1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
|
/*
** 2011-08-13
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of LSM database logging. Logging
** has one purpose in LSM - to make transactions durable.
**
** When data is written to an LSM database, it is initially stored in an
** in-memory tree structure. Since this structure is in volatile memory,
** if a power failure or application crash occurs it may be lost. To
** prevent loss of data in this case, each time a record is written to the
** in-memory tree an equivalent record is appended to the log on disk.
** If a power failure or application crash does occur, data can be recovered
** by reading the log.
**
** A log file consists of the following types of records representing data
** written into the database:
**
** LOG_WRITE: A key-value pair written to the database.
** LOG_DELETE: A delete key issued to the database.
** LOG_COMMIT: A transaction commit.
**
** And the following types of records for ancillary purposes..
**
** LOG_EOF: A record indicating the end of a log file.
** LOG_PAD1: A single byte padding record.
** LOG_PAD2: An N byte padding record (N>1).
** LOG_JUMP: A pointer to another offset within the log file.
**
** Each transaction written to the log contains one or more LOG_WRITE and/or
** LOG_DELETE records, followed by a LOG_COMMIT record. The LOG_COMMIT record
** contains an 8-byte checksum based on all previous data written to the
** log file.
**
** LOG CHECKSUMS & RECOVERY
**
** Checksums are found in two types of log records: LOG_COMMIT and
** LOG_CKSUM records. In order to recover content from a log, a client
** reads each record from the start of the log, calculating a checksum as
** it does. Each time a LOG_COMMIT or LOG_CKSUM is encountered, the
** recovery process verifies that the checksum stored in the log
** matches the calculated checksum. If it does not, the recovery process
** can stop reading the log.
**
** If a recovery process reads records (other than COMMIT or CKSUM)
** consisting of at least LSM_CKSUM_MAXDATA bytes, then the next record in
** the log must be either a LOG_CKSUM or LOG_COMMIT record. If it is
** not, the recovery process also stops reading the log.
**
** To recover the log file, it must be read twice. The first time to
** determine the location of the last valid commit record. And the second
** time to load data into the in-memory tree.
**
** Todo: Surely there is a better way...
**
** LOG WRAPPING
**
** If the log file were never deleted or wrapped, it would be possible to
** read it from start to end each time is required recovery (i.e each time
** the number of database clients changes from 0 to 1). Effectively reading
** the entire history of the database each time. This would quickly become
** inefficient. Additionally, since the log file would grow without bound,
** it wastes storage space.
**
** Instead, part of each checkpoint written into the database file contains
** a log offset (and other information required to read the log starting at
** at this offset) at which to begin recovery. Offset $O.
**
** Once a checkpoint has been written and synced into the database file, it
** is guaranteed that no recovery process will need to read any data before
** offset $O of the log file. It is therefore safe to begin overwriting
** any data that occurs before offset $O.
**
** This implementation separates the log into three regions mapped into
** the log file - regions 0, 1 and 2. During recovery, regions are read
** in ascending order (i.e. 0, then 1, then 2). Each region is zero or
** more bytes in size.
**
** |---1---|..|--0--|.|--2--|....
**
** New records are always appended to the end of region 2.
**
** Initially (when it is empty), all three regions are zero bytes in size.
** Each of them are located at the beginning of the file. As records are
** added to the log, region 2 grows, so that the log consists of a zero
** byte region 1, followed by a zero byte region 0, followed by an N byte
** region 2. After one or more checkpoints have been written to disk,
** the start point of region 2 is moved to $O. For example:
**
** A) ||.........|--2--|....
**
** (both regions 0 and 1 are 0 bytes in size at offset 0).
**
** Eventually, the log wraps around to write new records into the start.
** At this point, region 2 is renamed to region 0. Region 0 is renamed
** to region 2. After appending a few records to the new region 2, the
** log file looks like this:
**
** B) ||--2--|...|--0--|....
**
** (region 1 is still 0 bytes in size, located at offset 0).
**
** Any checkpoints made at this point may reduce the size of region 0.
** However, if they do not, and region 2 expands so that it is about to
** overwrite the start of region 0, then region 2 is renamed to region 1,
** and a new region 2 created at the end of the file following the existing
** region 0.
**
** C) |---1---|..|--0--|.|-2-|
**
** In this state records are appended to region 2 until checkpoints have
** contracted regions 0 AND 1 UNTil they are both zero bytes in size. They
** are then shifted to the start of the log file, leaving the system in
** the equivalent of state A above.
