summaryrefslogtreecommitdiffstats
path: root/test/whereF.test
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 14:07:11 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-13 14:07:11 +0000
commit63847496f14c813a5d80efd5b7de0f1294ffe1e3 (patch)
tree01c7571c7c762ceee70638549a99834fdd7c411b /test/whereF.test
parentInitial commit. (diff)
downloadsqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.tar.xz
sqlite3-63847496f14c813a5d80efd5b7de0f1294ffe1e3.zip
Adding upstream version 3.45.1.upstream/3.45.1
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'test/whereF.test')
-rw-r--r--test/whereF.test312
1 files changed, 312 insertions, 0 deletions
diff --git a/test/whereF.test b/test/whereF.test
new file mode 100644
index 0000000..ac7fd80
--- /dev/null
+++ b/test/whereF.test
@@ -0,0 +1,312 @@
+# 2012 November 9
+#
+# The author disclaims copyright to this source code. In place of
+# a legal notice, here is a blessing:
+#
+# May you do good and not evil.
+# May you find forgiveness for yourself and forgive others.
+# May you share freely, never taking more than you give.
+#
+#***********************************************************************
+#
+# Test cases for query planning decisions.
+
+
+#
+# The tests in this file demonstrate the behaviour of the query planner
+# in determining the order in which joined tables are scanned.
+#
+# Assume there are two tables being joined - t1 and t2. Each has a cost
+# if it is the outer loop, and a cost if it is the inner loop. As follows:
+#
+# t1(outer) - cost of scanning t1 as the outer loop.
+# t1(inner) - cost of scanning t1 as the inner loop.
+# t2(outer) - cost of scanning t2 as the outer loop.
+# t2(inner) - cost of scanning t2 as the inner loop.
+#
+# Depending on the order in which the planner nests the scans, the total
+# cost of the join query is one of:
+#
+# t1(outer) * t2(inner)
+# t2(outer) * t1(inner)
+#
+# The tests in this file attempt to verify that the planner nests joins in
+# the correct order when the following are true:
+#
+# + (t1(outer) * t2(inner)) > (t1(inner) * t2(outer)
+# + t1(outer) < t2(outer)
+#
+# In other words, when the best overall query plan has t2 as the outer loop,
+# but when the outer loop is considered independent of the inner, t1 is the
+# most efficient choice.
+#
+# In order to make them more predictable, automatic indexes are turned off for
+# the tests in this file.
+#
+
+set testdir [file dirname $argv0]
+source $testdir/tester.tcl
+set testprefix whereF
+
+do_execsql_test 1.0 {
+ PRAGMA automatic_index = 0;
+ CREATE TABLE t1(a, b, c);
+ CREATE TABLE t2(d, e, f);
+ CREATE UNIQUE INDEX i1 ON t1(a);
+ CREATE UNIQUE INDEX i2 ON t2(d);
+} {}
+
+foreach {tn sql} {
+ 1 "SELECT * FROM t1, t2 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
+ 2 "SELECT * FROM t2, t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
+ 3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a=t2.e AND t2.d<t1.b AND t1.c!=10"
+} {
+ do_test 1.$tn {
+ db eval "EXPLAIN QUERY PLAN $sql"
+ } {/.*SCAN t2\y.*SEARCH t1\y.*/}
+}
+
+do_execsql_test 2.0 {
+ DROP TABLE t1;
+ DROP TABLE t2;
+ CREATE TABLE t1(a, b, c);
+ CREATE TABLE t2(d, e, f);
+
+ CREATE UNIQUE INDEX i1 ON t1(a);
+ CREATE UNIQUE INDEX i2 ON t1(b);
+ CREATE UNIQUE INDEX i3 ON t2(d);
+} {}
+
+foreach {tn sql} {
+ 1 "SELECT * FROM t1, t2 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
