1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
|
/*
** 2012-01-23
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** Utilities used to help multiple LSM clients to coexist within the
** same process space.
*/
#include "lsmInt.h"
/*
** Global data. All global variables used by code in this file are grouped
** into the following structure instance.
**
** pDatabase:
** Linked list of all Database objects allocated within this process.
** This list may not be traversed without holding the global mutex (see
** functions enterGlobalMutex() and leaveGlobalMutex()).
*/
static struct SharedData {
Database *pDatabase; /* Linked list of all Database objects */
} gShared;
/*
** Database structure. There is one such structure for each distinct
** database accessed by this process. They are stored in the singly linked
** list starting at global variable gShared.pDatabase. Database objects are
** reference counted. Once the number of connections to the associated
** database drops to zero, they are removed from the linked list and deleted.
**
** pFile:
** In multi-process mode, this file descriptor is used to obtain locks
** and to access shared-memory. In single process mode, its only job is
** to hold the exclusive lock on the file.
**
*/
struct Database {
/* Protected by the global mutex (enterGlobalMutex/leaveGlobalMutex): */
char *zName; /* Canonical path to database file */
int nName; /* strlen(zName) */
int nDbRef; /* Number of associated lsm_db handles */
Database *pDbNext; /* Next Database structure in global list */
/* Protected by the local mutex (pClientMutex) */
int bReadonly; /* True if Database.pFile is read-only */
int bMultiProc; /* True if running in multi-process mode */
lsm_file *pFile; /* Used for locks/shm in multi-proc mode */
LsmFile *pLsmFile; /* List of deferred closes */
lsm_mutex *pClientMutex; /* Protects the apShmChunk[] and pConn */
int nShmChunk; /* Number of entries in apShmChunk[] array */
void **apShmChunk; /* Array of "shared" memory regions */
lsm_db *pConn; /* List of connections to this db. */
};
/*
** Functions to enter and leave the global mutex. This mutex is used
** to protect the global linked-list headed at gShared.pDatabase.
*/
static int enterGlobalMutex(lsm_env *pEnv){
lsm_mutex *p;
int rc = lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p);
if( rc==LSM_OK ) lsmMutexEnter(pEnv, p);
return rc;
}
static void leaveGlobalMutex(lsm_env *pEnv){
lsm_mutex *p;
lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p);
lsmMutexLeave(pEnv, p);
}
#ifdef LSM_DEBUG
static int holdingGlobalMutex(lsm_env *pEnv){
lsm_mutex *p;
lsmMutexStatic(pEnv, LSM_MUTEX_GLOBAL, &p);
return lsmMutexHeld(pEnv, p);
}
#endif
#if 0
static void assertNotInFreelist(Freelist *p, int iBlk){
int i;
for(i=0; i<p->nEntry; i++){
assert( p->aEntry[i].iBlk!=iBlk );
}
}
#else
# define assertNotInFreelist(x,y)
#endif
/*
** Append an entry to the free-list. If (iId==-1), this is a delete.
*/
int freelistAppend(lsm_db *db, u32 iBlk, i64 iId){
lsm_env *pEnv = db->pEnv;
Freelist *p;
int i;
assert( iId==-1 || iId>=0 );
p = db->bUseFreelist ? db->pFreelist : &db->pWorker->freelist;
/* Extend the space allocated for the freelist, if required */
assert( p->nAlloc>=p->nEntry );
if( p->nAlloc==p->nEntry ){
int nNew;
int nByte;
FreelistEntry *aNew;
nNew = (p->nAlloc==0 ? 4 : p->nAlloc*2);
nByte = sizeof(FreelistEntry) * nNew;
aNew = (FreelistEntry *)lsmRealloc(pEnv, p->aEntry, nByte);
if( !aNew ) return LSM_NOMEM_BKPT;
p->nAlloc = nNew;
p->aEntry = aNew;
}
for(i=0; i<p->nEntry; i++){
assert( i==0 || p->aEntry[i].iBlk > p->aEntry[i-1].iBlk );
if( p->aEntry[i].iBlk>=iBlk ) break;
}
if( i<p->nEntry && p->aEntry[i].iBlk==iBlk ){
/* Clobber an existing entry */
p->aEntry[i].iId = iId;
}else{
/* Insert a new entry into the list */
int nByte = sizeof(FreelistEntry)*(p->nEntry-i);
memmove(&p->aEntry[i+1], &p->aEntry[i], nByte);
p->aEntry[i].iBlk = iBlk;
p->aEntry[i].iId = iId;
p->nEntry++;
}
return LSM_OK;
}
/*
** This function frees all resources held by the Database structure passed
** as the only argument.
*/
static void freeDatabase(lsm_env *pEnv, Database *p){
assert( holdingGlobalMutex(pEnv) );
if( p ){
/* Free the mutexes */
lsmMutexDel(pEnv, p->pClientMutex);
if( p->pFile ){
lsmEnvClose(pEnv, p->pFile);
}
/* Free the array of shm pointers */
lsmFree(pEnv, p->apShmChunk);
/* Free the memory allocated for the Database struct itself */
lsmFree(pEnv, p);
}
}
typedef struct DbTruncateCtx DbTruncateCtx;
struct DbTruncateCtx {
int nBlock;
i64 iInUse;
};
static int dbTruncateCb(void *pCtx, int iBlk, i64 iSnapshot){
DbTruncateCtx *p = (DbTruncateCtx *)pCtx;
if( iBlk!=p->nBlock || (p->iInUse>=0 && iSnapshot>=p->iInUse) ) return 1;
p->nBlock--;
return 0;
}
static int dbTruncate(lsm_db *pDb, i64 iInUse){
int rc = LSM_OK;
#if 0
int i;
DbTruncateCtx ctx;
assert( pDb->pWorker );
ctx.nBlock = pDb->pWorker->nBlock;
ctx.iInUse = iInUse;
rc = lsmWalkFreelist(pDb, 1, dbTruncateCb, (void *)&ctx);
for(i=ctx.nBlock+1; rc==LSM_OK && i<=pDb->pWorker->nBlock; i++){
rc = freelistAppend(pDb, i, -1);
}
if( rc==LSM_OK ){
#ifdef LSM_LOG_FREELIST
if( ctx.nBlock!=pDb->pWorker->nBlock ){
lsmLogMessage(pDb, 0,
"dbTruncate(): truncated db to %d blocks",ctx.nBlock
);
}
#endif
pDb->pWorker->nBlock = ctx.nBlock;
}
#endif
return rc;
}
/*
** This function is called during database shutdown (when the number of
** connections drops from one to zero). It truncates the database file
** to as small a size as possible without truncating away any blocks that
** contain data.
*/
static int dbTruncateFile(lsm_db *pDb){
int rc;
assert( pDb->pWorker==0 );
assert( lsmShmAssertLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL) );
rc = lsmCheckpointLoadWorker(pDb);
if( rc==LSM_OK ){
DbTruncateCtx ctx;
/* Walk the database free-block-list in reverse order. Set ctx.nBlock
** to the block number of the last block in the database that actually
** contains data. */
ctx.nBlock = pDb->pWorker->nBlock;
ctx.iInUse = -1;
rc = lsmWalkFreelist(pDb, 1, dbTruncateCb, (void *)&ctx);
/* If the last block that contains data is not already the last block in
** the database file, truncate the database file so that it is. */
if( rc==LSM_OK ){
rc = lsmFsTruncateDb(
pDb->pFS, (i64)ctx.nBlock*lsmFsBlockSize(pDb->pFS)
);
}
}
lsmFreeSnapshot(pDb->pEnv, pDb->pWorker);
pDb->pWorker = 0;
return rc;
}
static void doDbDisconnect(lsm_db *pDb){
int rc;
if( pDb->bReadonly ){
lsmShmLock(pDb, LSM_LOCK_DMS3, LSM_LOCK_UNLOCK, 0);
}else{
/* Block for an exclusive lock on DMS1. This lock serializes all calls
** to doDbConnect() and doDbDisconnect() across all processes. */
rc = lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL, 1);
if( rc==LSM_OK ){
lsmShmLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_UNLOCK, 0);
/* Try an exclusive lock on DMS2. If successful, this is the last
** connection to the database. In this case flush the contents of the
** in-memory tree to disk and write a checkpoint. */
rc = lsmShmTestLock(pDb, LSM_LOCK_DMS2, 1, LSM_LOCK_EXCL);
if( rc==LSM_OK ){
rc = lsmShmTestLock(pDb, LSM_LOCK_CHECKPOINTER, 1, LSM_LOCK_EXCL);
