summaryrefslogtreecommitdiffstats
path: root/src/func.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/func.c')
-rw-r--r--src/func.c2755
1 files changed, 2755 insertions, 0 deletions
diff --git a/src/func.c b/src/func.c
new file mode 100644
index 0000000..58ef4fe
--- /dev/null
+++ b/src/func.c
@@ -0,0 +1,2755 @@
+/*
+** 2002 February 23
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file contains the C-language implementations for many of the SQL
+** functions of SQLite. (Some function, and in particular the date and
+** time functions, are implemented separately.)
+*/
+#include "sqliteInt.h"
+#include <stdlib.h>
+#include <assert.h>
+#ifndef SQLITE_OMIT_FLOATING_POINT
+#include <math.h>
+#endif
+#include "vdbeInt.h"
+
+/*
+** Return the collating function associated with a function.
+*/
+static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
+ VdbeOp *pOp;
+ assert( context->pVdbe!=0 );
+ pOp = &context->pVdbe->aOp[context->iOp-1];
+ assert( pOp->opcode==OP_CollSeq );
+ assert( pOp->p4type==P4_COLLSEQ );
+ return pOp->p4.pColl;
+}
+
+/*
+** Indicate that the accumulator load should be skipped on this
+** iteration of the aggregate loop.
+*/
+static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
+ assert( context->isError<=0 );
+ context->isError = -1;
+ context->skipFlag = 1;
+}
+
+/*
+** Implementation of the non-aggregate min() and max() functions
+*/
+static void minmaxFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i;
+ int mask; /* 0 for min() or 0xffffffff for max() */
+ int iBest;
+ CollSeq *pColl;
+
+ assert( argc>1 );
+ mask = sqlite3_user_data(context)==0 ? 0 : -1;
+ pColl = sqlite3GetFuncCollSeq(context);
+ assert( pColl );
+ assert( mask==-1 || mask==0 );
+ iBest = 0;
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ for(i=1; i<argc; i++){
+ if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
+ if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
+ testcase( mask==0 );
+ iBest = i;
+ }
+ }
+ sqlite3_result_value(context, argv[iBest]);
+}
+
+/*
+** Return the type of the argument.
+*/
+static void typeofFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ static const char *azType[] = { "integer", "real", "text", "blob", "null" };
+ int i = sqlite3_value_type(argv[0]) - 1;
+ UNUSED_PARAMETER(NotUsed);
+ assert( i>=0 && i<ArraySize(azType) );
+ assert( SQLITE_INTEGER==1 );
+ assert( SQLITE_FLOAT==2 );
+ assert( SQLITE_TEXT==3 );
+ assert( SQLITE_BLOB==4 );
+ assert( SQLITE_NULL==5 );
+ /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
+ ** the datatype code for the initial datatype of the sqlite3_value object
+ ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
+ ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
+ sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
+}
+
+/* subtype(X)
+**
+** Return the subtype of X
+*/
+static void subtypeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ UNUSED_PARAMETER(argc);
+ sqlite3_result_int(context, sqlite3_value_subtype(argv[0]));
+}
+
+/*
+** Implementation of the length() function
+*/
+static void lengthFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_BLOB:
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT: {
+ sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
+ break;
+ }
+ case SQLITE_TEXT: {
+ const unsigned char *z = sqlite3_value_text(argv[0]);
+ const unsigned char *z0;
+ unsigned char c;
+ if( z==0 ) return;
+ z0 = z;
+ while( (c = *z)!=0 ){
+ z++;
+ if( c>=0xc0 ){
+ while( (*z & 0xc0)==0x80 ){ z++; z0++; }
+ }
+ }
+ sqlite3_result_int(context, (int)(z-z0));
+ break;
+ }
+ default: {
+ sqlite3_result_null(context);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the octet_length() function
+*/
+static void bytelengthFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_BLOB: {
+ sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
+ break;
+ }
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT: {
+ i64 m = sqlite3_context_db_handle(context)->enc<=SQLITE_UTF8 ? 1 : 2;
+ sqlite3_result_int64(context, sqlite3_value_bytes(argv[0])*m);
+ break;
+ }
+ case SQLITE_TEXT: {
+ if( sqlite3_value_encoding(argv[0])<=SQLITE_UTF8 ){
+ sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
+ }else{
+ sqlite3_result_int(context, sqlite3_value_bytes16(argv[0]));
+ }
+ break;
+ }
+ default: {
+ sqlite3_result_null(context);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the abs() function.
+**
+** IMP: R-23979-26855 The abs(X) function returns the absolute value of
+** the numeric argument X.
+*/
+static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ switch( sqlite3_value_type(argv[0]) ){
+ case SQLITE_INTEGER: {
+ i64 iVal = sqlite3_value_int64(argv[0]);
+ if( iVal<0 ){
+ if( iVal==SMALLEST_INT64 ){
+ /* IMP: R-31676-45509 If X is the integer -9223372036854775808
+ ** then abs(X) throws an integer overflow error since there is no
+ ** equivalent positive 64-bit two complement value. */
+ sqlite3_result_error(context, "integer overflow", -1);
+ return;
+ }
+ iVal = -iVal;
+ }
+ sqlite3_result_int64(context, iVal);
+ break;
+ }
+ case SQLITE_NULL: {
+ /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
+ sqlite3_result_null(context);
+ break;
+ }
+ default: {
+ /* Because sqlite3_value_double() returns 0.0 if the argument is not
+ ** something that can be converted into a number, we have:
+ ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
+ ** that cannot be converted to a numeric value.
+ */
+ double rVal = sqlite3_value_double(argv[0]);
+ if( rVal<0 ) rVal = -rVal;
+ sqlite3_result_double(context, rVal);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the instr() function.
+**
+** instr(haystack,needle) finds the first occurrence of needle
+** in haystack and returns the number of previous characters plus 1,
+** or 0 if needle does not occur within haystack.
+**
+** If both haystack and needle are BLOBs, then the result is one more than
+** the number of bytes in haystack prior to the first occurrence of needle,
+** or 0 if needle never occurs in haystack.
+*/
+static void instrFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zHaystack;
+ const unsigned char *zNeedle;
+ int nHaystack;
+ int nNeedle;
+ int typeHaystack, typeNeedle;
+ int N = 1;
+ int isText;
+ unsigned char firstChar;
+ sqlite3_value *pC1 = 0;
+ sqlite3_value *pC2 = 0;
+
+ UNUSED_PARAMETER(argc);
+ typeHaystack = sqlite3_value_type(argv[0]);
+ typeNeedle = sqlite3_value_type(argv[1]);
+ if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
+ nHaystack = sqlite3_value_bytes(argv[0]);
+ nNeedle = sqlite3_value_bytes(argv[1]);
+ if( nNeedle>0 ){
+ if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
+ zHaystack = sqlite3_value_blob(argv[0]);
+ zNeedle = sqlite3_value_blob(argv[1]);
+ isText = 0;
+ }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
+ zHaystack = sqlite3_value_text(argv[0]);
+ zNeedle = sqlite3_value_text(argv[1]);
+ isText = 1;
+ }else{
+ pC1 = sqlite3_value_dup(argv[0]);
+ zHaystack = sqlite3_value_text(pC1);
+ if( zHaystack==0 ) goto endInstrOOM;
+ nHaystack = sqlite3_value_bytes(pC1);
+ pC2 = sqlite3_value_dup(argv[1]);
+ zNeedle = sqlite3_value_text(pC2);
+ if( zNeedle==0 ) goto endInstrOOM;
+ nNeedle = sqlite3_value_bytes(pC2);
+ isText = 1;
+ }
+ if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
+ firstChar = zNeedle[0];
+ while( nNeedle<=nHaystack
+ && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
+ ){
+ N++;
+ do{
+ nHaystack--;
+ zHaystack++;
+ }while( isText && (zHaystack[0]&0xc0)==0x80 );
+ }
+ if( nNeedle>nHaystack ) N = 0;
+ }
+ sqlite3_result_int(context, N);
+endInstr:
+ sqlite3_value_free(pC1);
+ sqlite3_value_free(pC2);
+ return;
+endInstrOOM:
+ sqlite3_result_error_nomem(context);
+ goto endInstr;
+}
+
+/*
+** Implementation of the printf() (a.k.a. format()) SQL function.
+*/
+static void printfFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ PrintfArguments x;
+ StrAccum str;
+ const char *zFormat;
+ int n;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
+ x.nArg = argc-1;
+ x.nUsed = 0;
+ x.apArg = argv+1;
+ sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+ str.printfFlags = SQLITE_PRINTF_SQLFUNC;
+ sqlite3_str_appendf(&str, zFormat, &x);
+ n = str.nChar;
+ sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
+ SQLITE_DYNAMIC);
+ }
+}
+
+/*
+** Implementation of the substr() function.
+**
+** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
+** p1 is 1-indexed. So substr(x,1,1) returns the first character
+** of x. If x is text, then we actually count UTF-8 characters.
+** If x is a blob, then we count bytes.
+**
+** If p1 is negative, then we begin abs(p1) from the end of x[].
+**
+** If p2 is negative, return the p2 characters preceding p1.