**
** Alternatively, state B may transition directly to state A if the size
** of region 0 is reduced to zero bytes before region 2 threatens to
** encroach upon it.
**
** LOG_PAD1 & LOG_PAD2 RECORDS
**
** PAD1 and PAD2 records may appear in a log file at any point. They allow
** a process writing the log file align the beginning of transactions with
** the beginning of disk sectors, which increases robustness.
**
** RECORD FORMATS:
**
** LOG_EOF: * A single 0x00 byte.
**
** LOG_PAD1: * A single 0x01 byte.
**
** LOG_PAD2: * A single 0x02 byte, followed by
** * The number of unused bytes (N) as a varint,
** * An N byte block of unused space.
**
** LOG_COMMIT: * A single 0x03 byte.
** * An 8-byte checksum.
**
** LOG_JUMP: * A single 0x04 byte.
** * Absolute file offset to jump to, encoded as a varint.
**
** LOG_WRITE: * A single 0x06 or 0x07 byte,
** * The number of bytes in the key, encoded as a varint,
** * The number of bytes in the value, encoded as a varint,
** * If the first byte was 0x07, an 8 byte checksum.
** * The key data,
** * The value data.
**
** LOG_DELETE: * A single 0x08 or 0x09 byte,
** * The number of bytes in the key, encoded as a varint,
** * If the first byte was 0x09, an 8 byte checksum.
** * The key data.
**
** Varints are as described in lsm_varint.c (SQLite 4 format).
**
** CHECKSUMS:
**
** The checksum is calculated using two 32-bit unsigned integers, s0 and
** s1. The initial value for both is 42. It is updated each time a record
** is written into the log file by treating the encoded (binary) record as
** an array of 32-bit little-endian integers. Then, if x[] is the integer
** array, updating the checksum accumulators as follows:
**
** for i from 0 to n-1 step 2:
** s0 += x[i] + s1;
** s1 += x[i+1] + s0;
** endfor
**
** If the record is not an even multiple of 8-bytes in size it is padded
** with zeroes to make it so before the checksum is updated.
**
** The checksum stored in a COMMIT, WRITE or DELETE is based on all bytes
** up to the start of the 8-byte checksum itself, including the COMMIT,
** WRITE or DELETE fields that appear before the checksum in the record.
**
** VARINT FORMAT
**
** See lsm_varint.c.
*/
#ifndef _LSM_INT_H
# include "lsmInt.h"
#endif
/* Log record types */
#define LSM_LOG_EOF 0x00
#define LSM_LOG_PAD1 0x01
#define LSM_LOG_PAD2 0x02
#define LSM_LOG_COMMIT 0x03
#define LSM_LOG_JUMP 0x04
#define LSM_LOG_WRITE 0x06
#define LSM_LOG_WRITE_CKSUM 0x07
#define LSM_LOG_DELETE 0x08
#define LSM_LOG_DELETE_CKSUM 0x09
#define LSM_LOG_DRANGE 0x0A
#define LSM_LOG_DRANGE_CKSUM 0x0B
/* Require a checksum every 32KB. */
#define LSM_CKSUM_MAXDATA (32*1024)
/* Do not wrap a log file smaller than this in bytes. */
#define LSM_MIN_LOGWRAP (128*1024)
/*
** szSector:
** Commit records must be aligned to end on szSector boundaries. If
** the safety-mode is set to NORMAL or OFF, this value is 1. Otherwise,
** if the safety-mode is set to FULL, it is the size of the file-system
** sectors as reported by lsmFsSectorSize().
*/
struct LogWriter {
u32 cksum0; /* Checksum 0 at offset iOff */
u32 cksum1; /* Checksum 1 at offset iOff */
int iCksumBuf; /* Bytes of buf that have been checksummed */
i64 iOff; /* Offset at start of buffer buf */
int szSector; /* Sector size for this transaction */
LogRegion jump; /* Avoid writing to this region */
i64 iRegion1End; /* End of first region written by trans */
i64 iRegion2Start; /* Start of second regions written by trans */
LsmString buf; /* Buffer containing data not yet written */
};
/*
** Return the result of interpreting the first 4 bytes in buffer aIn as
** a 32-bit unsigned little-endian integer.
*/
static u32 getU32le(u8 *aIn){
return ((u32)aIn[3] << 24)
+ ((u32)aIn[2] << 16)
+ ((u32)aIn[1] << 8)
+ ((u32)aIn[0]);
}
/*
** This function is the same as logCksum(), except that pointer "a" need
** not be aligned to an 8-byte boundary or padded with zero bytes. This
** version is slower, but sometimes more convenient to use.
*/
static void logCksumUnaligned(
char *z, /* Input buffer */
int n, /* Size of input buffer in bytes */
u32 *pCksum0, /* IN/OUT: Checksum value 1 */
u32 *pCksum1 /* IN/OUT: Checksum value 2 */
){
u8 *a = (u8 *)z;
u32 cksum0 = *pCksum0;
u32 cksum1 = *pCksum1;
int nIn = (n/8) * 8;
int i;
assert( n>0 );
for(i=0; i<nIn; i+=8){
cksum0 += getU32le(&a[i]) + cksum1;
cksum1 += getU32le(&a[i+4]) + cksum0;
}
if( nIn!=n ){
u8 aBuf[8] = {0, 0, 0, 0, 0, 0, 0, 0};
assert( (n-nIn)<8 && n>nIn );
memcpy(aBuf, &a[nIn], n-nIn);
cksum0 += getU32le(aBuf) + cksum1;
cksum1 += getU32le(&aBuf[4]) + cksum0;
}
*pCksum0 = cksum0;
*pCksum1 = cksum1;
}
/*
** Update pLog->cksum0 and pLog->cksum1 so that the first nBuf bytes in the
** write buffer (pLog->buf) are included in the checksum.
*/
static void logUpdateCksum(LogWriter *pLog, int nBuf){
assert( (pLog->iCksumBuf % 8)==0 );
assert( pLog->iCksumBuf<=nBuf );
assert( (nBuf % 8)==0 || nBuf==pLog->buf.n );
if( nBuf>pLog->iCksumBuf ){
logCksumUnaligned(
&pLog->buf.z[pLog->iCksumBuf], nBuf-pLog->iCksumBuf,
&pLog->cksum0, &pLog->cksum1
);
}
pLog->iCksumBuf = nBuf;
}
static i64 firstByteOnSector(LogWriter *pLog, i64 iOff){
return (iOff / pLog->szSector) * pLog->szSector;
}
static i64 lastByteOnSector(LogWriter *pLog, i64 iOff){
return firstByteOnSector(pLog, iOff) + pLog->szSector - 1;