}
if( rc==LSM_OK ){
int bReadonly = 0; /* True if there exist read-only conns. */
/* Flush the in-memory tree, if required. If there is data to flush,
** this will create a new client snapshot in Database.pClient. The
** checkpoint (serialization) of this snapshot may be written to disk
** by the following block.
**
** There is no need to take a WRITER lock here. That there are no
** other locks on DMS2 guarantees that there are no other read-write
** connections at this time (and the lock on DMS1 guarantees that
** no new ones may appear).
*/
rc = lsmTreeLoadHeader(pDb, 0);
if( rc==LSM_OK && (lsmTreeHasOld(pDb) || lsmTreeSize(pDb)>0) ){
rc = lsmFlushTreeToDisk(pDb);
}
/* Now check if there are any read-only connections. If there are,
** then do not truncate the db file or unlink the shared-memory
** region. */
if( rc==LSM_OK ){
rc = lsmShmTestLock(pDb, LSM_LOCK_DMS3, 1, LSM_LOCK_EXCL);
if( rc==LSM_BUSY ){
bReadonly = 1;
rc = LSM_OK;
}
}
/* Write a checkpoint to disk. */
if( rc==LSM_OK ){
rc = lsmCheckpointWrite(pDb, 0);
}
/* If the checkpoint was written successfully, delete the log file
** and, if possible, truncate the database file. */
if( rc==LSM_OK ){
int bRotrans = 0;
Database *p = pDb->pDatabase;
/* The log file may only be deleted if there are no clients
** read-only clients running rotrans transactions. */
rc = lsmDetectRoTrans(pDb, &bRotrans);
if( rc==LSM_OK && bRotrans==0 ){
lsmFsCloseAndDeleteLog(pDb->pFS);
}
/* The database may only be truncated if there exist no read-only
** clients - either connected or running rotrans transactions. */
if( bReadonly==0 && bRotrans==0 ){
lsmFsUnmap(pDb->pFS);
dbTruncateFile(pDb);
if( p->pFile && p->bMultiProc ){
lsmEnvShmUnmap(pDb->pEnv, p->pFile, 1);
}
}
}
}
}
if( pDb->iRwclient>=0 ){
lsmShmLock(pDb, LSM_LOCK_RWCLIENT(pDb->iRwclient), LSM_LOCK_UNLOCK, 0);
pDb->iRwclient = -1;
}
lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
}
pDb->pShmhdr = 0;
}
static int doDbConnect(lsm_db *pDb){
const int nUsMax = 100000; /* Max value for nUs */
int nUs = 1000; /* us to wait between DMS1 attempts */
int rc;
/* Obtain a pointer to the shared-memory header */
assert( pDb->pShmhdr==0 );
assert( pDb->bReadonly==0 );
/* Block for an exclusive lock on DMS1. This lock serializes all calls
** to doDbConnect() and doDbDisconnect() across all processes. */
while( 1 ){
rc = lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_EXCL, 1);
if( rc!=LSM_BUSY ) break;
lsmEnvSleep(pDb->pEnv, nUs);
nUs = nUs * 2;
if( nUs>nUsMax ) nUs = nUsMax;
}
if( rc==LSM_OK ){
rc = lsmShmCacheChunks(pDb, 1);
}
if( rc!=LSM_OK ) return rc;
pDb->pShmhdr = (ShmHeader *)pDb->apShm[0];
/* Try an exclusive lock on DMS2/DMS3. If successful, this is the first
** and only connection to the database. In this case initialize the
** shared-memory and run log file recovery. */
assert( LSM_LOCK_DMS3==1+LSM_LOCK_DMS2 );
rc = lsmShmTestLock(pDb, LSM_LOCK_DMS2, 2, LSM_LOCK_EXCL);
if( rc==LSM_OK ){
memset(pDb->pShmhdr, 0, sizeof(ShmHeader));
rc = lsmCheckpointRecover(pDb);
if( rc==LSM_OK ){
rc = lsmLogRecover(pDb);
}
if( rc==LSM_OK ){
ShmHeader *pShm = pDb->pShmhdr;
pShm->aReader[0].iLsmId = lsmCheckpointId(pShm->aSnap1, 0);
pShm->aReader[0].iTreeId = pDb->treehdr.iUsedShmid;
}
}else if( rc==LSM_BUSY ){
rc = LSM_OK;
}
/* Take a shared lock on DMS2. In multi-process mode this lock "cannot"
** fail, as connections may only hold an exclusive lock on DMS2 if they
** first hold an exclusive lock on DMS1. And this connection is currently
** holding the exclusive lock on DSM1.
**
** However, if some other connection has the database open in single-process
** mode, this operation will fail. In this case, return the error to the
** caller - the attempt to connect to the db has failed.
*/
if( rc==LSM_OK ){
rc = lsmShmLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_SHARED, 0);
}
/* If anything went wrong, unlock DMS2. Otherwise, try to take an exclusive
** lock on one of the LSM_LOCK_RWCLIENT() locks. Unlock DMS1 in any case. */
if( rc!=LSM_OK ){
pDb->pShmhdr = 0;
}else{
int i;
for(i=0; i<LSM_LOCK_NRWCLIENT; i++){
int rc2 = lsmShmLock(pDb, LSM_LOCK_RWCLIENT(i), LSM_LOCK_EXCL, 0);
if( rc2==LSM_OK ) pDb->iRwclient = i;
if( rc2!=LSM_BUSY ){
rc = rc2;
break;
}
}
}
lsmShmLock(pDb, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
return rc;
}
static int dbOpenSharedFd(lsm_env *pEnv, Database *p, int bRoOk){
int rc;
rc = lsmEnvOpen(pEnv, p->zName, 0, &p->pFile);
if( rc==LSM_IOERR && bRoOk ){
rc = lsmEnvOpen(pEnv, p->zName, LSM_OPEN_READONLY, &p->pFile);
p->bReadonly = 1;
}
return rc;