+*/
+static void substrFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *z;
+ const unsigned char *z2;
+ int len;
+ int p0type;
+ i64 p1, p2;
+ int negP2 = 0;
+
+ assert( argc==3 || argc==2 );
+ if( sqlite3_value_type(argv[1])==SQLITE_NULL
+ || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
+ ){
+ return;
+ }
+ p0type = sqlite3_value_type(argv[0]);
+ p1 = sqlite3_value_int(argv[1]);
+ if( p0type==SQLITE_BLOB ){
+ len = sqlite3_value_bytes(argv[0]);
+ z = sqlite3_value_blob(argv[0]);
+ if( z==0 ) return;
+ assert( len==sqlite3_value_bytes(argv[0]) );
+ }else{
+ z = sqlite3_value_text(argv[0]);
+ if( z==0 ) return;
+ len = 0;
+ if( p1<0 ){
+ for(z2=z; *z2; len++){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ }
+ }
+#ifdef SQLITE_SUBSTR_COMPATIBILITY
+ /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
+ ** as substr(X,1,N) - it returns the first N characters of X. This
+ ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
+ ** from 2009-02-02 for compatibility of applications that exploited the
+ ** old buggy behavior. */
+ if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
+#endif
+ if( argc==3 ){
+ p2 = sqlite3_value_int(argv[2]);
+ if( p2<0 ){
+ p2 = -p2;
+ negP2 = 1;
+ }
+ }else{
+ p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
+ }
+ if( p1<0 ){
+ p1 += len;
+ if( p1<0 ){
+ p2 += p1;
+ if( p2<0 ) p2 = 0;
+ p1 = 0;
+ }
+ }else if( p1>0 ){
+ p1--;
+ }else if( p2>0 ){
+ p2--;
+ }
+ if( negP2 ){
+ p1 -= p2;
+ if( p1<0 ){
+ p2 += p1;
+ p1 = 0;
+ }
+ }
+ assert( p1>=0 && p2>=0 );
+ if( p0type!=SQLITE_BLOB ){
+ while( *z && p1 ){
+ SQLITE_SKIP_UTF8(z);
+ p1--;
+ }
+ for(z2=z; *z2 && p2; p2--){
+ SQLITE_SKIP_UTF8(z2);
+ }
+ sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
+ SQLITE_UTF8);
+ }else{
+ if( p1+p2>len ){
+ p2 = len-p1;
+ if( p2<0 ) p2 = 0;
+ }
+ sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
+ }
+}
+
+/*
+** Implementation of the round() function
+*/
+#ifndef SQLITE_OMIT_FLOATING_POINT
+static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ int n = 0;
+ double r;
+ char *zBuf;
+ assert( argc==1 || argc==2 );
+ if( argc==2 ){
+ if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
+ n = sqlite3_value_int(argv[1]);
+ if( n>30 ) n = 30;
+ if( n<0 ) n = 0;
+ }
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ r = sqlite3_value_double(argv[0]);
+ /* If Y==0 and X will fit in a 64-bit int,
+ ** handle the rounding directly,
+ ** otherwise use printf.
+ */
+ if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
+ /* The value has no fractional part so there is nothing to round */
+ }else if( n==0 ){
+ r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
+ }else{
+ zBuf = sqlite3_mprintf("%!.*f",n,r);
+ if( zBuf==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
+ sqlite3_free(zBuf);
+ }
+ sqlite3_result_double(context, r);
+}
+#endif
+
+/*
+** Allocate nByte bytes of space using sqlite3Malloc(). If the
+** allocation fails, call sqlite3_result_error_nomem() to notify
+** the database handle that malloc() has failed and return NULL.
+** If nByte is larger than the maximum string or blob length, then
+** raise an SQLITE_TOOBIG exception and return NULL.
+*/
+static void *contextMalloc(sqlite3_context *context, i64 nByte){
+ char *z;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ assert( nByte>0 );
+ testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
+ if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ z = 0;
+ }else{
+ z = sqlite3Malloc(nByte);
+ if( !z ){
+ sqlite3_result_error_nomem(context);
+ }
+ }
+ return z;
+}
+
+/*
+** Implementation of the upper() and lower() SQL functions.
+*/
+static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ char *z1;
+ const char *z2;
+ int i, n;
+ UNUSED_PARAMETER(argc);
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ for(i=0; i<n; i++){
+ z1[i] = (char)sqlite3Toupper(z2[i]);
+ }
+ sqlite3_result_text(context, z1, n, sqlite3_free);
+ }
+ }
+}
+static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ char *z1;
+ const char *z2;
+ int i, n;
+ UNUSED_PARAMETER(argc);
+ z2 = (char*)sqlite3_value_text(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ /* Verify that the call to _bytes() does not invalidate the _text() pointer */
+ assert( z2==(char*)sqlite3_value_text(argv[0]) );
+ if( z2 ){
+ z1 = contextMalloc(context, ((i64)n)+1);
+ if( z1 ){
+ for(i=0; i<n; i++){
+ z1[i] = sqlite3Tolower(z2[i]);
+ }
+ sqlite3_result_text(context, z1, n, sqlite3_free);
+ }
+ }
+}
+
+/*
+** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
+** as VDBE code so that unused argument values do not have to be computed.
+** However, we still need some kind of function implementation for this
+** routines in the function table. The noopFunc macro provides this.
+** noopFunc will never be called so it doesn't matter what the implementation
+** is. We might as well use the "version()" function as a substitute.
+*/
+#define noopFunc versionFunc /* Substitute function - never called */
+
+/*
+** Implementation of random(). Return a random integer.
+*/
+static void randomFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite_int64 r;
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_randomness(sizeof(r), &r);
+ if( r<0 ){
+ /* We need to prevent a random number of 0x8000000000000000
+ ** (or -9223372036854775808) since when you do abs() of that
+ ** number of you get the same value back again. To do this
+ ** in a way that is testable, mask the sign bit off of negative
+ ** values, resulting in a positive value. Then take the
+ ** 2s complement of that positive value. The end result can
+ ** therefore be no less than -9223372036854775807.
+ */
+ r = -(r & LARGEST_INT64);
+ }
+ sqlite3_result_int64(context, r);
+}
+
+/*
+** Implementation of randomblob(N). Return a random blob
+** that is N bytes long.
+*/
+static void randomBlob(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ sqlite3_int64 n;
+ unsigned char *p;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ n = sqlite3_value_int64(argv[0]);
+ if( n<1 ){
+ n = 1;
+ }
+ p = contextMalloc(context, n);
+ if( p ){
+ sqlite3_randomness(n, p);
+ sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
+ }
+}
+
+/*
+** Implementation of the last_insert_rowid() SQL function. The return
+** value is the same as the sqlite3_last_insert_rowid() API function.
+*/
+static void last_insert_rowid(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
+ ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
+ ** function. */
+ sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
+}
+
+/*
+** Implementation of the changes() SQL function.
+**
+** IMP: R-32760-32347 The changes() SQL function is a wrapper
+** around the sqlite3_changes64() C/C++ function and hence follows the
+** same rules for counting changes.
+*/
+static void changes(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ sqlite3_result_int64(context, sqlite3_changes64(db));
+}
+
+/*
+** Implementation of the total_changes() SQL function. The return value is
+** the same as the sqlite3_total_changes64() API function.
+*/
+static void total_changes(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-11217-42568 This function is a wrapper around the
+ ** sqlite3_total_changes64() C/C++ interface. */
+ sqlite3_result_int64(context, sqlite3_total_changes64(db));
+}
+
+/*
+** A structure defining how to do GLOB-style comparisons.
+*/
+struct compareInfo {
+ u8 matchAll; /* "*" or "%" */
+ u8 matchOne; /* "?" or "_" */
+ u8 matchSet; /* "[" or 0 */
+ u8 noCase; /* true to ignore case differences */
+};
+
+/*
+** For LIKE and GLOB matching on EBCDIC machines, assume that every
+** character is exactly one byte in size. Also, provide the Utf8Read()
+** macro for fast reading of the next character in the common case where
+** the next character is ASCII.
+*/
+#if defined(SQLITE_EBCDIC)
+# define sqlite3Utf8Read(A) (*((*A)++))
+# define Utf8Read(A) (*(A++))
+#else
+# define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
+#endif
+
+static const struct compareInfo globInfo = { '*', '?', '[', 0 };
+/* The correct SQL-92 behavior is for the LIKE operator to ignore
+** case. Thus 'a' LIKE 'A' would be true. */
+static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
+/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
+** is case sensitive causing 'a' LIKE 'A' to be false */
+static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
+
+/*
+** Possible error returns from patternMatch()
+*/
+#define SQLITE_MATCH 0
+#define SQLITE_NOMATCH 1
+#define SQLITE_NOWILDCARDMATCH 2
+
+/*
+** Compare two UTF-8 strings for equality where the first string is
+** a GLOB or LIKE expression. Return values:
+**
+** SQLITE_MATCH: Match
+** SQLITE_NOMATCH: No match
+** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
+**
+** Globbing rules:
+**
+** '*' Matches any sequence of zero or more characters.
+**
+** '?' Matches exactly one character.
+**
+** [...] Matches one character from the enclosed list of
+** characters.
+**
+** [^...] Matches one character not in the enclosed list.
+**
+** With the [...] and [^...] matching, a ']' character can be included
+** in the list by making it the first character after '[' or '^'. A
+** range of characters can be specified using '-'. Example:
+** "[a-z]" matches any single lower-case letter. To match a '-', make
+** it the last character in the list.
+**
+** Like matching rules:
+**
+** '%' Matches any sequence of zero or more characters
+**
+*** '_' Matches any one character
+**
+** Ec Where E is the "esc" character and c is any other
+** character, including '%', '_', and esc, match exactly c.
+**
+** The comments within this routine usually assume glob matching.
+**
+** This routine is usually quick, but can be N**2 in the worst case.
+*/
+static int patternCompare(
+ const u8 *zPattern, /* The glob pattern */
+ const u8 *zString, /* The string to compare against the glob */
+ const struct compareInfo *pInfo, /* Information about how to do the compare */
+ u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
+){
+ u32 c, c2; /* Next pattern and input string chars */
+ u32 matchOne = pInfo->matchOne; /* "?" or "_" */
+ u32 matchAll = pInfo->matchAll; /* "*" or "%" */
+ u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
+ const u8 *zEscaped = 0; /* One past the last escaped input char */
+
+ while( (c = Utf8Read(zPattern))!=0 ){
+ if( c==matchAll ){ /* Match "*" */
+ /* Skip over multiple "*" characters in the pattern. If there
+ ** are also "?" characters, skip those as well, but consume a
+ ** single character of the input string for each "?" skipped */
+ while( (c=Utf8Read(zPattern)) == matchAll
+ || (c == matchOne && matchOne!=0) ){
+ if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
+ return SQLITE_NOWILDCARDMATCH;
+ }
+ }
+ if( c==0 ){
+ return SQLITE_MATCH; /* "*" at the end of the pattern matches */
+ }else if( c==matchOther ){
+ if( pInfo->matchSet==0 ){
+ c = sqlite3Utf8Read(&zPattern);
+ if( c==0 ) return SQLITE_NOWILDCARDMATCH;
+ }else{
+ /* "[...]" immediately follows the "*". We have to do a slow
+ ** recursive search in this case, but it is an unusual case. */
+ assert( matchOther<0x80 ); /* '[' is a single-byte character */
+ while( *zString ){
+ int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
+ if( bMatch!=SQLITE_NOMATCH ) return bMatch;
+ SQLITE_SKIP_UTF8(zString);
+ }
+ return SQLITE_NOWILDCARDMATCH;
+ }
+ }
+
+ /* At this point variable c contains the first character of the
+ ** pattern string past the "*". Search in the input string for the
+ ** first matching character and recursively continue the match from
+ ** that point.