}
/*
** If possible, reclaim log file space. Log file space is reclaimed after
** a snapshot that points to the same data in the database file is synced
** into the db header.
*/
static int logReclaimSpace(lsm_db *pDb){
int rc;
int iMeta;
int bRotrans; /* True if there exists some ro-trans */
/* Test if there exists some other connection with a read-only transaction
** open. If there does, then log file space may not be reclaimed. */
rc = lsmDetectRoTrans(pDb, &bRotrans);
if( rc!=LSM_OK || bRotrans ) return rc;
iMeta = (int)pDb->pShmhdr->iMetaPage;
if( iMeta==1 || iMeta==2 ){
DbLog *pLog = &pDb->treehdr.log;
i64 iSyncedId;
/* Read the snapshot-id of the snapshot stored on meta-page iMeta. Note
** that in theory, the value read is untrustworthy (due to a race
** condition - see comments above lsmFsReadSyncedId()). So it is only
** ever used to conclude that no log space can be reclaimed. If it seems
** to indicate that it may be possible to reclaim log space, a
** second call to lsmCheckpointSynced() (which does return trustworthy
** values) is made below to confirm. */
rc = lsmFsReadSyncedId(pDb, iMeta, &iSyncedId);
if( rc==LSM_OK && pLog->iSnapshotId!=iSyncedId ){
i64 iSnapshotId = 0;
i64 iOff = 0;
rc = lsmCheckpointSynced(pDb, &iSnapshotId, &iOff, 0);
if( rc==LSM_OK && pLog->iSnapshotId<iSnapshotId ){
int iRegion;
for(iRegion=0; iRegion<3; iRegion++){
LogRegion *p = &pLog->aRegion[iRegion];
if( iOff>=p->iStart && iOff<=p->iEnd ) break;
p->iStart = 0;
p->iEnd = 0;
}
assert( iRegion<3 );
pLog->aRegion[iRegion].iStart = iOff;
pLog->iSnapshotId = iSnapshotId;
}
}
}
return rc;
}
/*
** This function is called when a write-transaction is first opened. It
** is assumed that the caller is holding the client-mutex when it is
** called.
**
** Before returning, this function allocates the LogWriter object that
** will be used to write to the log file during the write transaction.
** LSM_OK is returned if no error occurs, otherwise an LSM error code.
*/
int lsmLogBegin(lsm_db *pDb){
int rc = LSM_OK;
LogWriter *pNew;
LogRegion *aReg;
if( pDb->bUseLog==0 ) return LSM_OK;
/* If the log file has not yet been opened, open it now. Also allocate
** the LogWriter structure, if it has not already been allocated. */
rc = lsmFsOpenLog(pDb, 0);
if( pDb->pLogWriter==0 ){
pNew = lsmMallocZeroRc(pDb->pEnv, sizeof(LogWriter), &rc);
if( pNew ){
lsmStringInit(&pNew->buf, pDb->pEnv);
rc = lsmStringExtend(&pNew->buf, 2);
}
pDb->pLogWriter = pNew;
}else{
pNew = pDb->pLogWriter;
assert( (u8 *)(&pNew[1])==(u8 *)(&((&pNew->buf)[1])) );
memset(pNew, 0, ((u8 *)&pNew->buf) - (u8 *)pNew);
pNew->buf.n = 0;
}
if( rc==LSM_OK ){
/* The following call detects whether or not a new snapshot has been
** synced into the database file. If so, it updates the contents of
** the pDb->treehdr.log structure to reclaim any space in the log
** file that is no longer required.
**
** TODO: Calling this every transaction is overkill. And since the
** call has to read and checksum a snapshot from the database file,
** it is expensive. It would be better to figure out a way so that
** this is only called occasionally - say for every 32KB written to
** the log file.
*/
rc = logReclaimSpace(pDb);
}
if( rc!=LSM_OK ){
lsmLogClose(pDb);
return rc;
}
/* Set the effective sector-size for this transaction. Sectors are assumed
** to be one byte in size if the safety-mode is OFF or NORMAL, or as
** reported by lsmFsSectorSize if it is FULL. */
if( pDb->eSafety==LSM_SAFETY_FULL ){
pNew->szSector = lsmFsSectorSize(pDb->pFS);
assert( pNew->szSector>0 );
}else{
pNew->szSector = 1;
}
/* There are now three scenarios:
**
** 1) Regions 0 and 1 are both zero bytes in size and region 2 begins
** at a file offset greater than LSM_MIN_LOGWRAP. In this case, wrap
** around to the start and write data into the start of the log file.
**
** 2) Region 1 is zero bytes in size and region 2 occurs earlier in the
** file than region 0. In this case, append data to region 2, but
** remember to jump over region 1 if required.
**
** 3) Region 2 is the last in the file. Append to it.
*/
aReg = &pDb->treehdr.log.aRegion[0];
assert( aReg[0].iEnd==0 || aReg[0].iEnd>aReg[0].iStart );
assert( aReg[1].iEnd==0 || aReg[1].iEnd>aReg[1].iStart );
pNew->cksum0 = pDb->treehdr.log.cksum0;
pNew->cksum1 = pDb->treehdr.log.cksum1;
if( aReg[0].iEnd==0 && aReg[1].iEnd==0 && aReg[2].iStart>=LSM_MIN_LOGWRAP ){
/* Case 1. Wrap around to the start of the file. Write an LSM_LOG_JUMP
** into the log file in this case. Pad it out to 8 bytes using a PAD2
** record so that the checksums can be updated immediately. */
u8 aJump[] = {
LSM_LOG_PAD2, 0x04, 0x00, 0x00, 0x00, 0x00, LSM_LOG_JUMP, 0x00
};
lsmStringBinAppend(&pNew->buf, aJump, sizeof(aJump));
logUpdateCksum(pNew, pNew->buf.n);
rc = lsmFsWriteLog(pDb->pFS, aReg[2].iEnd, &pNew->buf);
pNew->iCksumBuf = pNew->buf.n = 0;
aReg[2].iEnd += 8;
pNew->jump = aReg[0] = aReg[2];
aReg[2].iStart = aReg[2].iEnd = 0;
}else if( aReg[1].iEnd==0 && aReg[2].iEnd<aReg[0].iEnd ){
/* Case 2. */
pNew->iOff = aReg[2].iEnd;
pNew->jump = aReg[0];
}else{
/* Case 3. */
assert( aReg[2].iStart>=aReg[0].iEnd && aReg[2].iStart>=aReg[1].iEnd );
pNew->iOff = aReg[2].iEnd;
}
if( pNew->jump.iStart ){
i64 iRound;
assert( pNew->jump.iStart>pNew->iOff );
iRound = firstByteOnSector(pNew, pNew->jump.iStart);
if( iRound>pNew->iOff ) pNew->jump.iStart = iRound;
pNew->jump.iEnd = lastByteOnSector(pNew, pNew->jump.iEnd);
}
assert( pDb->pLogWriter==pNew );
return rc;
}
/*
** This function is called when a write-transaction is being closed.
** Parameter bCommit is true if the transaction is being committed,
** or false otherwise. The caller must hold the client-mutex to call
** this function.
**
** A call to this function deletes the LogWriter object allocated by
** lsmLogBegin(). If the transaction is being committed, the shared state
** in *pLog is updated before returning.
*/
void lsmLogEnd(lsm_db *pDb, int bCommit){
DbLog *pLog;
LogWriter *p;
p = pDb->pLogWriter;
if( p==0 ) return;
pLog = &pDb->treehdr.log;
if( bCommit ){
pLog->aRegion[2].iEnd = p->iOff;
pLog->cksum0 = p->cksum0;
pLog->cksum1 = p->cksum1;
if( p->iRegion1End ){
/* This happens when the transaction had to jump over some other
** part of the log. */
assert( pLog->aRegion[1].iEnd==0 );
assert( pLog->aRegion[2].iStart<p->iRegion1End );
pLog->aRegion[1].iStart = pLog->aRegion[2].iStart;
pLog->aRegion[1].iEnd = p->iRegion1End;
pLog->aRegion[2].iStart = p->iRegion2Start;
}
}
}
static int jumpIfRequired(
lsm_db *pDb,
LogWriter *pLog,
int nReq,
int *pbJump
){
/* Determine if it is necessary to add an LSM_LOG_JUMP to jump over the
** jump region before writing the LSM_LOG_WRITE or DELETE record. This
** is necessary if there is insufficient room between the current offset
** and the jump region to fit the new WRITE/DELETE record and the largest
** possible JUMP record with up to 7 bytes of padding (a total of 17
** bytes). */
if( (pLog->jump.iStart > (pLog->iOff + pLog->buf.n))
&& (pLog->jump.iStart < (pLog->iOff + pLog->buf.n + (nReq + 17)))
){
int rc; /* Return code */
i64 iJump; /* Offset to jump to */
u8 aJump[10]; /* Encoded jump record */
int nJump; /* Valid bytes in aJump[] */
int nPad; /* Bytes of padding required */
/* Serialize the JUMP record */
iJump = pLog->jump.iEnd+1;
aJump[0] = LSM_LOG_JUMP;
nJump = 1 + lsmVarintPut64(&aJump[1], iJump);
/* Adding padding to the contents of the buffer so that it will be a
** multiple of 8 bytes in size after the JUMP record is appended. This
** is not strictly required, it just makes the keeping the running
** checksum up to date in this file a little simpler. */
nPad = (pLog->buf.n + nJump) % 8;
if( nPad ){
u8 aPad[7] = {0,0,0,0,0,0,0};
nPad = 8-nPad;
if( nPad==1 ){
aPad[0] = LSM_LOG_PAD1;
}else{
aPad[0] = LSM_LOG_PAD2;
aPad[1] = (u8)(nPad-2);
}
rc = lsmStringBinAppend(&pLog->buf, aPad, nPad);
if( rc!=LSM_OK ) return rc;
}
/* Append the JUMP record to the buffer. Then flush the buffer to disk
** and update the checksums. The next write to the log file (assuming
** there is no transaction rollback) will be to offset iJump (just past
** the jump region). */
rc = lsmStringBinAppend(&pLog->buf, aJump, nJump);
if( rc!=LSM_OK ) return rc;
assert( (pLog->buf.n % 8)==0 );
rc = lsmFsWriteLog(pDb->pFS, pLog->iOff, &pLog->buf);
if( rc!=LSM_OK ) return rc;
logUpdateCksum(pLog, pLog->buf.n);
pLog->iRegion1End = (pLog->iOff + pLog->buf.n);
pLog->iRegion2Start = iJump;
pLog->iOff = iJump;
pLog->iCksumBuf = pLog->buf.n = 0;
if( pbJump ) *pbJump = 1;
}
return LSM_OK;
}
static int logCksumAndFlush(lsm_db *pDb){
int rc; /* Return code */
LogWriter *pLog = pDb->pLogWriter;
/* Calculate the checksum value. Append it to the buffer. */
logUpdateCksum(pLog, pLog->buf.n);
lsmPutU32((u8 *)&pLog->buf.z[pLog->buf.n], pLog->cksum0);
pLog->buf.n += 4;
lsmPutU32((u8 *)&pLog->buf.z[pLog->buf.n], pLog->cksum1);
pLog->buf.n += 4;
/* Write the contents of the buffer to disk. */
rc = lsmFsWriteLog(pDb->pFS, pLog->iOff, &pLog->buf);
pLog->iOff += pLog->buf.n;
pLog->iCksumBuf = pLog->buf.n = 0;
return rc;