}
/*
** Return a reference to the shared Database handle for the database
** identified by canonical path zName. If this is the first connection to
** the named database, a new Database object is allocated. Otherwise, a
** pointer to an existing object is returned.
**
** If successful, *ppDatabase is set to point to the shared Database
** structure and LSM_OK returned. Otherwise, *ppDatabase is set to NULL
** and and LSM error code returned.
**
** Each successful call to this function should be (eventually) matched
** by a call to lsmDbDatabaseRelease().
*/
int lsmDbDatabaseConnect(
lsm_db *pDb, /* Database handle */
const char *zName /* Full-path to db file */
){
lsm_env *pEnv = pDb->pEnv;
int rc; /* Return code */
Database *p = 0; /* Pointer returned via *ppDatabase */
int nName = lsmStrlen(zName);
assert( pDb->pDatabase==0 );
rc = enterGlobalMutex(pEnv);
if( rc==LSM_OK ){
/* Search the global list for an existing object. TODO: Need something
** better than the memcmp() below to figure out if a given Database
** object represents the requested file. */
for(p=gShared.pDatabase; p; p=p->pDbNext){
if( nName==p->nName && 0==memcmp(zName, p->zName, nName) ) break;
}
/* If no suitable Database object was found, allocate a new one. */
if( p==0 ){
p = (Database *)lsmMallocZeroRc(pEnv, sizeof(Database)+nName+1, &rc);
/* If the allocation was successful, fill in other fields and
** allocate the client mutex. */
if( rc==LSM_OK ){
p->bMultiProc = pDb->bMultiProc;
p->zName = (char *)&p[1];
p->nName = nName;
memcpy((void *)p->zName, zName, nName+1);
rc = lsmMutexNew(pEnv, &p->pClientMutex);
}
/* If nothing has gone wrong so far, open the shared fd. And if that
** succeeds and this connection requested single-process mode,
** attempt to take the exclusive lock on DMS2. */
if( rc==LSM_OK ){
int bReadonly = (pDb->bReadonly && pDb->bMultiProc);
rc = dbOpenSharedFd(pDb->pEnv, p, bReadonly);
}
if( rc==LSM_OK && p->bMultiProc==0 ){
/* Hold an exclusive lock DMS1 while grabbing DMS2. This ensures
** that any ongoing call to doDbDisconnect() (even one in another
** process) is finished before proceeding. */
assert( p->bReadonly==0 );
rc = lsmEnvLock(pDb->pEnv, p->pFile, LSM_LOCK_DMS1, LSM_LOCK_EXCL);
if( rc==LSM_OK ){
rc = lsmEnvLock(pDb->pEnv, p->pFile, LSM_LOCK_DMS2, LSM_LOCK_EXCL);
lsmEnvLock(pDb->pEnv, p->pFile, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK);
}
}
if( rc==LSM_OK ){
p->pDbNext = gShared.pDatabase;
gShared.pDatabase = p;
}else{
freeDatabase(pEnv, p);
p = 0;
}
}
if( p ){
p->nDbRef++;
}
leaveGlobalMutex(pEnv);
if( p ){
lsmMutexEnter(pDb->pEnv, p->pClientMutex);
pDb->pNext = p->pConn;
p->pConn = pDb;
lsmMutexLeave(pDb->pEnv, p->pClientMutex);
}
}
pDb->pDatabase = p;
if( rc==LSM_OK ){
assert( p );
rc = lsmFsOpen(pDb, zName, p->bReadonly);
}
/* If the db handle is read-write, then connect to the system now. Run
** recovery as necessary. Or, if this is a read-only database handle,
** defer attempting to connect to the system until a read-transaction
** is opened. */
if( rc==LSM_OK ){
rc = lsmFsConfigure(pDb);
}
if( rc==LSM_OK && pDb->bReadonly==0 ){
rc = doDbConnect(pDb);
}
return rc;
}
static void dbDeferClose(lsm_db *pDb){
if( pDb->pFS ){
LsmFile *pLsmFile;
Database *p = pDb->pDatabase;
pLsmFile = lsmFsDeferClose(pDb->pFS);
pLsmFile->pNext = p->pLsmFile;
p->pLsmFile = pLsmFile;
}
}
LsmFile *lsmDbRecycleFd(lsm_db *db){
LsmFile *pRet;
Database *p = db->pDatabase;
lsmMutexEnter(db->pEnv, p->pClientMutex);
if( (pRet = p->pLsmFile)!=0 ){
p->pLsmFile = pRet->pNext;
}
lsmMutexLeave(db->pEnv, p->pClientMutex);
return pRet;
}
/*
** Release a reference to a Database object obtained from
** lsmDbDatabaseConnect(). There should be exactly one call to this function
** for each successful call to Find().
*/
void lsmDbDatabaseRelease(lsm_db *pDb){
Database *p = pDb->pDatabase;
if( p ){
lsm_db **ppDb;
if( pDb->pShmhdr ){
doDbDisconnect(pDb);
}
lsmFsUnmap(pDb->pFS);
lsmMutexEnter(pDb->pEnv, p->pClientMutex);
for(ppDb=&p->pConn; *ppDb!=pDb; ppDb=&((*ppDb)->pNext));
*ppDb = pDb->pNext;
dbDeferClose(pDb);
lsmMutexLeave(pDb->pEnv, p->pClientMutex);
enterGlobalMutex(pDb->pEnv);
p->nDbRef--;
if( p->nDbRef==0 ){
LsmFile *pIter;
LsmFile *pNext;
Database **pp;
/* Remove the Database structure from the linked list. */
for(pp=&gShared.pDatabase; *pp!=p; pp=&((*pp)->pDbNext));
*pp = p->pDbNext;
/* If they were allocated from the heap, free the shared memory chunks */
if( p->bMultiProc==0 ){
int i;
for(i=0; i<p->nShmChunk; i++){
lsmFree(pDb->pEnv, p->apShmChunk[i]);
}
}
/* Close any outstanding file descriptors */
for(pIter=p->pLsmFile; pIter; pIter=pNext){
pNext = pIter->pNext;
lsmEnvClose(pDb->pEnv, pIter->pFile);
lsmFree(pDb->pEnv, pIter);
}
freeDatabase(pDb->pEnv, p);
}
leaveGlobalMutex(pDb->pEnv);
}
}
Level *lsmDbSnapshotLevel(Snapshot *pSnapshot){
return pSnapshot->pLevel;
}
void lsmDbSnapshotSetLevel(Snapshot *pSnap, Level *pLevel){
pSnap->pLevel = pLevel;
}
/* TODO: Shuffle things around to get rid of this */
static int firstSnapshotInUse(lsm_db *, i64 *);
/*
** Context object used by the lsmWalkFreelist() utility.
*/
typedef struct WalkFreelistCtx WalkFreelistCtx;
struct WalkFreelistCtx {
lsm_db *pDb;
int bReverse;
Freelist *pFreelist;
int iFree;
int (*xUsr)(void *, int, i64); /* User callback function */
void *pUsrctx; /* User callback context */
int bDone; /* Set to true after xUsr() returns true */
};
/*
** Callback used by lsmWalkFreelist().
*/
static int walkFreelistCb(void *pCtx, int iBlk, i64 iSnapshot){
WalkFreelistCtx *p = (WalkFreelistCtx *)pCtx;
const int iDir = (p->bReverse ? -1 : 1);
Freelist *pFree = p->pFreelist;
assert( p->bDone==0 );
assert( iBlk>=0 );
if( pFree ){
while( (p->iFree < pFree->nEntry) && p->iFree>=0 ){
FreelistEntry *pEntry = &pFree->aEntry[p->iFree];
if( (p->bReverse==0 && pEntry->iBlk>(u32)iBlk)
|| (p->bReverse!=0 && pEntry->iBlk<(u32)iBlk)
){
break;
}else{
p->iFree += iDir;
if( pEntry->iId>=0
&& p->xUsr(p->pUsrctx, pEntry->iBlk, pEntry->iId)
){
p->bDone = 1;
return 1;
}
if( pEntry->iBlk==(u32)iBlk ) return 0;
}
}
}
if( p->xUsr(p->pUsrctx, iBlk, iSnapshot) ){
p->bDone = 1;
return 1;
}
return 0;