+ 2 "SELECT * FROM t2, t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
+ 3 "SELECT * FROM t2 CROSS JOIN t1 WHERE t1.a>? AND t2.d>t1.c AND t1.b=t2.e"
+} {
+ do_test 2.$tn {
+ db eval "EXPLAIN QUERY PLAN $sql"
+ } {/.*SCAN t2\y.*SEARCH t1\y.*/}
+}
+
+do_execsql_test 3.0 {
+ DROP TABLE t1;
+ DROP TABLE t2;
+ CREATE TABLE t1(a, b, c);
+ CREATE TABLE t2(d, e, f);
+
+ CREATE UNIQUE INDEX i1 ON t1(a, b);
+ CREATE INDEX i2 ON t2(d);
+} {}
+
+foreach {tn sql} {
+ 1 {SELECT t1.a, t1.b, t2.d, t2.e FROM t1, t2
+ WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
+
+ 2 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2, t1
+ WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
+
+ 3 {SELECT t1.a, t1.b, t2.d, t2.e FROM t2 CROSS JOIN t1
+ WHERE t2.d=t1.b AND t1.a=(t2.d+1) AND t1.b = (t2.e+1)}
+} {
+ do_test 3.$tn {
+ db eval "EXPLAIN QUERY PLAN $sql"
+ } {/.*SCAN t2\y.*SEARCH t1\y.*/}
+}
+
+do_execsql_test 4.0 {
+ CREATE TABLE t4(a,b,c,d,e, PRIMARY KEY(a,b,c));
+ CREATE INDEX t4adc ON t4(a,d,c);
+ CREATE UNIQUE INDEX t4aebc ON t4(a,e,b,c);
+ EXPLAIN QUERY PLAN SELECT rowid FROM t4 WHERE a=? AND b=?;
+} {/a=. AND b=./}
+
+#-------------------------------------------------------------------------
+# Test the following case:
+#
+# ... FROM t1, t2 WHERE (
+# t2.rowid = +t1.rowid OR (t2.f2 = t1.f1 AND t1.f1!=-1)
+# )
+#
+# where there is an index on t2(f2). The planner should use "t1" as the
+# outer loop. The inner loop, on "t2", is an OR optimization. One pass
+# for:
+#
+# t2.rowid = $1
+#
+# and another for:
+#
+# t2.f2=$1 AND $1!=-1
+#
+# the test is to ensure that on the second pass, the ($1!=-1) condition
+# is tested before any seek operations are performed - i.e. outside of
+# the loop through the f2=$1 range of the t2(f2) index.
+#
+reset_db
+do_execsql_test 5.0 {
+ CREATE TABLE t1(f1);
+ CREATE TABLE t2(f2);
+ CREATE INDEX t2f ON t2(f2);
+
+ INSERT INTO t1 VALUES(-1);
+ INSERT INTO t1 VALUES(-1);
+ INSERT INTO t1 VALUES(-1);
+ INSERT INTO t1 VALUES(-1);
+
+ WITH w(i) AS (
+ SELECT 1 UNION ALL SELECT i+1 FROM w WHERE i<1000
+ )
+ INSERT INTO t2 SELECT -1 FROM w;
+}
+
+do_execsql_test 5.1 {
+ SELECT count(*) FROM t1, t2 WHERE t2.rowid = +t1.rowid
+} {4}
+do_test 5.2 { expr [db status vmstep]<200 } 1
+
+do_execsql_test 5.3 {
+ SELECT count(*) FROM t1, t2 WHERE (
+ t2.rowid = +t1.rowid OR t2.f2 = t1.f1
+ )
+} {4000}
+do_test 5.4 { expr [db status vmstep]>1000 } 1
+
+do_execsql_test 5.5 {
+ SELECT count(*) FROM t1, t2 WHERE (
+ t2.rowid = +t1.rowid OR (t2.f2 = t1.f1 AND t1.f1!=-1)
+ )
+} {4}
+do_test 5.6 { expr [db status vmstep]<200 } 1
+
+# 2017-09-04 ticket b899b6042f97f52d
+# Segfault on correlated subquery...
+#
+ifcapable json1&&vtab {
+ do_execsql_test 6.1 {
+ CREATE TABLE t6(x);
+ SELECT * FROM t6 WHERE 1 IN (SELECT value FROM json_each(x));
+ } {}
+
+ do_execsql_test 6.2 {
+ DROP TABLE t6;
+ CREATE TABLE t6(a,b,c);
+ INSERT INTO t6 VALUES
+ (0,null,'{"a":0,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'),
+ (1,null,'{"a":1,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}'),
+ (2,null,'{"a":9,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}');
+ SELECT * FROM t6
+ WHERE (EXISTS (SELECT 1 FROM json_each(t6.c) AS x WHERE x.value=1));
+ } {1 {} {{"a":1,"b":[3,4,5],"c":{"x":4.5,"y":7.8}}}}
+
+ # Another test case derived from a posting by Wout Mertens on the
+ # sqlite-users mailing list on 2017-10-04.