+ **
+ ** For a case-insensitive search, set variable cx to be the same as
+ ** c but in the other case and search the input string for either
+ ** c or cx.
+ */
+ if( c<0x80 ){
+ char zStop[3];
+ int bMatch;
+ if( noCase ){
+ zStop[0] = sqlite3Toupper(c);
+ zStop[1] = sqlite3Tolower(c);
+ zStop[2] = 0;
+ }else{
+ zStop[0] = c;
+ zStop[1] = 0;
+ }
+ while(1){
+ zString += strcspn((const char*)zString, zStop);
+ if( zString[0]==0 ) break;
+ zString++;
+ bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
+ if( bMatch!=SQLITE_NOMATCH ) return bMatch;
+ }
+ }else{
+ int bMatch;
+ while( (c2 = Utf8Read(zString))!=0 ){
+ if( c2!=c ) continue;
+ bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
+ if( bMatch!=SQLITE_NOMATCH ) return bMatch;
+ }
+ }
+ return SQLITE_NOWILDCARDMATCH;
+ }
+ if( c==matchOther ){
+ if( pInfo->matchSet==0 ){
+ c = sqlite3Utf8Read(&zPattern);
+ if( c==0 ) return SQLITE_NOMATCH;
+ zEscaped = zPattern;
+ }else{
+ u32 prior_c = 0;
+ int seen = 0;
+ int invert = 0;
+ c = sqlite3Utf8Read(&zString);
+ if( c==0 ) return SQLITE_NOMATCH;
+ c2 = sqlite3Utf8Read(&zPattern);
+ if( c2=='^' ){
+ invert = 1;
+ c2 = sqlite3Utf8Read(&zPattern);
+ }
+ if( c2==']' ){
+ if( c==']' ) seen = 1;
+ c2 = sqlite3Utf8Read(&zPattern);
+ }
+ while( c2 && c2!=']' ){
+ if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
+ c2 = sqlite3Utf8Read(&zPattern);
+ if( c>=prior_c && c<=c2 ) seen = 1;
+ prior_c = 0;
+ }else{
+ if( c==c2 ){
+ seen = 1;
+ }
+ prior_c = c2;
+ }
+ c2 = sqlite3Utf8Read(&zPattern);
+ }
+ if( c2==0 || (seen ^ invert)==0 ){
+ return SQLITE_NOMATCH;
+ }
+ continue;
+ }
+ }
+ c2 = Utf8Read(zString);
+ if( c==c2 ) continue;
+ if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
+ continue;
+ }
+ if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
+ return SQLITE_NOMATCH;
+ }
+ return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
+}
+
+/*
+** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
+** non-zero if there is no match.
+*/
+int sqlite3_strglob(const char *zGlobPattern, const char *zString){
+ if( zString==0 ){
+ return zGlobPattern!=0;
+ }else if( zGlobPattern==0 ){
+ return 1;
+ }else {
+ return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
+ }
+}
+
+/*
+** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
+** a miss - like strcmp().
+*/
+int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
+ if( zStr==0 ){
+ return zPattern!=0;
+ }else if( zPattern==0 ){
+ return 1;
+ }else{
+ return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
+ }
+}
+
+/*
+** Count the number of times that the LIKE operator (or GLOB which is
+** just a variation of LIKE) gets called. This is used for testing
+** only.
+*/
+#ifdef SQLITE_TEST
+int sqlite3_like_count = 0;
+#endif
+
+
+/*
+** Implementation of the like() SQL function. This function implements
+** the built-in LIKE operator. The first argument to the function is the
+** pattern and the second argument is the string. So, the SQL statements:
+**
+** A LIKE B
+**
+** is implemented as like(B,A).
+**
+** This same function (with a different compareInfo structure) computes
+** the GLOB operator.
+*/
+static void likeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zA, *zB;
+ u32 escape;
+ int nPat;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ struct compareInfo *pInfo = sqlite3_user_data(context);
+ struct compareInfo backupInfo;
+
+#ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
+ if( sqlite3_value_type(argv[0])==SQLITE_BLOB
+ || sqlite3_value_type(argv[1])==SQLITE_BLOB
+ ){
+#ifdef SQLITE_TEST
+ sqlite3_like_count++;
+#endif
+ sqlite3_result_int(context, 0);
+ return;
+ }
+#endif
+
+ /* Limit the length of the LIKE or GLOB pattern to avoid problems
+ ** of deep recursion and N*N behavior in patternCompare().
+ */
+ nPat = sqlite3_value_bytes(argv[0]);
+ testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
+ testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
+ if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
+ sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
+ return;
+ }
+ if( argc==3 ){
+ /* The escape character string must consist of a single UTF-8 character.
+ ** Otherwise, return an error.
+ */
+ const unsigned char *zEsc = sqlite3_value_text(argv[2]);
+ if( zEsc==0 ) return;
+ if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
+ sqlite3_result_error(context,
+ "ESCAPE expression must be a single character", -1);
+ return;
+ }
+ escape = sqlite3Utf8Read(&zEsc);
+ if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
+ memcpy(&backupInfo, pInfo, sizeof(backupInfo));
+ pInfo = &backupInfo;
+ if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
+ if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
+ }
+ }else{
+ escape = pInfo->matchSet;
+ }
+ zB = sqlite3_value_text(argv[0]);
+ zA = sqlite3_value_text(argv[1]);
+ if( zA && zB ){
+#ifdef SQLITE_TEST
+ sqlite3_like_count++;
+#endif
+ sqlite3_result_int(context,
+ patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
+ }
+}
+
+/*
+** Implementation of the NULLIF(x,y) function. The result is the first
+** argument if the arguments are different. The result is NULL if the
+** arguments are equal to each other.
+*/
+static void nullifFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ CollSeq *pColl = sqlite3GetFuncCollSeq(context);
+ UNUSED_PARAMETER(NotUsed);
+ if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
+ sqlite3_result_value(context, argv[0]);
+ }
+}
+
+/*
+** Implementation of the sqlite_version() function. The result is the version
+** of the SQLite library that is running.
+*/
+static void versionFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-48699-48617 This function is an SQL wrapper around the
+ ** sqlite3_libversion() C-interface. */
+ sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
+}
+
+/*
+** Implementation of the sqlite_source_id() function. The result is a string
+** that identifies the particular version of the source code used to build
+** SQLite.
+*/
+static void sourceidFunc(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **NotUsed2
+){
+ UNUSED_PARAMETER2(NotUsed, NotUsed2);
+ /* IMP: R-24470-31136 This function is an SQL wrapper around the
+ ** sqlite3_sourceid() C interface. */
+ sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
+}
+
+/*
+** Implementation of the sqlite_log() function. This is a wrapper around
+** sqlite3_log(). The return value is NULL. The function exists purely for
+** its side-effects.
+*/
+static void errlogFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ UNUSED_PARAMETER(argc);
+ UNUSED_PARAMETER(context);
+ sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
+}
+
+/*
+** Implementation of the sqlite_compileoption_used() function.
+** The result is an integer that identifies if the compiler option
+** was used to build SQLite.
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+static void compileoptionusedFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *zOptName;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
+ ** function is a wrapper around the sqlite3_compileoption_used() C/C++
+ ** function.
+ */
+ if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
+ sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
+ }
+}
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/*
+** Implementation of the sqlite_compileoption_get() function.
+** The result is a string that identifies the compiler options
+** used to build SQLite.
+*/
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+static void compileoptiongetFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int n;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
+ ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
+ */
+ n = sqlite3_value_int(argv[0]);
+ sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
+}
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+
+/* Array for converting from half-bytes (nybbles) into ASCII hex
+** digits. */
+static const char hexdigits[] = {
+ '0', '1', '2', '3', '4', '5', '6', '7',
+ '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
+};
+
+/*
+** Append to pStr text that is the SQL literal representation of the
+** value contained in pValue.
+*/
+void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue){
+ /* As currently implemented, the string must be initially empty.
+ ** we might relax this requirement in the future, but that will
+ ** require enhancements to the implementation. */
+ assert( pStr!=0 && pStr->nChar==0 );
+
+ switch( sqlite3_value_type(pValue) ){
+ case SQLITE_FLOAT: {
+ double r1, r2;
+ const char *zVal;
+ r1 = sqlite3_value_double(pValue);
+ sqlite3_str_appendf(pStr, "%!.15g", r1);
+ zVal = sqlite3_str_value(pStr);
+ if( zVal ){
+ sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8);
+ if( r1!=r2 ){
+ sqlite3_str_reset(pStr);
+ sqlite3_str_appendf(pStr, "%!.20e", r1);
+ }
+ }
+ break;
+ }
+ case SQLITE_INTEGER: {
+ sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue));
+ break;
+ }
+ case SQLITE_BLOB: {
+ char const *zBlob = sqlite3_value_blob(pValue);
+ i64 nBlob = sqlite3_value_bytes(pValue);
+ assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */
+ sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4);
+ if( pStr->accError==0 ){
+ char *zText = pStr->zText;
+ int i;
+ for(i=0; i<nBlob; i++){
+ zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
+ zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
+ }
+ zText[(nBlob*2)+2] = '\'';
+ zText[(nBlob*2)+3] = '\0';
+ zText[0] = 'X';
+ zText[1] = '\'';
+ pStr->nChar = nBlob*2 + 3;
+ }
+ break;
+ }
+ case SQLITE_TEXT: {
+ const unsigned char *zArg = sqlite3_value_text(pValue);
+ sqlite3_str_appendf(pStr, "%Q", zArg);
+ break;
+ }
+ default: {
+ assert( sqlite3_value_type(pValue)==SQLITE_NULL );
+ sqlite3_str_append(pStr, "NULL", 4);
+ break;
+ }
+ }
+}
+
+/*
+** Implementation of the QUOTE() function.