}
/*
** Write the contents of the log-buffer to disk. Then write either a CKSUM
** or COMMIT record, depending on the value of parameter eType.
*/
static int logFlush(lsm_db *pDb, int eType){
int rc;
int nReq;
LogWriter *pLog = pDb->pLogWriter;
assert( eType==LSM_LOG_COMMIT );
assert( pLog );
/* Commit record is always 9 bytes in size. */
nReq = 9;
if( eType==LSM_LOG_COMMIT && pLog->szSector>1 ) nReq += pLog->szSector + 17;
rc = jumpIfRequired(pDb, pLog, nReq, 0);
/* If this is a COMMIT, add padding to the log so that the COMMIT record
** is aligned against the end of a disk sector. In other words, add padding
** so that the first byte following the COMMIT record lies on a different
** sector. */
if( eType==LSM_LOG_COMMIT && pLog->szSector>1 ){
int nPad; /* Bytes of padding to add */
/* Determine the value of nPad. */
nPad = ((pLog->iOff + pLog->buf.n + 9) % pLog->szSector);
if( nPad ) nPad = pLog->szSector - nPad;
rc = lsmStringExtend(&pLog->buf, nPad);
if( rc!=LSM_OK ) return rc;
while( nPad ){
if( nPad==1 ){
pLog->buf.z[pLog->buf.n++] = LSM_LOG_PAD1;
nPad = 0;
}else{
int n = LSM_MIN(200, nPad-2);
pLog->buf.z[pLog->buf.n++] = LSM_LOG_PAD2;
pLog->buf.z[pLog->buf.n++] = (char)n;
nPad -= 2;
memset(&pLog->buf.z[pLog->buf.n], 0x2B, n);
pLog->buf.n += n;
nPad -= n;
}
}
}
/* Make sure there is room in the log-buffer to add the CKSUM or COMMIT
** record. Then add the first byte of it. */
rc = lsmStringExtend(&pLog->buf, 9);
if( rc!=LSM_OK ) return rc;
pLog->buf.z[pLog->buf.n++] = (char)eType;
memset(&pLog->buf.z[pLog->buf.n], 0, 8);
rc = logCksumAndFlush(pDb);
/* If this is a commit and synchronous=full, sync the log to disk. */
if( rc==LSM_OK && eType==LSM_LOG_COMMIT && pDb->eSafety==LSM_SAFETY_FULL ){
rc = lsmFsSyncLog(pDb->pFS);
}
return rc;
}
/*
** Append an LSM_LOG_WRITE (if nVal>=0) or LSM_LOG_DELETE (if nVal<0)
** record to the database log.
*/
int lsmLogWrite(
lsm_db *pDb, /* Database handle */
int eType,
void *pKey, int nKey, /* Database key to write to log */
void *pVal, int nVal /* Database value (or nVal<0) to write */
){
int rc = LSM_OK;
LogWriter *pLog; /* Log object to write to */
int nReq; /* Bytes of space required in log */
int bCksum = 0; /* True to embed a checksum in this record */
assert( eType==LSM_WRITE || eType==LSM_DELETE || eType==LSM_DRANGE );
assert( LSM_LOG_WRITE==LSM_WRITE );
assert( LSM_LOG_DELETE==LSM_DELETE );
assert( LSM_LOG_DRANGE==LSM_DRANGE );
assert( (eType==LSM_LOG_DELETE)==(nVal<0) );
if( pDb->bUseLog==0 ) return LSM_OK;
pLog = pDb->pLogWriter;
/* Determine how many bytes of space are required, assuming that a checksum
** will be embedded in this record (even though it may not be). */
nReq = 1 + lsmVarintLen32(nKey) + 8 + nKey;
if( eType!=LSM_LOG_DELETE ) nReq += lsmVarintLen32(nVal) + nVal;
/* Jump over the jump region if required. Set bCksum to true to tell the
** code below to include a checksum in the record if either (a) writing
** this record would mean that more than LSM_CKSUM_MAXDATA bytes of data
** have been written to the log since the last checksum, or (b) the jump
** is taken. */
rc = jumpIfRequired(pDb, pLog, nReq, &bCksum);
if( (pLog->buf.n+nReq) > LSM_CKSUM_MAXDATA ) bCksum = 1;
if( rc==LSM_OK ){
rc = lsmStringExtend(&pLog->buf, nReq);
}
if( rc==LSM_OK ){
u8 *a = (u8 *)&pLog->buf.z[pLog->buf.n];
/* Write the record header - the type byte followed by either 1 (for
** DELETE) or 2 (for WRITE) varints. */
assert( LSM_LOG_WRITE_CKSUM == (LSM_LOG_WRITE | 0x0001) );
assert( LSM_LOG_DELETE_CKSUM == (LSM_LOG_DELETE | 0x0001) );
assert( LSM_LOG_DRANGE_CKSUM == (LSM_LOG_DRANGE | 0x0001) );
*(a++) = (u8)eType | (u8)bCksum;
a += lsmVarintPut32(a, nKey);
if( eType!=LSM_LOG_DELETE ) a += lsmVarintPut32(a, nVal);
if( bCksum ){
pLog->buf.n = (a - (u8 *)pLog->buf.z);
rc = logCksumAndFlush(pDb);
a = (u8 *)&pLog->buf.z[pLog->buf.n];
}
memcpy(a, pKey, nKey);
a += nKey;
if( eType!=LSM_LOG_DELETE ){
memcpy(a, pVal, nVal);
a += nVal;
}
pLog->buf.n = a - (u8 *)pLog->buf.z;
assert( pLog->buf.n<=pLog->buf.nAlloc );
}
return rc;