+ do_execsql_test 6.3 {
+ DROP TABLE IF EXISTS t;
+ CREATE TABLE t(json JSON);
+ SELECT * FROM t
+ WHERE(EXISTS(SELECT 1 FROM json_each(t.json,"$.foo") j
+ WHERE j.value = 'meep'));
+ } {}
+ do_execsql_test 6.4 {
+ INSERT INTO t VALUES('{"xyzzy":null}');
+ INSERT INTO t VALUES('{"foo":"meep","other":12345}');
+ INSERT INTO t VALUES('{"foo":"bingo","alt":5.25}');
+ SELECT * FROM t
+ WHERE(EXISTS(SELECT 1 FROM json_each(t.json,"$.foo") j
+ WHERE j.value = 'meep'));
+ } {{{"foo":"meep","other":12345}}}
+}
+
+# 2018-01-27
+# Ticket https://sqlite.org/src/tktview/ec32177c99ccac2b180fd3ea2083
+# Incorrect result when using the new OR clause factoring optimization
+#
+# This is the original test case as reported on the sqlite-users mailing
+# list
+#
+do_execsql_test 7.1 {
+ DROP TABLE IF EXISTS cd;
+ CREATE TABLE cd ( cdid INTEGER PRIMARY KEY NOT NULL, genreid integer );
+ CREATE INDEX cd_idx_genreid ON cd (genreid);
+ INSERT INTO cd ( cdid, genreid ) VALUES
+ ( 1, 1 ),
+ ( 2, NULL ),
+ ( 3, NULL ),
+ ( 4, NULL ),
+ ( 5, NULL );
+
+ SELECT cdid
+ FROM cd me
+ WHERE 2 > (
+ SELECT COUNT( * )
+ FROM cd rownum__emulation
+ WHERE
+ (
+ me.genreid IS NOT NULL
+ AND
+ rownum__emulation.genreid IS NULL
+ )
+ OR
+ (
+ me.genreid IS NOT NULL
+ AND
+ rownum__emulation.genreid IS NOT NULL
+ AND
+ rownum__emulation.genreid < me.genreid
+ )
+ OR
+ (
+ ( me.genreid = rownum__emulation.genreid OR ( me.genreid IS NULL
+ AND rownum__emulation.genreid IS NULL ) )
+ AND
+ rownum__emulation.cdid > me.cdid
+ )
+ );
+} {4 5}
+
+# Simplified test cases from the ticket
+#
+do_execsql_test 7.2 {
+ DROP TABLE IF EXISTS t1;
+ DROP TABLE IF EXISTS t2;
+ CREATE TABLE t1(a INTEGER PRIMARY KEY, b);
+ INSERT INTO t1(a,b) VALUES(1,1);
+ CREATE TABLE t2(aa INTEGER PRIMARY KEY, bb);
+ INSERT INTO t2(aa,bb) VALUES(1,1),(2,NULL),(3,NULL);
+ SELECT (
+ SELECT COUNT(*) FROM t2
+ WHERE ( t1.b IS NOT NULL AND t2.bb IS NULL )
+ OR ( t2.bb < t1.b )
+ OR ( t1.b IS t2.bb AND t2.aa > t1.a )
+ )
+ FROM t1;
+} {2}
+
+# The fix for ticket ec32177c99ccac2b180fd3ea2083 only makes a difference
+# in the output when there is a TERM_VNULL entry in the WhereClause array.
+# And TERM_VNULL entries are only generated when compiling with
+# SQLITE_ENABLE_STAT4. Nevertheless, it is correct that TERM_VIRTUAL terms
+# should not participate in the factoring optimization. In all cases other
+# than TERM_VNULL, participation is harmless, but it does consume a few
+# extra CPU cycles.
+#
+# The following test verifies that the TERM_VIRTUAL terms resulting from
+# a GLOB operator do not appear anywhere in the generated code. This
+# confirms that the problem is fixed, even on builds that omit STAT4.
+#
+do_execsql_test 7.3 {
+ DROP TABLE IF EXISTS t1;
+ DROP TABLE IF EXISTS t2;
+ CREATE TABLE t1(a INTEGER PRIMARY KEY, b TEXT);
+ INSERT INTO t1(a,b) VALUES(1,'abcxyz');
+ CREATE TABLE t2(aa INTEGER PRIMARY KEY, bb TEXT);
+ INSERT INTO t2(aa,bb) VALUES(1,'abc'),(2,'wxyz'),(3,'xyz');
+ CREATE INDEX t2bb ON t2(bb);
+ EXPLAIN SELECT (
+ SELECT COUNT(*) FROM t2
+ WHERE ( t1.b GLOB 'a*z' AND t2.bb='xyz' )
+ OR ( t2.bb = t1.b )
+ OR ( t2.aa = t1.a )
+ )
+ FROM t1;
+} {~/ (Lt|Ge) /}
+
+finish_test