+**
+** The quote(X) function returns the text of an SQL literal which is the
+** value of its argument suitable for inclusion into an SQL statement.
+** Strings are surrounded by single-quotes with escapes on interior quotes
+** as needed. BLOBs are encoded as hexadecimal literals. Strings with
+** embedded NUL characters cannot be represented as string literals in SQL
+** and hence the returned string literal is truncated prior to the first NUL.
+*/
+static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
+ sqlite3_str str;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
+ sqlite3QuoteValue(&str,argv[0]);
+ sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar,
+ SQLITE_DYNAMIC);
+ if( str.accError!=SQLITE_OK ){
+ sqlite3_result_null(context);
+ sqlite3_result_error_code(context, str.accError);
+ }
+}
+
+/*
+** The unicode() function. Return the integer unicode code-point value
+** for the first character of the input string.
+*/
+static void unicodeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *z = sqlite3_value_text(argv[0]);
+ (void)argc;
+ if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
+}
+
+/*
+** The char() function takes zero or more arguments, each of which is
+** an integer. It constructs a string where each character of the string
+** is the unicode character for the corresponding integer argument.
+*/
+static void charFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ unsigned char *z, *zOut;
+ int i;
+ zOut = z = sqlite3_malloc64( argc*4+1 );
+ if( z==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ for(i=0; i<argc; i++){
+ sqlite3_int64 x;
+ unsigned c;
+ x = sqlite3_value_int64(argv[i]);
+ if( x<0 || x>0x10ffff ) x = 0xfffd;
+ c = (unsigned)(x & 0x1fffff);
+ if( c<0x00080 ){
+ *zOut++ = (u8)(c&0xFF);
+ }else if( c<0x00800 ){
+ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
+ *zOut++ = 0x80 + (u8)(c & 0x3F);
+ }else if( c<0x10000 ){
+ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
+ *zOut++ = 0x80 + (u8)(c & 0x3F);
+ }else{
+ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
+ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
+ *zOut++ = 0x80 + (u8)(c & 0x3F);
+ } \
+ }
+ *zOut = 0;
+ sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
+}
+
+/*
+** The hex() function. Interpret the argument as a blob. Return
+** a hexadecimal rendering as text.
+*/
+static void hexFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int i, n;
+ const unsigned char *pBlob;
+ char *zHex, *z;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ pBlob = sqlite3_value_blob(argv[0]);
+ n = sqlite3_value_bytes(argv[0]);
+ assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
+ z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
+ if( zHex ){
+ for(i=0; i<n; i++, pBlob++){
+ unsigned char c = *pBlob;
+ *(z++) = hexdigits[(c>>4)&0xf];
+ *(z++) = hexdigits[c&0xf];
+ }
+ *z = 0;
+ sqlite3_result_text64(context, zHex, (u64)(z-zHex),
+ sqlite3_free, SQLITE_UTF8);
+ }
+}
+
+/*
+** Buffer zStr contains nStr bytes of utf-8 encoded text. Return 1 if zStr
+** contains character ch, or 0 if it does not.
+*/
+static int strContainsChar(const u8 *zStr, int nStr, u32 ch){
+ const u8 *zEnd = &zStr[nStr];
+ const u8 *z = zStr;
+ while( z<zEnd ){
+ u32 tst = Utf8Read(z);
+ if( tst==ch ) return 1;
+ }
+ return 0;
+}
+
+/*
+** The unhex() function. This function may be invoked with either one or
+** two arguments. In both cases the first argument is interpreted as text
+** a text value containing a set of pairs of hexadecimal digits which are
+** decoded and returned as a blob.
+**
+** If there is only a single argument, then it must consist only of an
+** even number of hexadecimal digits. Otherwise, return NULL.
+**
+** Or, if there is a second argument, then any character that appears in
+** the second argument is also allowed to appear between pairs of hexadecimal
+** digits in the first argument. If any other character appears in the
+** first argument, or if one of the allowed characters appears between
+** two hexadecimal digits that make up a single byte, NULL is returned.
+**
+** The following expressions are all true:
+**
+** unhex('ABCD') IS x'ABCD'
+** unhex('AB CD') IS NULL
+** unhex('AB CD', ' ') IS x'ABCD'
+** unhex('A BCD', ' ') IS NULL
+*/
+static void unhexFunc(
+ sqlite3_context *pCtx,
+ int argc,
+ sqlite3_value **argv
+){
+ const u8 *zPass = (const u8*)"";
+ int nPass = 0;
+ const u8 *zHex = sqlite3_value_text(argv[0]);
+ int nHex = sqlite3_value_bytes(argv[0]);
+#ifdef SQLITE_DEBUG
+ const u8 *zEnd = zHex ? &zHex[nHex] : 0;
+#endif
+ u8 *pBlob = 0;
+ u8 *p = 0;
+
+ assert( argc==1 || argc==2 );
+ if( argc==2 ){
+ zPass = sqlite3_value_text(argv[1]);
+ nPass = sqlite3_value_bytes(argv[1]);
+ }
+ if( !zHex || !zPass ) return;
+
+ p = pBlob = contextMalloc(pCtx, (nHex/2)+1);
+ if( pBlob ){
+ u8 c; /* Most significant digit of next byte */
+ u8 d; /* Least significant digit of next byte */
+
+ while( (c = *zHex)!=0x00 ){
+ while( !sqlite3Isxdigit(c) ){
+ u32 ch = Utf8Read(zHex);
+ assert( zHex<=zEnd );
+ if( !strContainsChar(zPass, nPass, ch) ) goto unhex_null;
+ c = *zHex;
+ if( c==0x00 ) goto unhex_done;
+ }
+ zHex++;
+ assert( *zEnd==0x00 );
+ assert( zHex<=zEnd );
+ d = *(zHex++);
+ if( !sqlite3Isxdigit(d) ) goto unhex_null;
+ *(p++) = (sqlite3HexToInt(c)<<4) | sqlite3HexToInt(d);
+ }
+ }
+
+ unhex_done:
+ sqlite3_result_blob(pCtx, pBlob, (p - pBlob), sqlite3_free);
+ return;
+
+ unhex_null:
+ sqlite3_free(pBlob);
+ return;
+}
+
+
+/*
+** The zeroblob(N) function returns a zero-filled blob of size N bytes.
+*/
+static void zeroblobFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ i64 n;
+ int rc;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ n = sqlite3_value_int64(argv[0]);
+ if( n<0 ) n = 0;
+ rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
+ if( rc ){
+ sqlite3_result_error_code(context, rc);
+ }
+}
+
+/*
+** The replace() function. Three arguments are all strings: call
+** them A, B, and C. The result is also a string which is derived
+** from A by replacing every occurrence of B with C. The match
+** must be exact. Collating sequences are not used.
+*/
+static void replaceFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zStr; /* The input string A */
+ const unsigned char *zPattern; /* The pattern string B */
+ const unsigned char *zRep; /* The replacement string C */
+ unsigned char *zOut; /* The output */
+ int nStr; /* Size of zStr */
+ int nPattern; /* Size of zPattern */
+ int nRep; /* Size of zRep */
+ i64 nOut; /* Maximum size of zOut */
+ int loopLimit; /* Last zStr[] that might match zPattern[] */
+ int i, j; /* Loop counters */
+ unsigned cntExpand; /* Number zOut expansions */
+ sqlite3 *db = sqlite3_context_db_handle(context);
+
+ assert( argc==3 );
+ UNUSED_PARAMETER(argc);
+ zStr = sqlite3_value_text(argv[0]);
+ if( zStr==0 ) return;
+ nStr = sqlite3_value_bytes(argv[0]);
+ assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
+ zPattern = sqlite3_value_text(argv[1]);
+ if( zPattern==0 ){
+ assert( sqlite3_value_type(argv[1])==SQLITE_NULL
+ || sqlite3_context_db_handle(context)->mallocFailed );
+ return;
+ }
+ if( zPattern[0]==0 ){
+ assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
+ sqlite3_result_value(context, argv[0]);
+ return;
+ }
+ nPattern = sqlite3_value_bytes(argv[1]);
+ assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
+ zRep = sqlite3_value_text(argv[2]);
+ if( zRep==0 ) return;
+ nRep = sqlite3_value_bytes(argv[2]);
+ assert( zRep==sqlite3_value_text(argv[2]) );
+ nOut = nStr + 1;
+ assert( nOut<SQLITE_MAX_LENGTH );
+ zOut = contextMalloc(context, (i64)nOut);
+ if( zOut==0 ){
+ return;
+ }
+ loopLimit = nStr - nPattern;
+ cntExpand = 0;
+ for(i=j=0; i<=loopLimit; i++){
+ if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
+ zOut[j++] = zStr[i];
+ }else{
+ if( nRep>nPattern ){
+ nOut += nRep - nPattern;
+ testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
+ if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
+ sqlite3_result_error_toobig(context);
+ sqlite3_free(zOut);
+ return;
+ }
+ cntExpand++;
+ if( (cntExpand&(cntExpand-1))==0 ){
+ /* Grow the size of the output buffer only on substitutions
+ ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
+ u8 *zOld;
+ zOld = zOut;
+ zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
+ if( zOut==0 ){
+ sqlite3_result_error_nomem(context);
+ sqlite3_free(zOld);
+ return;
+ }
+ }
+ }
+ memcpy(&zOut[j], zRep, nRep);
+ j += nRep;
+ i += nPattern-1;
+ }
+ }
+ assert( j+nStr-i+1<=nOut );
+ memcpy(&zOut[j], &zStr[i], nStr-i);
+ j += nStr - i;
+ assert( j<=nOut );
+ zOut[j] = 0;
+ sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
+}
+
+/*
+** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
+** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
+*/
+static void trimFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const unsigned char *zIn; /* Input string */
+ const unsigned char *zCharSet; /* Set of characters to trim */
+ unsigned int nIn; /* Number of bytes in input */
+ int flags; /* 1: trimleft 2: trimright 3: trim */
+ int i; /* Loop counter */
+ unsigned int *aLen = 0; /* Length of each character in zCharSet */
+ unsigned char **azChar = 0; /* Individual characters in zCharSet */
+ int nChar; /* Number of characters in zCharSet */
+
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
+ return;
+ }
+ zIn = sqlite3_value_text(argv[0]);
+ if( zIn==0 ) return;
+ nIn = (unsigned)sqlite3_value_bytes(argv[0]);
+ assert( zIn==sqlite3_value_text(argv[0]) );
+ if( argc==1 ){
+ static const unsigned lenOne[] = { 1 };
+ static unsigned char * const azOne[] = { (u8*)" " };
+ nChar = 1;
+ aLen = (unsigned*)lenOne;
+ azChar = (unsigned char **)azOne;
+ zCharSet = 0;
+ }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
+ return;
+ }else{
+ const unsigned char *z;
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ SQLITE_SKIP_UTF8(z);
+ }
+ if( nChar>0 ){
+ azChar = contextMalloc(context,
+ ((i64)nChar)*(sizeof(char*)+sizeof(unsigned)));
+ if( azChar==0 ){
+ return;
+ }
+ aLen = (unsigned*)&azChar[nChar];
+ for(z=zCharSet, nChar=0; *z; nChar++){
+ azChar[nChar] = (unsigned char *)z;
+ SQLITE_SKIP_UTF8(z);
+ aLen[nChar] = (unsigned)(z - azChar[nChar]);
+ }
+ }
+ }
+ if( nChar>0 ){
+ flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
+ if( flags & 1 ){
+ while( nIn>0 ){
+ unsigned int len = 0;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ zIn += len;
+ nIn -= len;
+ }
+ }
+ if( flags & 2 ){
+ while( nIn>0 ){
+ unsigned int len = 0;
+ for(i=0; i<nChar; i++){
+ len = aLen[i];
+ if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
+ }
+ if( i>=nChar ) break;
+ nIn -= len;
+ }
+ }
+ if( zCharSet ){
+ sqlite3_free(azChar);
+ }
+ }
+ sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
+}
+
+/* The core implementation of the CONCAT(...) and CONCAT_WS(SEP,...)