}
/*
** Append an LSM_LOG_COMMIT record to the database log.
*/
int lsmLogCommit(lsm_db *pDb){
if( pDb->bUseLog==0 ) return LSM_OK;
return logFlush(pDb, LSM_LOG_COMMIT);
}
/*
** Store the current offset and other checksum related information in the
** structure *pMark. Later, *pMark can be passed to lsmLogSeek() to "rewind"
** the LogWriter object to the current log file offset. This is used when
** rolling back savepoint transactions.
*/
void lsmLogTell(
lsm_db *pDb, /* Database handle */
LogMark *pMark /* Populate this object with current offset */
){
LogWriter *pLog;
int nCksum;
if( pDb->bUseLog==0 ) return;
pLog = pDb->pLogWriter;
nCksum = pLog->buf.n & 0xFFFFFFF8;
logUpdateCksum(pLog, nCksum);
assert( pLog->iCksumBuf==nCksum );
pMark->nBuf = pLog->buf.n - nCksum;
memcpy(pMark->aBuf, &pLog->buf.z[nCksum], pMark->nBuf);
pMark->iOff = pLog->iOff + pLog->buf.n;
pMark->cksum0 = pLog->cksum0;
pMark->cksum1 = pLog->cksum1;
}
/*
** Seek (rewind) back to the log file offset stored by an ealier call to
** lsmLogTell() in *pMark.
*/
void lsmLogSeek(
lsm_db *pDb, /* Database handle */
LogMark *pMark /* Object containing log offset to seek to */
){
LogWriter *pLog;
if( pDb->bUseLog==0 ) return;
pLog = pDb->pLogWriter;
assert( pMark->iOff<=pLog->iOff+pLog->buf.n );
if( (pMark->iOff & 0xFFFFFFF8)>=pLog->iOff ){
pLog->buf.n = (int)(pMark->iOff - pLog->iOff);
pLog->iCksumBuf = (pLog->buf.n & 0xFFFFFFF8);
}else{
pLog->buf.n = pMark->nBuf;
memcpy(pLog->buf.z, pMark->aBuf, pMark->nBuf);
pLog->iCksumBuf = 0;
pLog->iOff = pMark->iOff - pMark->nBuf;
}
pLog->cksum0 = pMark->cksum0;
pLog->cksum1 = pMark->cksum1;
if( pMark->iOff > pLog->iRegion1End ) pLog->iRegion1End = 0;
if( pMark->iOff > pLog->iRegion2Start ) pLog->iRegion2Start = 0;
}
/*
** This function does the work for an lsm_info(LOG_STRUCTURE) request.
*/
int lsmInfoLogStructure(lsm_db *pDb, char **pzVal){
int rc = LSM_OK;
char *zVal = 0;
/* If there is no read or write transaction open, read the latest
** tree-header from shared-memory to report on. If necessary, update
** it based on the contents of the database header.
**
** No locks are taken here - these are passive read operations only.
*/
if( pDb->pCsr==0 && pDb->nTransOpen==0 ){
rc = lsmTreeLoadHeader(pDb, 0);
if( rc==LSM_OK ) rc = logReclaimSpace(pDb);
}
if( rc==LSM_OK ){
DbLog *pLog = &pDb->treehdr.log;
zVal = lsmMallocPrintf(pDb->pEnv,
"%d %d %d %d %d %d",
(int)pLog->aRegion[0].iStart, (int)pLog->aRegion[0].iEnd,
(int)pLog->aRegion[1].iStart, (int)pLog->aRegion[1].iEnd,
(int)pLog->aRegion[2].iStart, (int)pLog->aRegion[2].iEnd
);
if( !zVal ) rc = LSM_NOMEM_BKPT;
}
*pzVal = zVal;
return rc;