}
/*
** The database handle passed as the first argument must be the worker
** connection. This function iterates through the contents of the current
** free block list, invoking the supplied callback once for each list
** element.
**
** The difference between this function and lsmSortedWalkFreelist() is
** that lsmSortedWalkFreelist() only considers those free-list elements
** stored within the LSM. This function also merges in any in-memory
** elements.
*/
int lsmWalkFreelist(
lsm_db *pDb, /* Database handle (must be worker) */
int bReverse, /* True to iterate from largest to smallest */
int (*x)(void *, int, i64), /* Callback function */
void *pCtx /* First argument to pass to callback */
){
const int iDir = (bReverse ? -1 : 1);
int rc;
int iCtx;
WalkFreelistCtx ctx[2];
ctx[0].pDb = pDb;
ctx[0].bReverse = bReverse;
ctx[0].pFreelist = &pDb->pWorker->freelist;
if( ctx[0].pFreelist && bReverse ){
ctx[0].iFree = ctx[0].pFreelist->nEntry-1;
}else{
ctx[0].iFree = 0;
}
ctx[0].xUsr = walkFreelistCb;
ctx[0].pUsrctx = (void *)&ctx[1];
ctx[0].bDone = 0;
ctx[1].pDb = pDb;
ctx[1].bReverse = bReverse;
ctx[1].pFreelist = pDb->pFreelist;
if( ctx[1].pFreelist && bReverse ){
ctx[1].iFree = ctx[1].pFreelist->nEntry-1;
}else{
ctx[1].iFree = 0;
}
ctx[1].xUsr = x;
ctx[1].pUsrctx = pCtx;
ctx[1].bDone = 0;
rc = lsmSortedWalkFreelist(pDb, bReverse, walkFreelistCb, (void *)&ctx[0]);
if( ctx[0].bDone==0 ){
for(iCtx=0; iCtx<2; iCtx++){
int i;
WalkFreelistCtx *p = &ctx[iCtx];
for(i=p->iFree;
p->pFreelist && rc==LSM_OK && i<p->pFreelist->nEntry && i>=0;
i += iDir
){
FreelistEntry *pEntry = &p->pFreelist->aEntry[i];
if( pEntry->iId>=0 && p->xUsr(p->pUsrctx, pEntry->iBlk, pEntry->iId) ){
return LSM_OK;
}
}
}
}
return rc;
}
typedef struct FindFreeblockCtx FindFreeblockCtx;
struct FindFreeblockCtx {
i64 iInUse;
int iRet;
int bNotOne;
};
static int findFreeblockCb(void *pCtx, int iBlk, i64 iSnapshot){
FindFreeblockCtx *p = (FindFreeblockCtx *)pCtx;
if( iSnapshot<p->iInUse && (iBlk!=1 || p->bNotOne==0) ){
p->iRet = iBlk;
return 1;
}
return 0;
}
static int findFreeblock(lsm_db *pDb, i64 iInUse, int bNotOne, int *piRet){
int rc; /* Return code */
FindFreeblockCtx ctx; /* Context object */
ctx.iInUse = iInUse;
ctx.iRet = 0;
ctx.bNotOne = bNotOne;
rc = lsmWalkFreelist(pDb, 0, findFreeblockCb, (void *)&ctx);
*piRet = ctx.iRet;
return rc;
}
/*
** Allocate a new database file block to write data to, either by extending
** the database file or by recycling a free-list entry. The worker snapshot
** must be held in order to call this function.
**
** If successful, *piBlk is set to the block number allocated and LSM_OK is
** returned. Otherwise, *piBlk is zeroed and an lsm error code returned.
*/
int lsmBlockAllocate(lsm_db *pDb, int iBefore, int *piBlk){
Snapshot *p = pDb->pWorker;
int iRet = 0; /* Block number of allocated block */
int rc = LSM_OK;
i64 iInUse = 0; /* Snapshot id still in use */
i64 iSynced = 0; /* Snapshot id synced to disk */
assert( p );
#ifdef LSM_LOG_FREELIST
{
static int nCall = 0;
char *zFree = 0;
nCall++;
rc = lsmInfoFreelist(pDb, &zFree);
if( rc!=LSM_OK ) return rc;
lsmLogMessage(pDb, 0, "lsmBlockAllocate(): %d freelist: %s", nCall, zFree);
lsmFree(pDb->pEnv, zFree);
}
#endif
/* Set iInUse to the smallest snapshot id that is either:
**
** * Currently in use by a database client,
** * May be used by a database client in the future, or
** * Is the most recently checkpointed snapshot (i.e. the one that will
** be used following recovery if a failure occurs at this point).
*/
rc = lsmCheckpointSynced(pDb, &iSynced, 0, 0);
if( rc==LSM_OK && iSynced==0 ) iSynced = p->iId;
iInUse = iSynced;
if( rc==LSM_OK && pDb->iReader>=0 ){
assert( pDb->pClient );
iInUse = LSM_MIN(iInUse, pDb->pClient->iId);
}
if( rc==LSM_OK ) rc = firstSnapshotInUse(pDb, &iInUse);
#ifdef LSM_LOG_FREELIST
{
lsmLogMessage(pDb, 0, "lsmBlockAllocate(): "
"snapshot-in-use: %lld (iSynced=%lld) (client-id=%lld)",
iInUse, iSynced, (pDb->iReader>=0 ? pDb->pClient->iId : 0)
);
}
#endif
/* Unless there exists a read-only transaction (which prevents us from
** recycling any blocks regardless, query the free block list for a
** suitable block to reuse.
**
** It might seem more natural to check for a read-only transaction at
** the start of this function. However, it is better do wait until after
** the call to lsmCheckpointSynced() to do so.
*/
if( rc==LSM_OK ){
int bRotrans;
rc = lsmDetectRoTrans(pDb, &bRotrans);
if( rc==LSM_OK && bRotrans==0 ){
rc = findFreeblock(pDb, iInUse, (iBefore>0), &iRet);
}
}
if( iBefore>0 && (iRet<=0 || iRet>=iBefore) ){
iRet = 0;
}else if( rc==LSM_OK ){
/* If a block was found in the free block list, use it and remove it from
** the list. Otherwise, if no suitable block was found, allocate one from
** the end of the file. */
if( iRet>0 ){
#ifdef LSM_LOG_FREELIST
lsmLogMessage(pDb, 0,
"reusing block %d (snapshot-in-use=%lld)", iRet, iInUse);
#endif
rc = freelistAppend(pDb, iRet, -1);
if( rc==LSM_OK ){
rc = dbTruncate(pDb, iInUse);
}
}else{
iRet = ++(p->nBlock);
#ifdef LSM_LOG_FREELIST
lsmLogMessage(pDb, 0, "extending file to %d blocks", iRet);
#endif
}
}
assert( iBefore>0 || iRet>0 || rc!=LSM_OK );
*piBlk = iRet;
return rc;
}
/*
** Free a database block. The worker snapshot must be held in order to call
** this function.
**
** If successful, LSM_OK is returned. Otherwise, an lsm error code (e.g.
** LSM_NOMEM).
*/
int lsmBlockFree(lsm_db *pDb, int iBlk){
Snapshot *p = pDb->pWorker;
assert( lsmShmAssertWorker(pDb) );
#ifdef LSM_LOG_FREELIST
lsmLogMessage(pDb, LSM_OK, "lsmBlockFree(): Free block %d", iBlk);
#endif
return freelistAppend(pDb, iBlk, p->iId);
}
/*
** Refree a database block. The worker snapshot must be held in order to call
** this function.
**
** Refreeing is required when a block is allocated using lsmBlockAllocate()
** but then not used. This function is used to push the block back onto
** the freelist. Refreeing a block is different from freeing is, as a refreed
** block may be reused immediately. Whereas a freed block can not be reused
** until (at least) after the next checkpoint.
*/
int lsmBlockRefree(lsm_db *pDb, int iBlk){
int rc = LSM_OK; /* Return code */
#ifdef LSM_LOG_FREELIST
lsmLogMessage(pDb, LSM_OK, "lsmBlockRefree(): Refree block %d", iBlk);
#endif
rc = freelistAppend(pDb, iBlk, 0);
return rc;