+** functions.
+**
+** Return a string value that is the concatenation of all non-null
+** entries in argv[]. Use zSep as the separator.
+*/
+static void concatFuncCore(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv,
+ int nSep,
+ const char *zSep
+){
+ i64 j, k, n = 0;
+ int i;
+ char *z;
+ for(i=0; i<argc; i++){
+ n += sqlite3_value_bytes(argv[i]);
+ }
+ n += (argc-1)*nSep;
+ z = sqlite3_malloc64(n+1);
+ if( z==0 ){
+ sqlite3_result_error_nomem(context);
+ return;
+ }
+ j = 0;
+ for(i=0; i<argc; i++){
+ k = sqlite3_value_bytes(argv[i]);
+ if( k>0 ){
+ const char *v = (const char*)sqlite3_value_text(argv[i]);
+ if( v!=0 ){
+ if( j>0 && nSep>0 ){
+ memcpy(&z[j], zSep, nSep);
+ j += nSep;
+ }
+ memcpy(&z[j], v, k);
+ j += k;
+ }
+ }
+ }
+ z[j] = 0;
+ assert( j<=n );
+ sqlite3_result_text64(context, z, j, sqlite3_free, SQLITE_UTF8);
+}
+
+/*
+** The CONCAT(...) function. Generate a string result that is the
+** concatentation of all non-null arguments.
+*/
+static void concatFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ concatFuncCore(context, argc, argv, 0, "");
+}
+
+/*
+** The CONCAT_WS(separator, ...) function.
+**
+** Generate a string that is the concatenation of 2nd through the Nth
+** argument. Use the first argument (which must be non-NULL) as the
+** separator.
+*/
+static void concatwsFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int nSep = sqlite3_value_bytes(argv[0]);
+ const char *zSep = (const char*)sqlite3_value_text(argv[0]);
+ if( zSep==0 ) return;
+ concatFuncCore(context, argc-1, argv+1, nSep, zSep);
+}
+
+
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+/*
+** The "unknown" function is automatically substituted in place of
+** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
+** when the SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION compile-time option is used.
+** When the "sqlite3" command-line shell is built using this functionality,
+** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
+** involving application-defined functions to be examined in a generic
+** sqlite3 shell.
+*/
+static void unknownFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ /* no-op */
+ (void)context;
+ (void)argc;
+ (void)argv;
+}
+#endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
+
+
+/* IMP: R-25361-16150 This function is omitted from SQLite by default. It
+** is only available if the SQLITE_SOUNDEX compile-time option is used
+** when SQLite is built.
+*/
+#ifdef SQLITE_SOUNDEX
+/*
+** Compute the soundex encoding of a word.
+**
+** IMP: R-59782-00072 The soundex(X) function returns a string that is the
+** soundex encoding of the string X.
+*/
+static void soundexFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ char zResult[8];
+ const u8 *zIn;
+ int i, j;
+ static const unsigned char iCode[] = {
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
+ 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
+ };
+ assert( argc==1 );
+ zIn = (u8*)sqlite3_value_text(argv[0]);
+ if( zIn==0 ) zIn = (u8*)"";
+ for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
+ if( zIn[i] ){
+ u8 prevcode = iCode[zIn[i]&0x7f];
+ zResult[0] = sqlite3Toupper(zIn[i]);
+ for(j=1; j<4 && zIn[i]; i++){
+ int code = iCode[zIn[i]&0x7f];
+ if( code>0 ){
+ if( code!=prevcode ){
+ prevcode = code;
+ zResult[j++] = code + '0';
+ }
+ }else{
+ prevcode = 0;
+ }
+ }
+ while( j<4 ){
+ zResult[j++] = '0';
+ }
+ zResult[j] = 0;
+ sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
+ }else{
+ /* IMP: R-64894-50321 The string "?000" is returned if the argument
+ ** is NULL or contains no ASCII alphabetic characters. */
+ sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
+ }
+}
+#endif /* SQLITE_SOUNDEX */
+
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+/*
+** A function that loads a shared-library extension then returns NULL.
+*/
+static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
+ const char *zFile = (const char *)sqlite3_value_text(argv[0]);
+ const char *zProc;
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ char *zErrMsg = 0;
+
+ /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
+ ** flag is set. See the sqlite3_enable_load_extension() API.
+ */
+ if( (db->flags & SQLITE_LoadExtFunc)==0 ){
+ sqlite3_result_error(context, "not authorized", -1);
+ return;
+ }
+
+ if( argc==2 ){
+ zProc = (const char *)sqlite3_value_text(argv[1]);
+ }else{
+ zProc = 0;
+ }
+ if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
+ sqlite3_result_error(context, zErrMsg, -1);
+ sqlite3_free(zErrMsg);
+ }
+}
+#endif
+
+
+/*
+** An instance of the following structure holds the context of a
+** sum() or avg() aggregate computation.
+*/
+typedef struct SumCtx SumCtx;
+struct SumCtx {
+ double rSum; /* Running sum as as a double */
+ double rErr; /* Error term for Kahan-Babushka-Neumaier summation */
+ i64 iSum; /* Running sum as a signed integer */
+ i64 cnt; /* Number of elements summed */
+ u8 approx; /* True if any non-integer value was input to the sum */
+ u8 ovrfl; /* Integer overflow seen */
+};
+
+/*
+** Do one step of the Kahan-Babushka-Neumaier summation.
+**
+** https://en.wikipedia.org/wiki/Kahan_summation_algorithm
+**
+** Variables are marked "volatile" to defeat c89 x86 floating point
+** optimizations can mess up this algorithm.
+*/
+static void kahanBabuskaNeumaierStep(
+ volatile SumCtx *pSum,
+ volatile double r
+){
+ volatile double s = pSum->rSum;
+ volatile double t = s + r;
+ if( fabs(s) > fabs(r) ){
+ pSum->rErr += (s - t) + r;
+ }else{
+ pSum->rErr += (r - t) + s;
+ }
+ pSum->rSum = t;
+}
+
+/*
+** Add a (possibly large) integer to the running sum.
+*/
+static void kahanBabuskaNeumaierStepInt64(volatile SumCtx *pSum, i64 iVal){
+ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
+ i64 iBig, iSm;
+ iSm = iVal % 16384;
+ iBig = iVal - iSm;
+ kahanBabuskaNeumaierStep(pSum, iBig);
+ kahanBabuskaNeumaierStep(pSum, iSm);
+ }else{
+ kahanBabuskaNeumaierStep(pSum, (double)iVal);
+ }
+}
+
+/*
+** Initialize the Kahan-Babaska-Neumaier sum from a 64-bit integer
+*/
+static void kahanBabuskaNeumaierInit(
+ volatile SumCtx *p,
+ i64 iVal
+){
+ if( iVal<=-4503599627370496LL || iVal>=+4503599627370496LL ){
+ i64 iSm = iVal % 16384;
+ p->rSum = (double)(iVal - iSm);
+ p->rErr = (double)iSm;
+ }else{
+ p->rSum = (double)iVal;
+ p->rErr = 0.0;
+ }
+}
+
+/*
+** Routines used to compute the sum, average, and total.
+**
+** The SUM() function follows the (broken) SQL standard which means
+** that it returns NULL if it sums over no inputs. TOTAL returns
+** 0.0 in that case. In addition, TOTAL always returns a float where
+** SUM might return an integer if it never encounters a floating point
+** value. TOTAL never fails, but SUM might through an exception if
+** it overflows an integer.