}
/*************************************************************************
** Begin code for log recovery.
*/
typedef struct LogReader LogReader;
struct LogReader {
FileSystem *pFS; /* File system to read from */
i64 iOff; /* File offset at end of buf content */
int iBuf; /* Current read offset in buf */
LsmString buf; /* Buffer containing file content */
int iCksumBuf; /* Offset in buf corresponding to cksum[01] */
u32 cksum0; /* Checksum 0 at offset iCksumBuf */
u32 cksum1; /* Checksum 1 at offset iCksumBuf */
};
static void logReaderBlob(
LogReader *p, /* Log reader object */
LsmString *pBuf, /* Dynamic storage, if required */
int nBlob, /* Number of bytes to read */
u8 **ppBlob, /* OUT: Pointer to blob read */
int *pRc /* IN/OUT: Error code */
){
static const int LOG_READ_SIZE = 512;
int rc = *pRc; /* Return code */
int nReq = nBlob; /* Bytes required */
while( rc==LSM_OK && nReq>0 ){
int nAvail; /* Bytes of data available in p->buf */
if( p->buf.n==p->iBuf ){
int nCksum; /* Total bytes requiring checksum */
int nCarry = 0; /* Total bytes requiring checksum */
nCksum = p->iBuf - p->iCksumBuf;
if( nCksum>0 ){
nCarry = nCksum % 8;
nCksum = ((nCksum / 8) * 8);
if( nCksum>0 ){
logCksumUnaligned(
&p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1
);
}
}
if( nCarry>0 ) memcpy(p->buf.z, &p->buf.z[p->iBuf-nCarry], nCarry);
p->buf.n = nCarry;
p->iBuf = nCarry;
rc = lsmFsReadLog(p->pFS, p->iOff, LOG_READ_SIZE, &p->buf);
if( rc!=LSM_OK ) break;
p->iCksumBuf = 0;
p->iOff += LOG_READ_SIZE;
}
nAvail = p->buf.n - p->iBuf;
if( ppBlob && nReq==nBlob && nBlob<=nAvail ){
*ppBlob = (u8 *)&p->buf.z[p->iBuf];
p->iBuf += nBlob;
nReq = 0;
}else{
int nCopy = LSM_MIN(nAvail, nReq);
if( nBlob==nReq ){
pBuf->n = 0;
}
rc = lsmStringBinAppend(pBuf, (u8 *)&p->buf.z[p->iBuf], nCopy);
nReq -= nCopy;
p->iBuf += nCopy;
if( nReq==0 && ppBlob ){
*ppBlob = (u8*)pBuf->z;
}
}
}
*pRc = rc;
}
static void logReaderVarint(
LogReader *p,
LsmString *pBuf,
int *piVal, /* OUT: Value read from log */
int *pRc /* IN/OUT: Error code */
){
if( *pRc==LSM_OK ){
u8 *aVarint;
if( p->buf.n==p->iBuf ){
logReaderBlob(p, 0, 10, &aVarint, pRc);
if( LSM_OK==*pRc ) p->iBuf -= (10 - lsmVarintGet32(aVarint, piVal));
}else{
logReaderBlob(p, pBuf, lsmVarintSize(p->buf.z[p->iBuf]), &aVarint, pRc);
if( LSM_OK==*pRc ) lsmVarintGet32(aVarint, piVal);
}
}
}
static void logReaderByte(LogReader *p, u8 *pByte, int *pRc){
u8 *pPtr = 0;
logReaderBlob(p, 0, 1, &pPtr, pRc);
if( pPtr ) *pByte = *pPtr;
}
static void logReaderCksum(LogReader *p, LsmString *pBuf, int *pbEof, int *pRc){
if( *pRc==LSM_OK ){
u8 *pPtr = 0;
u32 cksum0, cksum1;
int nCksum = p->iBuf - p->iCksumBuf;
/* Update in-memory (expected) checksums */
assert( nCksum>=0 );
logCksumUnaligned(&p->buf.z[p->iCksumBuf], nCksum, &p->cksum0, &p->cksum1);
p->iCksumBuf = p->iBuf + 8;
logReaderBlob(p, pBuf, 8, &pPtr, pRc);
assert( pPtr || *pRc );
/* Read the checksums from the log file. Set *pbEof if they do not match. */
if( pPtr ){
cksum0 = lsmGetU32(pPtr);
cksum1 = lsmGetU32(&pPtr[4]);
*pbEof = (cksum0!=p->cksum0 || cksum1!=p->cksum1);
p->iCksumBuf = p->iBuf;
}
}
}
static void logReaderInit(
lsm_db *pDb, /* Database handle */
DbLog *pLog, /* Log object associated with pDb */
int bInitBuf, /* True if p->buf is uninitialized */
LogReader *p /* Initialize this LogReader object */
){
p->pFS = pDb->pFS;
p->iOff = pLog->aRegion[2].iStart;
p->cksum0 = pLog->cksum0;
p->cksum1 = pLog->cksum1;
if( bInitBuf ){ lsmStringInit(&p->buf, pDb->pEnv); }
p->buf.n = 0;
p->iCksumBuf = 0;
p->iBuf = 0;
}
/*
** This function is called after reading the header of a LOG_DELETE or
** LOG_WRITE record. Parameter nByte is the total size of the key and
** value that follow the header just read. Return true if the size and
** position of the record indicate that it should contain a checksum.
*/
static int logRequireCksum(LogReader *p, int nByte){
return ((p->iBuf + nByte - p->iCksumBuf) > LSM_CKSUM_MAXDATA);
