
		0x00, 0x20, 0x00, 0x04, 0x74, 0x68, 0x69, 0x73,
		0x20, 0x10, 0x00, 0x61, 0x20, 0x74, 0x65, 0x73,
		0x74, 0x2E, 0x20, 0x61, 0x6E, 0x64, 0x20, 0x9F,
		0x00, 0x04, 0x20, 0x74, 0x6F, 0x6F, 0x00, 0x00,
		0x00, 0x00 };

	ssize_t c_size;
	uint8_t *out, *out2, *out3;

	out  = talloc_size(tmp_ctx, 2048);
	memset(out, 0x42, talloc_get_size(out));

	c_size = lzxpress_compress((const uint8_t *)fixed_data,
				   strlen(fixed_data),
				   out,
				   talloc_get_size(out));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, sizeof(fixed_out));
	assert_memory_equal(out, fixed_out, c_size);

	out2  = talloc_size(tmp_ctx, strlen(fixed_data));
	c_size = lzxpress_decompress(out,
				     sizeof(fixed_out),
				     out2,
				     talloc_get_size(out2));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, strlen(fixed_data));
	assert_memory_equal(out2, fixed_data, c_size);

	out3  = talloc_size(tmp_ctx, strlen(fixed_data));
	c_size = lzxpress_decompress(fixed_out_old_version,
				     sizeof(fixed_out_old_version),
				     out3,
				     talloc_get_size(out3));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, strlen(fixed_data));
	assert_memory_equal(out3, fixed_data, c_size);

	talloc_free(tmp_ctx);
}

static void test_lzxpress2(void **state)
{
	/*
	 * Use two matches, separated by a literal, and each with a length
	 * greater than 10, to test the use of nibble_index. Both length values
	 * (less ten) should be stored as adjacent nibbles to form the 0x21
	 * byte.
	 */

	TALLOC_CTX *tmp_ctx = talloc_new(NULL);
	const char *fixed_data = "aaaaaaaaaaaabaaaaaaaaaaaa";
	const uint8_t fixed_out[] = {
		0xff, 0xff, 0xff, 0x5f, 0x61, 0x07, 0x00, 0x21,
		0x62, 0x67, 0x00};

	ssize_t c_size;
	uint8_t *out, *out2;

	out  = talloc_size(tmp_ctx, 2048);
	memset(out, 0x42, talloc_get_size(out));

	c_size = lzxpress_compress((const uint8_t *)fixed_data,
				   strlen(fixed_data),
				   out,
				   talloc_get_size(out));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, sizeof(fixed_out));
	assert_memory_equal(out, fixed_out, c_size);

	out2  = talloc_size(tmp_ctx, strlen(fixed_data));
	c_size = lzxpress_decompress(out,
				     sizeof(fixed_out),
				     out2,
				     talloc_get_size(out2));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, strlen(fixed_data));
	assert_memory_equal(out2, fixed_data, c_size);

	talloc_free(tmp_ctx);
}

static void test_lzxpress3(void **state)
{
	/*
	 * Use a series of 31 literals, followed by a single minimum-length
	 * match (and a terminating literal), to test setting indic_pos when the
	 * 32-bit flags value overflows after a match.
	 */

	TALLOC_CTX *tmp_ctx = talloc_new(NULL);
	const char *fixed_data = "abcdefghijklmnopqrstuvwxyz01234abca";
	const uint8_t fixed_out[] = {
		0x01, 0x00, 0x00, 0x00, 0x61, 0x62, 0x63, 0x64,
		0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
		0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74,
		0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x30, 0x31,
		0x32, 0x33, 0x34, 0xf0, 0x00, 0xff, 0xff, 0xff,
		0x7f, 0x61};

	ssize_t c_size;
	uint8_t *out, *out2;

	out  = talloc_size(tmp_ctx, 2048);
	memset(out, 0x42, talloc_get_size(out));