+*/
+static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+ SumCtx *p;
+ int type;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ type = sqlite3_value_numeric_type(argv[0]);
+ if( p && type!=SQLITE_NULL ){
+ p->cnt++;
+ if( p->approx==0 ){
+ if( type!=SQLITE_INTEGER ){
+ kahanBabuskaNeumaierInit(p, p->iSum);
+ p->approx = 1;
+ kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
+ }else{
+ i64 x = p->iSum;
+ if( sqlite3AddInt64(&x, sqlite3_value_int64(argv[0]))==0 ){
+ p->iSum = x;
+ }else{
+ p->ovrfl = 1;
+ kahanBabuskaNeumaierInit(p, p->iSum);
+ p->approx = 1;
+ kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0]));
+ }
+ }
+ }else{
+ if( type==SQLITE_INTEGER ){
+ kahanBabuskaNeumaierStepInt64(p, sqlite3_value_int64(argv[0]));
+ }else{
+ p->ovrfl = 0;
+ kahanBabuskaNeumaierStep(p, sqlite3_value_double(argv[0]));
+ }
+ }
+ }
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
+ SumCtx *p;
+ int type;
+ assert( argc==1 );
+ UNUSED_PARAMETER(argc);
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ type = sqlite3_value_numeric_type(argv[0]);
+ /* p is always non-NULL because sumStep() will have been called first
+ ** to initialize it */
+ if( ALWAYS(p) && type!=SQLITE_NULL ){
+ assert( p->cnt>0 );
+ p->cnt--;
+ if( !p->approx ){
+ p->iSum -= sqlite3_value_int64(argv[0]);
+ }else if( type==SQLITE_INTEGER ){
+ i64 iVal = sqlite3_value_int64(argv[0]);
+ if( iVal!=SMALLEST_INT64 ){
+ kahanBabuskaNeumaierStepInt64(p, -iVal);
+ }else{
+ kahanBabuskaNeumaierStepInt64(p, LARGEST_INT64);
+ kahanBabuskaNeumaierStepInt64(p, 1);
+ }
+ }else{
+ kahanBabuskaNeumaierStep(p, -sqlite3_value_double(argv[0]));
+ }
+ }
+}
+#else
+# define sumInverse 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+static void sumFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p && p->cnt>0 ){
+ if( p->approx ){
+ if( p->ovrfl ){
+ sqlite3_result_error(context,"integer overflow",-1);
+ }else if( !sqlite3IsNaN(p->rErr) ){
+ sqlite3_result_double(context, p->rSum+p->rErr);
+ }else{
+ sqlite3_result_double(context, p->rSum);
+ }
+ }else{
+ sqlite3_result_int64(context, p->iSum);
+ }
+ }
+}
+static void avgFinalize(sqlite3_context *context){
+ SumCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p && p->cnt>0 ){
+ double r;
+ if( p->approx ){
+ r = p->rSum;
+ if( !sqlite3IsNaN(p->rErr) ) r += p->rErr;
+ }else{
+ r = (double)(p->iSum);
+ }
+ sqlite3_result_double(context, r/(double)p->cnt);
+ }
+}
+static void totalFinalize(sqlite3_context *context){
+ SumCtx *p;
+ double r = 0.0;
+ p = sqlite3_aggregate_context(context, 0);
+ if( p ){
+ if( p->approx ){
+ r = p->rSum;
+ if( !sqlite3IsNaN(p->rErr) ) r += p->rErr;
+ }else{
+ r = (double)(p->iSum);
+ }
+ }
+ sqlite3_result_double(context, r);
+}
+
+/*
+** The following structure keeps track of state information for the
+** count() aggregate function.
+*/
+typedef struct CountCtx CountCtx;
+struct CountCtx {
+ i64 n;
+#ifdef SQLITE_DEBUG
+ int bInverse; /* True if xInverse() ever called */
+#endif
+};
+
+/*
+** Routines to implement the count() aggregate function.
+*/
+static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(context, sizeof(*p));
+ if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
+ p->n++;
+ }
+
+#ifndef SQLITE_OMIT_DEPRECATED
+ /* The sqlite3_aggregate_count() function is deprecated. But just to make
+ ** sure it still operates correctly, verify that its count agrees with our
+ ** internal count when using count(*) and when the total count can be
+ ** expressed as a 32-bit integer. */
+ assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
+ || p->n==sqlite3_aggregate_count(context) );
+#endif
+}
+static void countFinalize(sqlite3_context *context){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(context, 0);
+ sqlite3_result_int64(context, p ? p->n : 0);
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
+ CountCtx *p;
+ p = sqlite3_aggregate_context(ctx, sizeof(*p));
+ /* p is always non-NULL since countStep() will have been called first */
+ if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
+ p->n--;
+#ifdef SQLITE_DEBUG
+ p->bInverse = 1;
+#endif
+ }
+}
+#else
+# define countInverse 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** Routines to implement min() and max() aggregate functions.
+*/
+static void minmaxStep(
+ sqlite3_context *context,
+ int NotUsed,
+ sqlite3_value **argv
+){
+ Mem *pArg = (Mem *)argv[0];
+ Mem *pBest;
+ UNUSED_PARAMETER(NotUsed);
+
+ pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
+ if( !pBest ) return;
+
+ if( sqlite3_value_type(pArg)==SQLITE_NULL ){
+ if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
+ }else if( pBest->flags ){
+ int max;
+ int cmp;
+ CollSeq *pColl = sqlite3GetFuncCollSeq(context);
+ /* This step function is used for both the min() and max() aggregates,
+ ** the only difference between the two being that the sense of the
+ ** comparison is inverted. For the max() aggregate, the
+ ** sqlite3_user_data() function returns (void *)-1. For min() it
+ ** returns (void *)db, where db is the sqlite3* database pointer.
+ ** Therefore the next statement sets variable 'max' to 1 for the max()
+ ** aggregate, or 0 for min().
+ */
+ max = sqlite3_user_data(context)!=0;
+ cmp = sqlite3MemCompare(pBest, pArg, pColl);
+ if( (max && cmp<0) || (!max && cmp>0) ){
+ sqlite3VdbeMemCopy(pBest, pArg);
+ }else{
+ sqlite3SkipAccumulatorLoad(context);
+ }
+ }else{
+ pBest->db = sqlite3_context_db_handle(context);
+ sqlite3VdbeMemCopy(pBest, pArg);
+ }
+}
+static void minMaxValueFinalize(sqlite3_context *context, int bValue){
+ sqlite3_value *pRes;
+ pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
+ if( pRes ){
+ if( pRes->flags ){
+ sqlite3_result_value(context, pRes);
+ }
+ if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
+ }
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void minMaxValue(sqlite3_context *context){
+ minMaxValueFinalize(context, 1);
+}
+#else
+# define minMaxValue 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+static void minMaxFinalize(sqlite3_context *context){
+ minMaxValueFinalize(context, 0);
+}
+
+/*
+** group_concat(EXPR, ?SEPARATOR?)
+** string_agg(EXPR, SEPARATOR)
+**
+** The SEPARATOR goes before the EXPR string. This is tragic. The
+** groupConcatInverse() implementation would have been easier if the
+** SEPARATOR were appended after EXPR. And the order is undocumented,
+** so we could change it, in theory. But the old behavior has been
+** around for so long that we dare not, for fear of breaking something.
+*/
+typedef struct {
+ StrAccum str; /* The accumulated concatenation */
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ int nAccum; /* Number of strings presently concatenated */
+ int nFirstSepLength; /* Used to detect separator length change */
+ /* If pnSepLengths!=0, refs an array of inter-string separator lengths,
+ ** stored as actually incorporated into presently accumulated result.
+ ** (Hence, its slots in use number nAccum-1 between method calls.)
+ ** If pnSepLengths==0, nFirstSepLength is the length used throughout.