}
/*
** If required, copy a database checkpoint from shared memory into the
** database itself.
**
** The WORKER lock must not be held when this is called. This is because
** this function may indirectly call fsync(). And the WORKER lock should
** not be held that long (in case it is required by a client flushing an
** in-memory tree to disk).
*/
int lsmCheckpointWrite(lsm_db *pDb, u32 *pnWrite){
int rc; /* Return Code */
u32 nWrite = 0;
assert( pDb->pWorker==0 );
assert( 1 || pDb->pClient==0 );
assert( lsmShmAssertLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_UNLOCK) );
rc = lsmShmLock(pDb, LSM_LOCK_CHECKPOINTER, LSM_LOCK_EXCL, 0);
if( rc!=LSM_OK ) return rc;
rc = lsmCheckpointLoad(pDb, 0);
if( rc==LSM_OK ){
int nBlock = lsmCheckpointNBlock(pDb->aSnapshot);
ShmHeader *pShm = pDb->pShmhdr;
int bDone = 0; /* True if checkpoint is already stored */
/* Check if this checkpoint has already been written to the database
** file. If so, set variable bDone to true. */
if( pShm->iMetaPage ){
MetaPage *pPg; /* Meta page */
u8 *aData; /* Meta-page data buffer */
int nData; /* Size of aData[] in bytes */
i64 iCkpt; /* Id of checkpoint just loaded */
i64 iDisk = 0; /* Id of checkpoint already stored in db */
iCkpt = lsmCheckpointId(pDb->aSnapshot, 0);
rc = lsmFsMetaPageGet(pDb->pFS, 0, pShm->iMetaPage, &pPg);
if( rc==LSM_OK ){
aData = lsmFsMetaPageData(pPg, &nData);
iDisk = lsmCheckpointId((u32 *)aData, 1);
nWrite = lsmCheckpointNWrite((u32 *)aData, 1);
lsmFsMetaPageRelease(pPg);
}
bDone = (iDisk>=iCkpt);
}
if( rc==LSM_OK && bDone==0 ){
int iMeta = (pShm->iMetaPage % 2) + 1;
if( pDb->eSafety!=LSM_SAFETY_OFF ){
rc = lsmFsSyncDb(pDb->pFS, nBlock);
}
if( rc==LSM_OK ) rc = lsmCheckpointStore(pDb, iMeta);
if( rc==LSM_OK && pDb->eSafety!=LSM_SAFETY_OFF){
rc = lsmFsSyncDb(pDb->pFS, 0);
}
if( rc==LSM_OK ){
pShm->iMetaPage = iMeta;
nWrite = lsmCheckpointNWrite(pDb->aSnapshot, 0) - nWrite;
}
#ifdef LSM_LOG_WORK
lsmLogMessage(pDb, 0, "finish checkpoint %d",
(int)lsmCheckpointId(pDb->aSnapshot, 0)
);
#endif
}
}
lsmShmLock(pDb, LSM_LOCK_CHECKPOINTER, LSM_LOCK_UNLOCK, 0);
if( pnWrite && rc==LSM_OK ) *pnWrite = nWrite;
return rc;
}
int lsmBeginWork(lsm_db *pDb){
int rc;
/* Attempt to take the WORKER lock */
rc = lsmShmLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_EXCL, 0);
/* Deserialize the current worker snapshot */
if( rc==LSM_OK ){
rc = lsmCheckpointLoadWorker(pDb);
}
return rc;
}
void lsmFreeSnapshot(lsm_env *pEnv, Snapshot *p){
if( p ){
lsmSortedFreeLevel(pEnv, p->pLevel);
lsmFree(pEnv, p->freelist.aEntry);
lsmFree(pEnv, p->redirect.a);
lsmFree(pEnv, p);
}
}
/*
** Attempt to populate one of the read-lock slots to contain lock values
** iLsm/iShm. Or, if such a slot exists already, this function is a no-op.
**
** It is not an error if no slot can be populated because the write-lock
** cannot be obtained. If any other error occurs, return an LSM error code.
** Otherwise, LSM_OK.
**
** This function is called at various points to try to ensure that there
** always exists at least one read-lock slot that can be used by a read-only
** client. And so that, in the usual case, there is an "exact match" available
** whenever a read transaction is opened by any client. At present this
** function is called when:
**
** * A write transaction that called lsmTreeDiscardOld() is committed, and
** * Whenever the working snapshot is updated (i.e. lsmFinishWork()).
*/
static int dbSetReadLock(lsm_db *db, i64 iLsm, u32 iShm){
int rc = LSM_OK;
ShmHeader *pShm = db->pShmhdr;
int i;
/* Check if there is already a slot containing the required values. */
for(i=0; i<LSM_LOCK_NREADER; i++){
ShmReader *p = &pShm->aReader[i];
if( p->iLsmId==iLsm && p->iTreeId==iShm ) return LSM_OK;
}
/* Iterate through all read-lock slots, attempting to take a write-lock
** on each of them. If a write-lock succeeds, populate the locked slot
** with the required values and break out of the loop. */
for(i=0; rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
if( rc==LSM_BUSY ){
rc = LSM_OK;
}else{
ShmReader *p = &pShm->aReader[i];
p->iLsmId = iLsm;
p->iTreeId = iShm;
lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0);
break;
}
}
return rc;
}
/*
** Release the read-lock currently held by connection db.
*/
int dbReleaseReadlock(lsm_db *db){
int rc = LSM_OK;
if( db->iReader>=0 ){
rc = lsmShmLock(db, LSM_LOCK_READER(db->iReader), LSM_LOCK_UNLOCK, 0);
db->iReader = -1;
}
db->bRoTrans = 0;
return rc;
}
/*
** Argument bFlush is true if the contents of the in-memory tree has just
** been flushed to disk. The significance of this is that once the snapshot
** created to hold the updated state of the database is synced to disk, log
** file space can be recycled.
*/
void lsmFinishWork(lsm_db *pDb, int bFlush, int *pRc){
int rc = *pRc;
assert( rc!=0 || pDb->pWorker );
if( pDb->pWorker ){
/* If no error has occurred, serialize the worker snapshot and write
** it to shared memory. */
if( rc==LSM_OK ){
rc = lsmSaveWorker(pDb, bFlush);
}
/* Assuming no error has occurred, update a read lock slot with the
** new snapshot id (see comments above function dbSetReadLock()). */
if( rc==LSM_OK ){
if( pDb->iReader<0 ){
rc = lsmTreeLoadHeader(pDb, 0);
}
if( rc==LSM_OK ){
rc = dbSetReadLock(pDb, pDb->pWorker->iId, pDb->treehdr.iUsedShmid);
}
}
/* Free the snapshot object. */
lsmFreeSnapshot(pDb->pEnv, pDb->pWorker);
pDb->pWorker = 0;
}
lsmShmLock(pDb, LSM_LOCK_WORKER, LSM_LOCK_UNLOCK, 0);
*pRc = rc;
}
/*
** Called when recovery is finished.
*/
int lsmFinishRecovery(lsm_db *pDb){
lsmTreeEndTransaction(pDb, 1);
return LSM_OK;
}
/*
** Check if the currently configured compression functions
** (LSM_CONFIG_SET_COMPRESSION) are compatible with a database that has its
** compression id set to iReq. Compression routines are compatible if iReq
** is zero (indicating the database is empty), or if it is equal to the
** compression id of the configured compression routines.
**
** If the check shows that the current compression are incompatible and there
** is a compression factory registered, give it a chance to install new
** compression routines.
**
** If, after any registered factory is invoked, the compression functions
** are still incompatible, return LSM_MISMATCH. Otherwise, LSM_OK.
*/
int lsmCheckCompressionId(lsm_db *pDb, u32 iReq){
if( iReq!=LSM_COMPRESSION_EMPTY && pDb->compress.iId!=iReq ){
if( pDb->factory.xFactory ){
pDb->bInFactory = 1;
pDb->factory.xFactory(pDb->factory.pCtx, pDb, iReq);
pDb->bInFactory = 0;
}
if( pDb->compress.iId!=iReq ){
/* Incompatible */
return LSM_MISMATCH;
}
}
/* Compatible */
return LSM_OK;