	c_size = lzxpress_compress((const uint8_t *)fixed_data,
				   strlen(fixed_data),
				   out,
				   talloc_get_size(out));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, sizeof(fixed_out));
	assert_memory_equal(out, fixed_out, c_size);

	out2  = talloc_size(tmp_ctx, strlen(fixed_data));
	c_size = lzxpress_decompress(out,
				     sizeof(fixed_out),
				     out2,
				     talloc_get_size(out2));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, strlen(fixed_data));
	assert_memory_equal(out2, fixed_data, c_size);

	talloc_free(tmp_ctx);
}

static void test_lzxpress4(void **state)
{
	/*
	 * Use a series of 31 literals, followed by a single minimum-length
	 * match, to test that the final set of 32-bit flags is written
	 * correctly when it is empty.
	 */

	TALLOC_CTX *tmp_ctx = talloc_new(NULL);
	const char *fixed_data = "abcdefghijklmnopqrstuvwxyz01234abc";
	const uint8_t fixed_out[] = {
		0x01, 0x00, 0x00, 0x00, 0x61, 0x62, 0x63, 0x64,
		0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c,
		0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74,
		0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x30, 0x31,
		0x32, 0x33, 0x34, 0xf0, 0x00, 0xff, 0xff, 0xff,
		0xff};

	ssize_t c_size;
	uint8_t *out, *out2;

	out  = talloc_size(tmp_ctx, 2048);
	memset(out, 0x42, talloc_get_size(out));

	c_size = lzxpress_compress((const uint8_t *)fixed_data,
				   strlen(fixed_data),
				   out,
				   talloc_get_size(out));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, sizeof(fixed_out));
	assert_memory_equal(out, fixed_out, c_size);

	out2  = talloc_size(tmp_ctx, strlen(fixed_data));
	c_size = lzxpress_decompress(out,
				     sizeof(fixed_out),
				     out2,
				     talloc_get_size(out2));

	assert_int_not_equal(c_size, -1);
	assert_int_equal(c_size, strlen(fixed_data));
	assert_memory_equal(out2, fixed_data, c_size);

	talloc_free(tmp_ctx);
}


static void test_lzxpress_many_zeros(void **state)
{
	/*
	 * Repeated values (zero is convenient but not special) will lead to
	 * very long substring searches in compression, which can be very slow
	 * if we're not careful.
	 *
	 * This test makes a very loose assertion about how long it should
	 * take to compress a million zeros.
	 *
	 * Wall clock time *should* be < 0.1 seconds with the fix and around a
	 * minute without it. We try for CLOCK_THREAD_CPUTIME_ID which should
	 * filter out some noise on the machine, and set the threshold at 5
	 * seconds.
	 */

	TALLOC_CTX *tmp_ctx = talloc_new(NULL);
	const size_t N_ZEROS = 1000000;
	const uint8_t *zeros = talloc_zero_size(tmp_ctx, N_ZEROS);
	const ssize_t expected_c_size_max = 120;
	const ssize_t expected_c_size_min = 93;
	ssize_t c_size;
	uint8_t *comp, *decomp;
	static struct timespec t_start, t_end;
	uint64_t elapsed_ns;

	if (clock_gettime(CLOCK_THREAD_CPUTIME_ID, &t_start) != 0) {
		if (clock_gettime(CUSTOM_CLOCK_MONOTONIC, &t_start) != 0) {
			clock_gettime(CLOCK_REALTIME, &t_start);
		}
	}

	comp = talloc_zero_size(tmp_ctx, 2048);

	c_size = lzxpress_compress(zeros,
				   N_ZEROS,
				   comp,
				   talloc_get_size(comp));
	/*
	 * Because our compression depends on heuristics, we don't insist on
	 * an exact size in this case.
	 */

	assert_true(c_size <= expected_c_size_max);
	assert_true(c_size >= expected_c_size_min);

	decomp = talloc_size(tmp_ctx, N_ZEROS * 2);
	c_size = lzxpress_decompress(comp,
				     c_size,
				     decomp,
				     N_ZEROS * 2);