+ */
+ int *pnSepLengths;
+#endif
+} GroupConcatCtx;
+
+static void groupConcatStep(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ const char *zVal;
+ GroupConcatCtx *pGCC;
+ const char *zSep;
+ int nVal, nSep;
+ assert( argc==1 || argc==2 );
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
+ if( pGCC ){
+ sqlite3 *db = sqlite3_context_db_handle(context);
+ int firstTerm = pGCC->str.mxAlloc==0;
+ pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
+ if( argc==1 ){
+ if( !firstTerm ){
+ sqlite3_str_appendchar(&pGCC->str, 1, ',');
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else{
+ pGCC->nFirstSepLength = 1;
+ }
+#endif
+ }else if( !firstTerm ){
+ zSep = (char*)sqlite3_value_text(argv[1]);
+ nSep = sqlite3_value_bytes(argv[1]);
+ if( zSep ){
+ sqlite3_str_append(&pGCC->str, zSep, nSep);
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else{
+ nSep = 0;
+ }
+ if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){
+ int *pnsl = pGCC->pnSepLengths;
+ if( pnsl == 0 ){
+ /* First separator length variation seen, start tracking them. */
+ pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int));
+ if( pnsl!=0 ){
+ int i = 0, nA = pGCC->nAccum-1;
+ while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength;
+ }
+ }else{
+ pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int));
+ }
+ if( pnsl!=0 ){
+ if( ALWAYS(pGCC->nAccum>0) ){
+ pnsl[pGCC->nAccum-1] = nSep;
+ }
+ pGCC->pnSepLengths = pnsl;
+ }else{
+ sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM);
+ }
+ }
+#endif
+ }
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ else{
+ pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]);
+ }
+ pGCC->nAccum += 1;
+#endif
+ zVal = (char*)sqlite3_value_text(argv[0]);
+ nVal = sqlite3_value_bytes(argv[0]);
+ if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal);
+ }
+}
+
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void groupConcatInverse(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ GroupConcatCtx *pGCC;
+ assert( argc==1 || argc==2 );
+ (void)argc; /* Suppress unused parameter warning */
+ if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
+ pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
+ /* pGCC is always non-NULL since groupConcatStep() will have always
+ ** run first to initialize it */
+ if( ALWAYS(pGCC) ){
+ int nVS;
+ /* Must call sqlite3_value_text() to convert the argument into text prior
+ ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */
+ (void)sqlite3_value_text(argv[0]);
+ nVS = sqlite3_value_bytes(argv[0]);
+ pGCC->nAccum -= 1;
+ if( pGCC->pnSepLengths!=0 ){
+ assert(pGCC->nAccum >= 0);
+ if( pGCC->nAccum>0 ){
+ nVS += *pGCC->pnSepLengths;
+ memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1,
+ (pGCC->nAccum-1)*sizeof(int));
+ }
+ }else{
+ /* If removing single accumulated string, harmlessly over-do. */
+ nVS += pGCC->nFirstSepLength;
+ }
+ if( nVS>=(int)pGCC->str.nChar ){
+ pGCC->str.nChar = 0;
+ }else{
+ pGCC->str.nChar -= nVS;
+ memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar);
+ }
+ if( pGCC->str.nChar==0 ){
+ pGCC->str.mxAlloc = 0;
+ sqlite3_free(pGCC->pnSepLengths);
+ pGCC->pnSepLengths = 0;
+ }
+ }
+}
+#else
+# define groupConcatInverse 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+static void groupConcatFinalize(sqlite3_context *context){
+ GroupConcatCtx *pGCC
+ = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
+ if( pGCC ){
+ sqlite3ResultStrAccum(context, &pGCC->str);
+#ifndef SQLITE_OMIT_WINDOWFUNC
+ sqlite3_free(pGCC->pnSepLengths);
+#endif
+ }
+}
+#ifndef SQLITE_OMIT_WINDOWFUNC
+static void groupConcatValue(sqlite3_context *context){
+ GroupConcatCtx *pGCC
+ = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
+ if( pGCC ){
+ StrAccum *pAccum = &pGCC->str;
+ if( pAccum->accError==SQLITE_TOOBIG ){
+ sqlite3_result_error_toobig(context);
+ }else if( pAccum->accError==SQLITE_NOMEM ){
+ sqlite3_result_error_nomem(context);
+ }else{
+ const char *zText = sqlite3_str_value(pAccum);
+ sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT);
+ }
+ }
+}
+#else
+# define groupConcatValue 0
+#endif /* SQLITE_OMIT_WINDOWFUNC */
+
+/*
+** This routine does per-connection function registration. Most
+** of the built-in functions above are part of the global function set.
+** This routine only deals with those that are not global.
+*/
+void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
+ int rc = sqlite3_overload_function(db, "MATCH", 2);
+ assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
+ if( rc==SQLITE_NOMEM ){
+ sqlite3OomFault(db);
+ }
+}
+
+/*
+** Re-register the built-in LIKE functions. The caseSensitive
+** parameter determines whether or not the LIKE operator is case
+** sensitive.
+*/
+void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
+ FuncDef *pDef;
+ struct compareInfo *pInfo;
+ int flags;
+ int nArg;
+ if( caseSensitive ){
+ pInfo = (struct compareInfo*)&likeInfoAlt;
+ flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
+ }else{
+ pInfo = (struct compareInfo*)&likeInfoNorm;
+ flags = SQLITE_FUNC_LIKE;
+ }
+ for(nArg=2; nArg<=3; nArg++){
+ sqlite3CreateFunc(db, "like", nArg, SQLITE_UTF8, pInfo, likeFunc,
+ 0, 0, 0, 0, 0);
+ pDef = sqlite3FindFunction(db, "like", nArg, SQLITE_UTF8, 0);
+ pDef->funcFlags |= flags;
+ pDef->funcFlags &= ~SQLITE_FUNC_UNSAFE;
+ }
+}
+
+/*
+** pExpr points to an expression which implements a function. If
+** it is appropriate to apply the LIKE optimization to that function
+** then set aWc[0] through aWc[2] to the wildcard characters and the
+** escape character and then return TRUE. If the function is not a
+** LIKE-style function then return FALSE.
+**
+** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
+** operator if c is a string literal that is exactly one byte in length.
+** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
+** no ESCAPE clause.
+**
+** *pIsNocase is set to true if uppercase and lowercase are equivalent for
+** the function (default for LIKE). If the function makes the distinction
+** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
+** false.
+*/
+int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
+ FuncDef *pDef;
+ int nExpr;
+ assert( pExpr!=0 );
+ assert( pExpr->op==TK_FUNCTION );
+ assert( ExprUseXList(pExpr) );
+ if( !pExpr->x.pList ){
+ return 0;
+ }
+ nExpr = pExpr->x.pList->nExpr;
+ assert( !ExprHasProperty(pExpr, EP_IntValue) );
+ pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ if( pDef==0 ) return 0;
+#endif
+ if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
+ return 0;
+ }
+
+ /* The memcpy() statement assumes that the wildcard characters are
+ ** the first three statements in the compareInfo structure. The
+ ** asserts() that follow verify that assumption
+ */
+ memcpy(aWc, pDef->pUserData, 3);
+ assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
+ assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
+ assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
+
+ if( nExpr<3 ){
+ aWc[3] = 0;
+ }else{
+ Expr *pEscape = pExpr->x.pList->a[2].pExpr;
+ char *zEscape;
+ if( pEscape->op!=TK_STRING ) return 0;
+ assert( !ExprHasProperty(pEscape, EP_IntValue) );
+ zEscape = pEscape->u.zToken;
+ if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
+ if( zEscape[0]==aWc[0] ) return 0;
+ if( zEscape[0]==aWc[1] ) return 0;
+ aWc[3] = zEscape[0];
+ }
+
+ *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
+ return 1;
+}
+
+/* Mathematical Constants */
+#ifndef M_PI
+# define M_PI 3.141592653589793238462643383279502884
+#endif
+#ifndef M_LN10
+# define M_LN10 2.302585092994045684017991454684364208
+#endif
+#ifndef M_LN2
+# define M_LN2 0.693147180559945309417232121458176568
+#endif
+
+
+/* Extra math functions that require linking with -lm
+*/
+#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
+/*
+** Implementation SQL functions:
+**
+** ceil(X)
+** ceiling(X)
+** floor(X)
+**
+** The sqlite3_user_data() pointer is a pointer to the libm implementation
+** of the underlying C function.
+*/
+static void ceilingFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==1 );
+ switch( sqlite3_value_numeric_type(argv[0]) ){
+ case SQLITE_INTEGER: {
+ sqlite3_result_int64(context, sqlite3_value_int64(argv[0]));
+ break;
+ }
+ case SQLITE_FLOAT: {
+ double (*x)(double) = (double(*)(double))sqlite3_user_data(context);
+ sqlite3_result_double(context, x(sqlite3_value_double(argv[0])));
+ break;
+ }
+ default: {
+ break;
+ }
+ }
+}
+
+/*
+** On some systems, ceil() and floor() are intrinsic function. You are
+** unable to take a pointer to these functions. Hence, we here wrap them
+** in our own actual functions.
+*/
+static double xCeil(double x){ return ceil(x); }
+static double xFloor(double x){ return floor(x); }
+
+/*
+** Some systems do not have log2() and log10() in their standard math
+** libraries.
+*/
+#if defined(HAVE_LOG10) && HAVE_LOG10==0
+# define log10(X) (0.4342944819032517867*log(X))
+#endif
+#if defined(HAVE_LOG2) && HAVE_LOG2==0
+# define log2(X) (1.442695040888963456*log(X))
+#endif
+
+
+/*
+** Implementation of SQL functions:
+**
+** ln(X) - natural logarithm
+** log(X) - log X base 10
+** log10(X) - log X base 10
+** log(B,X) - log X base B
+*/
+static void logFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ double x, b, ans;
+ assert( argc==1 || argc==2 );
+ switch( sqlite3_value_numeric_type(argv[0]) ){
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ x = sqlite3_value_double(argv[0]);
+ if( x<=0.0 ) return;
+ break;
+ default:
+ return;
+ }
+ if( argc==2 ){
+ switch( sqlite3_value_numeric_type(argv[0]) ){
+ case SQLITE_INTEGER:
+ case SQLITE_FLOAT:
+ b = log(x);
+ if( b<=0.0 ) return;
+ x = sqlite3_value_double(argv[1]);
+ if( x<=0.0 ) return;
+ break;
+ default:
+ return;
+ }
+ ans = log(x)/b;
+ }else{
+ switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){
+ case 1:
+ ans = log10(x);
+ break;
+ case 2:
+ ans = log2(x);
+ break;
+ default:
+ ans = log(x);
+ break;
+ }
+ }
+ sqlite3_result_double(context, ans);
+}
+
+/*
+** Functions to converts degrees to radians and radians to degrees.
+*/
+static double degToRad(double x){ return x*(M_PI/180.0); }
+static double radToDeg(double x){ return x*(180.0/M_PI); }
+
+/*
+** Implementation of 1-argument SQL math functions:
+**
+** exp(X) - Compute e to the X-th power
+*/
+static void math1Func(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int type0;
+ double v0, ans;
+ double (*x)(double);
+ assert( argc==1 );
+ type0 = sqlite3_value_numeric_type(argv[0]);
+ if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
+ v0 = sqlite3_value_double(argv[0]);
+ x = (double(*)(double))sqlite3_user_data(context);
+ ans = x(v0);
+ sqlite3_result_double(context, ans);
+}
+
+/*
+** Implementation of 2-argument SQL math functions:
+**
+** power(X,Y) - Compute X to the Y-th power
+*/
+static void math2Func(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int type0, type1;
+ double v0, v1, ans;
+ double (*x)(double,double);
+ assert( argc==2 );
+ type0 = sqlite3_value_numeric_type(argv[0]);
+ if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
+ type1 = sqlite3_value_numeric_type(argv[1]);
+ if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return;
+ v0 = sqlite3_value_double(argv[0]);
+ v1 = sqlite3_value_double(argv[1]);
+ x = (double(*)(double,double))sqlite3_user_data(context);
+ ans = x(v0, v1);
+ sqlite3_result_double(context, ans);
+}
+
+/*
+** Implementation of 0-argument pi() function.