}
/*
** Recover the contents of the log file.
*/
int lsmLogRecover(lsm_db *pDb){
LsmString buf1; /* Key buffer */
LsmString buf2; /* Value buffer */
LogReader reader; /* Log reader object */
int rc = LSM_OK; /* Return code */
int nCommit = 0; /* Number of transactions to recover */
int iPass;
int nJump = 0; /* Number of LSM_LOG_JUMP records in pass 0 */
DbLog *pLog;
int bOpen;
rc = lsmFsOpenLog(pDb, &bOpen);
if( rc!=LSM_OK ) return rc;
rc = lsmTreeInit(pDb);
if( rc!=LSM_OK ) return rc;
pLog = &pDb->treehdr.log;
lsmCheckpointLogoffset(pDb->pShmhdr->aSnap2, pLog);
logReaderInit(pDb, pLog, 1, &reader);
lsmStringInit(&buf1, pDb->pEnv);
lsmStringInit(&buf2, pDb->pEnv);
/* The outer for() loop runs at most twice. The first iteration is to
** count the number of committed transactions in the log. The second
** iterates through those transactions and updates the in-memory tree
** structure with their contents. */
if( bOpen ){
for(iPass=0; iPass<2 && rc==LSM_OK; iPass++){
int bEof = 0;
while( rc==LSM_OK && !bEof ){
u8 eType = 0;
logReaderByte(&reader, &eType, &rc);
switch( eType ){
case LSM_LOG_PAD1:
break;
case LSM_LOG_PAD2: {
int nPad;
logReaderVarint(&reader, &buf1, &nPad, &rc);
logReaderBlob(&reader, &buf1, nPad, 0, &rc);
break;
}
case LSM_LOG_DRANGE:
case LSM_LOG_DRANGE_CKSUM:
case LSM_LOG_WRITE:
case LSM_LOG_WRITE_CKSUM: {
int nKey;
int nVal;
u8 *aVal;
logReaderVarint(&reader, &buf1, &nKey, &rc);
logReaderVarint(&reader, &buf2, &nVal, &rc);
if( eType==LSM_LOG_WRITE_CKSUM || eType==LSM_LOG_DRANGE_CKSUM ){
logReaderCksum(&reader, &buf1, &bEof, &rc);
}else{
bEof = logRequireCksum(&reader, nKey+nVal);
}
if( bEof ) break;
logReaderBlob(&reader, &buf1, nKey, 0, &rc);
logReaderBlob(&reader, &buf2, nVal, &aVal, &rc);
if( iPass==1 && rc==LSM_OK ){
if( eType==LSM_LOG_WRITE || eType==LSM_LOG_WRITE_CKSUM ){
rc = lsmTreeInsert(pDb, (u8 *)buf1.z, nKey, aVal, nVal);
}else{
rc = lsmTreeDelete(pDb, (u8 *)buf1.z, nKey, aVal, nVal);
}
}
break;
}
case LSM_LOG_DELETE:
case LSM_LOG_DELETE_CKSUM: {
int nKey; u8 *aKey;
logReaderVarint(&reader, &buf1, &nKey, &rc);
if( eType==LSM_LOG_DELETE_CKSUM ){
logReaderCksum(&reader, &buf1, &bEof, &rc);
}else{
bEof = logRequireCksum(&reader, nKey);
}
if( bEof ) break;
logReaderBlob(&reader, &buf1, nKey, &aKey, &rc);
if( iPass==1 && rc==LSM_OK ){
rc = lsmTreeInsert(pDb, aKey, nKey, NULL, -1);
}
break;
}
case LSM_LOG_COMMIT:
logReaderCksum(&reader, &buf1, &bEof, &rc);
if( bEof==0 ){
nCommit++;
assert( nCommit>0 || iPass==1 );
if( nCommit==0 ) bEof = 1;
}
break;
case LSM_LOG_JUMP: {
int iOff = 0;
logReaderVarint(&reader, &buf1, &iOff, &rc);
if( rc==LSM_OK ){
if( iPass==1 ){
if( pLog->aRegion[2].iStart==0 ){
assert( pLog->aRegion[1].iStart==0 );
pLog->aRegion[1].iEnd = reader.iOff;
}else{
assert( pLog->aRegion[0].iStart==0 );
pLog->aRegion[0].iStart = pLog->aRegion[2].iStart;
pLog->aRegion[0].iEnd = reader.iOff-reader.buf.n+reader.iBuf;
}
pLog->aRegion[2].iStart = iOff;
}else{
if( (nJump++)==2 ){
bEof = 1;
}
}
reader.iOff = iOff;
reader.buf.n = reader.iBuf;
}
break;
}
default:
/* Including LSM_LOG_EOF */
bEof = 1;
break;
}
}
if( rc==LSM_OK && iPass==0 ){
if( nCommit==0 ){
if( pLog->aRegion[2].iStart==0 ){
iPass = 1;
}else{
pLog->aRegion[2].iStart = 0;
iPass = -1;
lsmCheckpointZeroLogoffset(pDb);
}
}
logReaderInit(pDb, pLog, 0, &reader);
nCommit = nCommit * -1;
}
}
}
/* Initialize DbLog object */
if( rc==LSM_OK ){
pLog->aRegion[2].iEnd = reader.iOff - reader.buf.n + reader.iBuf;
pLog->cksum0 = reader.cksum0;
pLog->cksum1 = reader.cksum1;
}
if( rc==LSM_OK ){
rc = lsmFinishRecovery(pDb);
}else{
lsmFinishRecovery(pDb);
}
if( pDb->bRoTrans ){
lsmFsCloseLog(pDb);
}
lsmStringClear(&buf1);
lsmStringClear(&buf2);
lsmStringClear(&reader.buf);
return rc;
}
void lsmLogClose(lsm_db *db){
if( db->pLogWriter ){
lsmFree(db->pEnv, db->pLogWriter->buf.z);
lsmFree(db->pEnv, db->pLogWriter);
db->pLogWriter = 0;
}
}
|