}
/*
** Begin a read transaction. This function is a no-op if the connection
** passed as the only argument already has an open read transaction.
*/
int lsmBeginReadTrans(lsm_db *pDb){
const int MAX_READLOCK_ATTEMPTS = 10;
const int nMaxAttempt = (pDb->bRoTrans ? 1 : MAX_READLOCK_ATTEMPTS);
int rc = LSM_OK; /* Return code */
int iAttempt = 0;
assert( pDb->pWorker==0 );
while( rc==LSM_OK && pDb->iReader<0 && (iAttempt++)<nMaxAttempt ){
int iTreehdr = 0;
int iSnap = 0;
assert( pDb->pCsr==0 && pDb->nTransOpen==0 );
/* Load the in-memory tree header. */
rc = lsmTreeLoadHeader(pDb, &iTreehdr);
/* Load the database snapshot */
if( rc==LSM_OK ){
if( lsmCheckpointClientCacheOk(pDb)==0 ){
lsmFreeSnapshot(pDb->pEnv, pDb->pClient);
pDb->pClient = 0;
lsmMCursorFreeCache(pDb);
lsmFsPurgeCache(pDb->pFS);
rc = lsmCheckpointLoad(pDb, &iSnap);
}else{
iSnap = 1;
}
}
/* Take a read-lock on the tree and snapshot just loaded. Then check
** that the shared-memory still contains the same values. If so, proceed.
** Otherwise, relinquish the read-lock and retry the whole procedure
** (starting with loading the in-memory tree header). */
if( rc==LSM_OK ){
u32 iShmMax = pDb->treehdr.iUsedShmid;
u32 iShmMin = pDb->treehdr.iNextShmid+1-LSM_MAX_SHMCHUNKS;
rc = lsmReadlock(
pDb, lsmCheckpointId(pDb->aSnapshot, 0), iShmMin, iShmMax
);
if( rc==LSM_OK ){
if( lsmTreeLoadHeaderOk(pDb, iTreehdr)
&& lsmCheckpointLoadOk(pDb, iSnap)
){
/* Read lock has been successfully obtained. Deserialize the
** checkpoint just loaded. TODO: This will be removed after
** lsm_sorted.c is changed to work directly from the serialized
** version of the snapshot. */
if( pDb->pClient==0 ){
rc = lsmCheckpointDeserialize(pDb, 0, pDb->aSnapshot,&pDb->pClient);
}
assert( (rc==LSM_OK)==(pDb->pClient!=0) );
assert( pDb->iReader>=0 );
/* Check that the client has the right compression hooks loaded.
** If not, set rc to LSM_MISMATCH. */
if( rc==LSM_OK ){
rc = lsmCheckCompressionId(pDb, pDb->pClient->iCmpId);
}
}else{
rc = dbReleaseReadlock(pDb);
}
}
if( rc==LSM_BUSY ){
rc = LSM_OK;
}
}
#if 0
if( rc==LSM_OK && pDb->pClient ){
fprintf(stderr,
"reading %p: snapshot:%d used-shmid:%d trans-id:%d iOldShmid=%d\n",
(void *)pDb,
(int)pDb->pClient->iId, (int)pDb->treehdr.iUsedShmid,
(int)pDb->treehdr.root.iTransId,
(int)pDb->treehdr.iOldShmid
);
}
#endif
}
if( rc==LSM_OK ){
rc = lsmShmCacheChunks(pDb, pDb->treehdr.nChunk);
}
if( rc!=LSM_OK ){
dbReleaseReadlock(pDb);
}
if( pDb->pClient==0 && rc==LSM_OK ) rc = LSM_BUSY;
return rc;
}
/*
** This function is used by a read-write connection to determine if there
** are currently one or more read-only transactions open on the database
** (in this context a read-only transaction is one opened by a read-only
** connection on a non-live database).
**
** If no error occurs, LSM_OK is returned and *pbExists is set to true if
** some other connection has a read-only transaction open, or false
** otherwise. If an error occurs an LSM error code is returned and the final
** value of *pbExist is undefined.
*/
int lsmDetectRoTrans(lsm_db *db, int *pbExist){
int rc;
/* Only a read-write connection may use this function. */
assert( db->bReadonly==0 );
rc = lsmShmTestLock(db, LSM_LOCK_ROTRANS, 1, LSM_LOCK_EXCL);
if( rc==LSM_BUSY ){
*pbExist = 1;
rc = LSM_OK;
}else{
*pbExist = 0;
}
return rc;
}
/*
** db is a read-only database handle in the disconnected state. This function
** attempts to open a read-transaction on the database. This may involve
** connecting to the database system (opening shared memory etc.).
*/
int lsmBeginRoTrans(lsm_db *db){
int rc = LSM_OK;
assert( db->bReadonly && db->pShmhdr==0 );
assert( db->iReader<0 );
if( db->bRoTrans==0 ){
/* Attempt a shared-lock on DMS1. */
rc = lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_SHARED, 0);
if( rc!=LSM_OK ) return rc;
rc = lsmShmTestLock(
db, LSM_LOCK_RWCLIENT(0), LSM_LOCK_NREADER, LSM_LOCK_SHARED
);
if( rc==LSM_OK ){
/* System is not live. Take a SHARED lock on the ROTRANS byte and
** release DMS1. Locking ROTRANS tells all read-write clients that they
** may not recycle any disk space from within the database or log files,
** as a read-only client may be using it. */
rc = lsmShmLock(db, LSM_LOCK_ROTRANS, LSM_LOCK_SHARED, 0);
lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
if( rc==LSM_OK ){
db->bRoTrans = 1;
rc = lsmShmCacheChunks(db, 1);
if( rc==LSM_OK ){
db->pShmhdr = (ShmHeader *)db->apShm[0];
memset(db->pShmhdr, 0, sizeof(ShmHeader));
rc = lsmCheckpointRecover(db);
if( rc==LSM_OK ){
rc = lsmLogRecover(db);
}
}
}
}else if( rc==LSM_BUSY ){
/* System is live! */
rc = lsmShmLock(db, LSM_LOCK_DMS3, LSM_LOCK_SHARED, 0);
lsmShmLock(db, LSM_LOCK_DMS1, LSM_LOCK_UNLOCK, 0);
if( rc==LSM_OK ){
rc = lsmShmCacheChunks(db, 1);
if( rc==LSM_OK ){
db->pShmhdr = (ShmHeader *)db->apShm[0];
}
}
}
/* In 'lsm_open()' we don't update the page and block sizes in the
** Filesystem for 'readonly' connection. Because member 'db->pShmhdr' is a
** nullpointer, this prevents loading a checkpoint. Now that the system is
** live this member should be set. So we can update both values in
** the Filesystem.
**
** Configure the file-system connection with the page-size and block-size
** of this database. Even if the database file is zero bytes in size
** on disk, these values have been set in shared-memory by now, and so
** are guaranteed not to change during the lifetime of this connection. */
if( LSM_OK==rc
&& 0==lsmCheckpointClientCacheOk(db)
&& LSM_OK==(rc=lsmCheckpointLoad(db, 0))
){
lsmFsSetPageSize(db->pFS, lsmCheckpointPgsz(db->aSnapshot));
lsmFsSetBlockSize(db->pFS, lsmCheckpointBlksz(db->aSnapshot));
}
if( rc==LSM_OK ){
rc = lsmBeginReadTrans(db);
}
}
return rc;