+*/
+static void piFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ assert( argc==0 );
+ (void)argv;
+ sqlite3_result_double(context, M_PI);
+}
+
+#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
+
+/*
+** Implementation of sign(X) function.
+*/
+static void signFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ int type0;
+ double x;
+ UNUSED_PARAMETER(argc);
+ assert( argc==1 );
+ type0 = sqlite3_value_numeric_type(argv[0]);
+ if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
+ x = sqlite3_value_double(argv[0]);
+ sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0);
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Implementation of fpdecode(x,y,z) function.
+**
+** x is a real number that is to be decoded. y is the precision.
+** z is the maximum real precision.
+*/
+static void fpdecodeFunc(
+ sqlite3_context *context,
+ int argc,
+ sqlite3_value **argv
+){
+ FpDecode s;
+ double x;
+ int y, z;
+ char zBuf[100];
+ UNUSED_PARAMETER(argc);
+ assert( argc==3 );
+ x = sqlite3_value_double(argv[0]);
+ y = sqlite3_value_int(argv[1]);
+ z = sqlite3_value_int(argv[2]);
+ sqlite3FpDecode(&s, x, y, z);
+ if( s.isSpecial==2 ){
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "NaN");
+ }else{
+ sqlite3_snprintf(sizeof(zBuf), zBuf, "%c%.*s/%d", s.sign, s.n, s.z, s.iDP);
+ }
+ sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
+}
+#endif /* SQLITE_DEBUG */
+
+/*
+** All of the FuncDef structures in the aBuiltinFunc[] array above
+** to the global function hash table. This occurs at start-time (as
+** a consequence of calling sqlite3_initialize()).
+**
+** After this routine runs
+*/
+void sqlite3RegisterBuiltinFunctions(void){
+ /*
+ ** The following array holds FuncDef structures for all of the functions
+ ** defined in this file.
+ **
+ ** The array cannot be constant since changes are made to the
+ ** FuncDef.pHash elements at start-time. The elements of this array
+ ** are read-only after initialization is complete.
+ **
+ ** For peak efficiency, put the most frequently used function last.
+ */
+ static FuncDef aBuiltinFunc[] = {
+/***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
+#if !defined(SQLITE_UNTESTABLE)
+ TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
+ TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
+ TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
+ TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
+#endif /* !defined(SQLITE_UNTESTABLE) */
+/***** Regular functions *****/
+#ifdef SQLITE_SOUNDEX
+ FUNCTION(soundex, 1, 0, 0, soundexFunc ),
+#endif
+#ifndef SQLITE_OMIT_LOAD_EXTENSION
+ SFUNCTION(load_extension, 1, 0, 0, loadExt ),
+ SFUNCTION(load_extension, 2, 0, 0, loadExt ),
+#endif
+#if SQLITE_USER_AUTHENTICATION
+ FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
+#endif
+#ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
+ DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
+ DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
+#endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
+ INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
+ INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
+ INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
+#ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
+ INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ),
+#endif
+ FUNCTION(ltrim, 1, 1, 0, trimFunc ),
+ FUNCTION(ltrim, 2, 1, 0, trimFunc ),
+ FUNCTION(rtrim, 1, 2, 0, trimFunc ),
+ FUNCTION(rtrim, 2, 2, 0, trimFunc ),
+ FUNCTION(trim, 1, 3, 0, trimFunc ),
+ FUNCTION(trim, 2, 3, 0, trimFunc ),
+ FUNCTION(min, -1, 0, 1, minmaxFunc ),
+ FUNCTION(min, 0, 0, 1, 0 ),
+ WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
+ SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
+ FUNCTION(max, -1, 1, 1, minmaxFunc ),
+ FUNCTION(max, 0, 1, 1, 0 ),
+ WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
+ SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
+ FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
+ FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF),
+ FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
+ FUNCTION2(octet_length, 1, 0, 0, bytelengthFunc,SQLITE_FUNC_BYTELEN),
+ FUNCTION(instr, 2, 0, 0, instrFunc ),
+ FUNCTION(printf, -1, 0, 0, printfFunc ),
+ FUNCTION(format, -1, 0, 0, printfFunc ),
+ FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
+ FUNCTION(char, -1, 0, 0, charFunc ),
+ FUNCTION(abs, 1, 0, 0, absFunc ),
+#ifdef SQLITE_DEBUG
+ FUNCTION(fpdecode, 3, 0, 0, fpdecodeFunc ),
+#endif
+#ifndef SQLITE_OMIT_FLOATING_POINT
+ FUNCTION(round, 1, 0, 0, roundFunc ),
+ FUNCTION(round, 2, 0, 0, roundFunc ),
+#endif
+ FUNCTION(upper, 1, 0, 0, upperFunc ),
+ FUNCTION(lower, 1, 0, 0, lowerFunc ),
+ FUNCTION(hex, 1, 0, 0, hexFunc ),
+ FUNCTION(unhex, 1, 0, 0, unhexFunc ),
+ FUNCTION(unhex, 2, 0, 0, unhexFunc ),
+ FUNCTION(concat, -1, 0, 0, concatFunc ),
+ FUNCTION(concat, 0, 0, 0, 0 ),
+ FUNCTION(concat_ws, -1, 0, 0, concatwsFunc ),
+ FUNCTION(concat_ws, 0, 0, 0, 0 ),
+ FUNCTION(concat_ws, 1, 0, 0, 0 ),
+ INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
+ VFUNCTION(random, 0, 0, 0, randomFunc ),
+ VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
+ FUNCTION(nullif, 2, 0, 1, nullifFunc ),
+ DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
+ DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
+ FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
+ FUNCTION(quote, 1, 0, 0, quoteFunc ),
+ VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
+ VFUNCTION(changes, 0, 0, 0, changes ),
+ VFUNCTION(total_changes, 0, 0, 0, total_changes ),
+ FUNCTION(replace, 3, 0, 0, replaceFunc ),
+ FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
+ FUNCTION(substr, 2, 0, 0, substrFunc ),
+ FUNCTION(substr, 3, 0, 0, substrFunc ),
+ FUNCTION(substring, 2, 0, 0, substrFunc ),
+ FUNCTION(substring, 3, 0, 0, substrFunc ),
+ WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
+ WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
+ WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
+ WAGGREGATE(count, 0,0,0, countStep,
+ countFinalize, countFinalize, countInverse,
+ SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ),
+ WAGGREGATE(count, 1,0,0, countStep,
+ countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ),
+ WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
+ groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
+ WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
+ groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
+ WAGGREGATE(string_agg, 2, 0, 0, groupConcatStep,
+ groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
+
+ LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+#ifdef SQLITE_CASE_SENSITIVE_LIKE
+ LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+ LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
+#else
+ LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
+ LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
+#endif
+#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
+ FUNCTION(unknown, -1, 0, 0, unknownFunc ),
+#endif
+ FUNCTION(coalesce, 1, 0, 0, 0 ),
+ FUNCTION(coalesce, 0, 0, 0, 0 ),
+#ifdef SQLITE_ENABLE_MATH_FUNCTIONS
+ MFUNCTION(ceil, 1, xCeil, ceilingFunc ),
+ MFUNCTION(ceiling, 1, xCeil, ceilingFunc ),
+ MFUNCTION(floor, 1, xFloor, ceilingFunc ),
+#if SQLITE_HAVE_C99_MATH_FUNCS
+ MFUNCTION(trunc, 1, trunc, ceilingFunc ),
+#endif
+ FUNCTION(ln, 1, 0, 0, logFunc ),
+ FUNCTION(log, 1, 1, 0, logFunc ),
+ FUNCTION(log10, 1, 1, 0, logFunc ),
+ FUNCTION(log2, 1, 2, 0, logFunc ),
+ FUNCTION(log, 2, 0, 0, logFunc ),
+ MFUNCTION(exp, 1, exp, math1Func ),
+ MFUNCTION(pow, 2, pow, math2Func ),
+ MFUNCTION(power, 2, pow, math2Func ),
+ MFUNCTION(mod, 2, fmod, math2Func ),
+ MFUNCTION(acos, 1, acos, math1Func ),
+ MFUNCTION(asin, 1, asin, math1Func ),
+ MFUNCTION(atan, 1, atan, math1Func ),
+ MFUNCTION(atan2, 2, atan2, math2Func ),
+ MFUNCTION(cos, 1, cos, math1Func ),
+ MFUNCTION(sin, 1, sin, math1Func ),
+ MFUNCTION(tan, 1, tan, math1Func ),
+ MFUNCTION(cosh, 1, cosh, math1Func ),
+ MFUNCTION(sinh, 1, sinh, math1Func ),
+ MFUNCTION(tanh, 1, tanh, math1Func ),
+#if SQLITE_HAVE_C99_MATH_FUNCS
+ MFUNCTION(acosh, 1, acosh, math1Func ),
+ MFUNCTION(asinh, 1, asinh, math1Func ),
+ MFUNCTION(atanh, 1, atanh, math1Func ),
+#endif
+ MFUNCTION(sqrt, 1, sqrt, math1Func ),
+ MFUNCTION(radians, 1, degToRad, math1Func ),
+ MFUNCTION(degrees, 1, radToDeg, math1Func ),
+ FUNCTION(pi, 0, 0, 0, piFunc ),
+#endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
+ FUNCTION(sign, 1, 0, 0, signFunc ),
+ INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ),
+ INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ),
+ };
+#ifndef SQLITE_OMIT_ALTERTABLE
+ sqlite3AlterFunctions();
+#endif
+ sqlite3WindowFunctions();
+ sqlite3RegisterDateTimeFunctions();
+ sqlite3RegisterJsonFunctions();
+ sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
+
+#if 0 /* Enable to print out how the built-in functions are hashed */
+ {
+ int i;
+ FuncDef *p;
+ for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
+ printf("FUNC-HASH %02d:", i);
+ for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
+ int n = sqlite3Strlen30(p->zName);
+ int h = p->zName[0] + n;
+ assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
+ printf(" %s(%d)", p->zName, h);
+ }
+ printf("\n");
+ }
+ }
+#endif
+}