	if (clock_gettime(CLOCK_THREAD_CPUTIME_ID, &t_end) != 0) {
		if (clock_gettime(CUSTOM_CLOCK_MONOTONIC, &t_end) != 0) {
			clock_gettime(CLOCK_REALTIME, &t_end);
		}
	}
	elapsed_ns = (
		(t_end.tv_sec - t_start.tv_sec) * 1000U * 1000U * 1000U) +
		(t_end.tv_nsec - t_start.tv_nsec);
	print_message("round-trip time: %"PRIu64" ns\n", elapsed_ns);
	assert_true(elapsed_ns < 3 * 1000U * 1000U * 1000U);
	assert_memory_equal(decomp, zeros, N_ZEROS);

	talloc_free(tmp_ctx);
}


static void test_lzxpress_round_trip(void **state)
{
	/*
	 * Examples found using via fuzzing.
	 */
	TALLOC_CTX *tmp_ctx = talloc_new(NULL);
	size_t i;
	struct b64_pair {
		const char *uncompressed;
		const char *compressed;
	} pairs[] = {
		{   /* this results in a trailing flags block */
			"AAICAmq/EKdP785YU2Ddh7d4vUtdlQyLeHV09LHpUBw=",
			"AAAAAAACAgJqvxCnT+/OWFNg3Ye3eL1LXZUMi3h1dPSx6VAc/////w==",
		},
		{    /* empty string compresses to empty string */
			"",  ""
		},
	};
	const size_t alloc_size = 1000;
	uint8_t *data = talloc_array(tmp_ctx, uint8_t, alloc_size);

	for (i = 0; i < ARRAY_SIZE(pairs); i++) {
		ssize_t len;
		DATA_BLOB uncomp = base64_decode_data_blob_talloc(
			tmp_ctx,
			pairs[i].uncompressed);
		DATA_BLOB comp = base64_decode_data_blob_talloc(
			tmp_ctx,
			pairs[i].compressed);

		len = lzxpress_compress(uncomp.data,
					uncomp.length,
					data,
					alloc_size);

		assert_int_not_equal(len, -1);
		assert_int_equal(len, comp.length);

		assert_memory_equal(comp.data, data, len);

		len = lzxpress_decompress(comp.data,
					  comp.length,
					  data,
					  alloc_size);

		assert_int_not_equal(len, -1);
		assert_int_equal(len, uncomp.length);

		assert_memory_equal(uncomp.data, data, len);
	}
	talloc_free(tmp_ctx);
}


int main(void)
{
	const struct CMUnitTest tests[] = {
		cmocka_unit_test(test_lzxpress_plain_decompress_files),
		cmocka_unit_test(test_lzxpress_plain_decompress_more_compressed_files),
		cmocka_unit_test(test_lzxpress_plain_round_trip_files),
		cmocka_unit_test(test_lzxpress_plain_long_gpl_round_trip),
		cmocka_unit_test(test_lzxpress_plain_long_random_graph_round_trip),
		cmocka_unit_test(test_lzxpress_plain_chaos_graph_round_trip),
		cmocka_unit_test(test_lzxpress_plain_sparse_random_graph_round_trip),
		cmocka_unit_test(test_lzxpress_plain_long_random_graph_round_trip),
		cmocka_unit_test(test_lzxpress_plain_random_noise_round_trip),
		cmocka_unit_test(test_lzxpress),
		cmocka_unit_test(test_msft_data1),
		cmocka_unit_test(test_msft_data2),
		cmocka_unit_test(test_lzxpress2),
		cmocka_unit_test(test_lzxpress3),
		cmocka_unit_test(test_lzxpress4),
		cmocka_unit_test(test_lzxpress_many_zeros),
		cmocka_unit_test(test_lzxpress_round_trip),
	};
	if (!isatty(1)) {
		cmocka_set_message_output(CM_OUTPUT_SUBUNIT);
	}
	return cmocka_run_group_tests(tests, NULL, NULL);
}