}
/*
** Close the currently open read transaction.
*/
void lsmFinishReadTrans(lsm_db *pDb){
/* Worker connections should not be closing read transactions. And
** read transactions should only be closed after all cursors and write
** transactions have been closed. Finally pClient should be non-NULL
** only iff pDb->iReader>=0. */
assert( pDb->pWorker==0 );
assert( pDb->pCsr==0 && pDb->nTransOpen==0 );
if( pDb->bRoTrans ){
int i;
for(i=0; i<pDb->nShm; i++){
lsmFree(pDb->pEnv, pDb->apShm[i]);
}
lsmFree(pDb->pEnv, pDb->apShm);
pDb->apShm = 0;
pDb->nShm = 0;
pDb->pShmhdr = 0;
lsmShmLock(pDb, LSM_LOCK_ROTRANS, LSM_LOCK_UNLOCK, 0);
}
dbReleaseReadlock(pDb);
}
/*
** Open a write transaction.
*/
int lsmBeginWriteTrans(lsm_db *pDb){
int rc = LSM_OK; /* Return code */
ShmHeader *pShm = pDb->pShmhdr; /* Shared memory header */
assert( pDb->nTransOpen==0 );
assert( pDb->bDiscardOld==0 );
assert( pDb->bReadonly==0 );
/* If there is no read-transaction open, open one now. */
if( pDb->iReader<0 ){
rc = lsmBeginReadTrans(pDb);
}
/* Attempt to take the WRITER lock */
if( rc==LSM_OK ){
rc = lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_EXCL, 0);
}
/* If the previous writer failed mid-transaction, run emergency rollback. */
if( rc==LSM_OK && pShm->bWriter ){
rc = lsmTreeRepair(pDb);
if( rc==LSM_OK ) pShm->bWriter = 0;
}
/* Check that this connection is currently reading from the most recent
** version of the database. If not, return LSM_BUSY. */
if( rc==LSM_OK && memcmp(&pShm->hdr1, &pDb->treehdr, sizeof(TreeHeader)) ){
rc = LSM_BUSY;
}
if( rc==LSM_OK ){
rc = lsmLogBegin(pDb);
}
/* If everything was successful, set the "transaction-in-progress" flag
** and return LSM_OK. Otherwise, if some error occurred, relinquish the
** WRITER lock and return an error code. */
if( rc==LSM_OK ){
TreeHeader *p = &pDb->treehdr;
pShm->bWriter = 1;
p->root.iTransId++;
if( lsmTreeHasOld(pDb) && p->iOldLog==pDb->pClient->iLogOff ){
lsmTreeDiscardOld(pDb);
pDb->bDiscardOld = 1;
}
}else{
lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0);
if( pDb->pCsr==0 ) lsmFinishReadTrans(pDb);
}
return rc;
}
/*
** End the current write transaction. The connection is left with an open
** read transaction. It is an error to call this if there is no open write
** transaction.
**
** If the transaction was committed, then a commit record has already been
** written into the log file when this function is called. Or, if the
** transaction was rolled back, both the log file and in-memory tree
** structure have already been restored. In either case, this function
** merely releases locks and other resources held by the write-transaction.
**
** LSM_OK is returned if successful, or an LSM error code otherwise.
*/
int lsmFinishWriteTrans(lsm_db *pDb, int bCommit){
int rc = LSM_OK;
int bFlush = 0;
lsmLogEnd(pDb, bCommit);
if( rc==LSM_OK && bCommit && lsmTreeSize(pDb)>pDb->nTreeLimit ){
bFlush = 1;
lsmTreeMakeOld(pDb);
}
lsmTreeEndTransaction(pDb, bCommit);
if( rc==LSM_OK ){
if( bFlush && pDb->bAutowork ){
rc = lsmSortedAutoWork(pDb, 1);
}else if( bCommit && pDb->bDiscardOld ){
rc = dbSetReadLock(pDb, pDb->pClient->iId, pDb->treehdr.iUsedShmid);
}
}
pDb->bDiscardOld = 0;
lsmShmLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_UNLOCK, 0);
if( bFlush && pDb->bAutowork==0 && pDb->xWork ){
pDb->xWork(pDb, pDb->pWorkCtx);
}
return rc;
}
/*
** Return non-zero if the caller is holding the client mutex.
*/
#ifdef LSM_DEBUG
int lsmHoldingClientMutex(lsm_db *pDb){
return lsmMutexHeld(pDb->pEnv, pDb->pDatabase->pClientMutex);
}
#endif
static int slotIsUsable(ShmReader *p, i64 iLsm, u32 iShmMin, u32 iShmMax){
return(
p->iLsmId && p->iLsmId<=iLsm
&& shm_sequence_ge(iShmMax, p->iTreeId)
&& shm_sequence_ge(p->iTreeId, iShmMin)
);
}
/*
** Obtain a read-lock on database version identified by the combination
** of snapshot iLsm and tree iTree. Return LSM_OK if successful, or
** an LSM error code otherwise.
*/
int lsmReadlock(lsm_db *db, i64 iLsm, u32 iShmMin, u32 iShmMax){
int rc = LSM_OK;
ShmHeader *pShm = db->pShmhdr;
int i;
assert( db->iReader<0 );
assert( shm_sequence_ge(iShmMax, iShmMin) );
/* This is a no-op if the read-only transaction flag is set. */
if( db->bRoTrans ){
db->iReader = 0;
return LSM_OK;
}
/* Search for an exact match. */
for(i=0; db->iReader<0 && rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
ShmReader *p = &pShm->aReader[i];
if( p->iLsmId==iLsm && p->iTreeId==iShmMax ){
rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0);
if( rc==LSM_OK && p->iLsmId==iLsm && p->iTreeId==iShmMax ){
db->iReader = i;
}else if( rc==LSM_BUSY ){
rc = LSM_OK;
}
}
}
/* Try to obtain a write-lock on each slot, in order. If successful, set
** the slot values to iLsm/iTree. */
for(i=0; db->iReader<0 && rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
if( rc==LSM_BUSY ){
rc = LSM_OK;
}else{
ShmReader *p = &pShm->aReader[i];
p->iLsmId = iLsm;
p->iTreeId = iShmMax;
rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0);
assert( rc!=LSM_BUSY );
if( rc==LSM_OK ) db->iReader = i;
}
}
/* Search for any usable slot */
for(i=0; db->iReader<0 && rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
ShmReader *p = &pShm->aReader[i];
if( slotIsUsable(p, iLsm, iShmMin, iShmMax) ){
rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_SHARED, 0);
if( rc==LSM_OK && slotIsUsable(p, iLsm, iShmMin, iShmMax) ){
db->iReader = i;
}else if( rc==LSM_BUSY ){
rc = LSM_OK;
}
}
}
if( rc==LSM_OK && db->iReader<0 ){
rc = LSM_BUSY;
}
return rc;
}
/*
** This is used to check if there exists a read-lock locking a particular
** version of either the in-memory tree or database file.
**
** If iLsmId is non-zero, then it is a snapshot id. If there exists a
** read-lock using this snapshot or newer, set *pbInUse to true. Or,
** if there is no such read-lock, set it to false.
**
** Or, if iLsmId is zero, then iShmid is a shared-memory sequence id.
** Search for a read-lock using this sequence id or newer. etc.
*/
static int isInUse(lsm_db *db, i64 iLsmId, u32 iShmid, int *pbInUse){
ShmHeader *pShm = db->pShmhdr;
int i;
int rc = LSM_OK;
for(i=0; rc==LSM_OK && i<LSM_LOCK_NREADER; i++){
ShmReader *p = &pShm->aReader[i];
if( p->iLsmId ){
if( (iLsmId!=0 && p->iLsmId!=0 && iLsmId>=p->iLsmId)
|| (iLsmId==0 && shm_sequence_ge(p->iTreeId, iShmid))
){
rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
if( rc==LSM_OK ){
p->iLsmId = 0;
lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0);
}
}
}
}
if( rc==LSM_BUSY ){
*pbInUse = 1;
return LSM_OK;
}
*pbInUse = 0;
return rc;
}
/*
** This function is called by worker connections to determine the smallest
** snapshot id that is currently in use by a database client. The worker
** connection uses this result to determine whether or not it is safe to
** recycle a database block.
*/
static int firstSnapshotInUse(
lsm_db *db, /* Database handle */
i64 *piInUse /* IN/OUT: Smallest snapshot id in use */
){
ShmHeader *pShm = db->pShmhdr;
i64 iInUse = *piInUse;
int i;
assert( iInUse>0 );
for(i=0; i<LSM_LOCK_NREADER; i++){
ShmReader *p = &pShm->aReader[i];
if( p->iLsmId ){
i64 iThis = p->iLsmId;
if( iThis!=0 && iInUse>iThis ){
int rc = lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_EXCL, 0);
if( rc==LSM_OK ){
p->iLsmId = 0;
lsmShmLock(db, LSM_LOCK_READER(i), LSM_LOCK_UNLOCK, 0);
}else if( rc==LSM_BUSY ){
iInUse = iThis;
}else{
/* Some error other than LSM_BUSY. Return the error code to
** the caller in this case. */
return rc;
}
}
}
}
*piInUse = iInUse;
return LSM_OK;
}
int lsmTreeInUse(lsm_db *db, u32 iShmid, int *pbInUse){
if( db->treehdr.iUsedShmid==iShmid ){
*pbInUse = 1;
return LSM_OK;
}
return isInUse(db, 0, iShmid, pbInUse);
}
int lsmLsmInUse(lsm_db *db, i64 iLsmId, int *pbInUse){
if( db->pClient && db->pClient->iId<=iLsmId ){
*pbInUse = 1;
return LSM_OK;
}
return isInUse(db, iLsmId, 0, pbInUse);
}
/*
** This function may only be called after a successful call to
** lsmDbDatabaseConnect(). It returns true if the connection is in
** multi-process mode, or false otherwise.
*/
int lsmDbMultiProc(lsm_db *pDb){
return pDb->pDatabase && pDb->pDatabase->bMultiProc;
}
/*************************************************************************
**************************************************************************
**************************************************************************
**************************************************************************
**************************************************************************
*************************************************************************/
/*
** Ensure that database connection db has cached pointers to at least the
** first nChunk chunks of shared memory.
*/
int lsmShmCacheChunks(lsm_db *db, int nChunk){
int rc = LSM_OK;
if( nChunk>db->nShm ){
static const int NINCR = 16;
Database *p = db->pDatabase;
lsm_env *pEnv = db->pEnv;
int nAlloc;
int i;
/* Ensure that the db->apShm[] array is large enough. If an attempt to
** allocate memory fails, return LSM_NOMEM immediately. The apShm[] array
** is always extended in multiples of 16 entries - so the actual allocated
** size can be inferred from nShm. */
nAlloc = ((db->nShm + NINCR - 1) / NINCR) * NINCR;
while( nChunk>=nAlloc ){
void **apShm;
nAlloc += NINCR;
apShm = lsmRealloc(pEnv, db->apShm, sizeof(void*)*nAlloc);
if( !apShm ) return LSM_NOMEM_BKPT;
db->apShm = apShm;
}
if( db->bRoTrans ){
for(i=db->nShm; rc==LSM_OK && i<nChunk; i++){
db->apShm[i] = lsmMallocZeroRc(pEnv, LSM_SHM_CHUNK_SIZE, &rc);
db->nShm++;
}
}else{
/* Enter the client mutex */
lsmMutexEnter(pEnv, p->pClientMutex);
/* Extend the Database objects apShmChunk[] array if necessary. Using the
** same pattern as for the lsm_db.apShm[] array above. */
nAlloc = ((p->nShmChunk + NINCR - 1) / NINCR) * NINCR;
while( nChunk>=nAlloc ){
void **apShm;
nAlloc += NINCR;
apShm = lsmRealloc(pEnv, p->apShmChunk, sizeof(void*)*nAlloc);
if( !apShm ){
rc = LSM_NOMEM_BKPT;
break;
}
p->apShmChunk = apShm;
}
for(i=db->nShm; rc==LSM_OK && i<nChunk; i++){
if( i>=p->nShmChunk ){
void *pChunk = 0;
if( p->bMultiProc==0 ){
/* Single process mode */
pChunk = lsmMallocZeroRc(pEnv, LSM_SHM_CHUNK_SIZE, &rc);
}else{
/* Multi-process mode */
rc = lsmEnvShmMap(pEnv, p->pFile, i, LSM_SHM_CHUNK_SIZE, &pChunk);
}
if( rc==LSM_OK ){
p->apShmChunk[i] = pChunk;
p->nShmChunk++;
}
}
if( rc==LSM_OK ){
db->apShm[i] = p->apShmChunk[i];
db->nShm++;
}
}
/* Release the client mutex */
lsmMutexLeave(pEnv, p->pClientMutex);
}
}
return rc;
}
static int lockSharedFile(lsm_env *pEnv, Database *p, int iLock, int eOp){
int rc = LSM_OK;
if( p->bMultiProc ){
rc = lsmEnvLock(pEnv, p->pFile, iLock, eOp);
}
return rc;
}
/*
** Test if it would be possible for connection db to obtain a lock of type
** eType on the nLock locks starting at iLock. If so, return LSM_OK. If it
** would not be possible to obtain the lock due to a lock held by another
** connection, return LSM_BUSY. If an IO or other error occurs (i.e. in the
** lsm_env.xTestLock function), return some other LSM error code.
**
** Note that this function never actually locks the database - it merely
** queries the system to see if there exists a lock that would prevent
** it from doing so.
*/
int lsmShmTestLock(
lsm_db *db,
int iLock,
int nLock,
int eOp
){
int rc = LSM_OK;
lsm_db *pIter;
Database *p = db->pDatabase;
int i;
u64 mask = 0;
for(i=iLock; i<(iLock+nLock); i++){
mask |= ((u64)1 << (iLock-1));
if( eOp==LSM_LOCK_EXCL ) mask |= ((u64)1 << (iLock+32-1));
}
lsmMutexEnter(db->pEnv, p->pClientMutex);
for(pIter=p->pConn; pIter; pIter=pIter->pNext){
if( pIter!=db && (pIter->mLock & mask) ){
assert( pIter!=db );
break;
}
}
if( pIter ){
rc = LSM_BUSY;
}else if( p->bMultiProc ){
rc = lsmEnvTestLock(db->pEnv, p->pFile, iLock, nLock, eOp);
}
lsmMutexLeave(db->pEnv, p->pClientMutex);
return rc;
}
/*
** Attempt to obtain the lock identified by the iLock and bExcl parameters.
** If successful, return LSM_OK. If the lock cannot be obtained because
** there exists some other conflicting lock, return LSM_BUSY. If some other
** error occurs, return an LSM error code.
**
** Parameter iLock must be one of LSM_LOCK_WRITER, WORKER or CHECKPOINTER,
** or else a value returned by the LSM_LOCK_READER macro.
*/
int lsmShmLock(
lsm_db *db,
int iLock,
int eOp, /* One of LSM_LOCK_UNLOCK, SHARED or EXCL */
int bBlock /* True for a blocking lock */
){
lsm_db *pIter;
const u64 me = ((u64)1 << (iLock-1));
const u64 ms = ((u64)1 << (iLock+32-1));
int rc = LSM_OK;
Database *p = db->pDatabase;
assert( eOp!=LSM_LOCK_EXCL || p->bReadonly==0 );
assert( iLock>=1 && iLock<=LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT-1) );
assert( LSM_LOCK_RWCLIENT(LSM_LOCK_NRWCLIENT-1)<=32 );
assert( eOp==LSM_LOCK_UNLOCK || eOp==LSM_LOCK_SHARED || eOp==LSM_LOCK_EXCL );
/* Check for a no-op. Proceed only if this is not one of those. */
if( (eOp==LSM_LOCK_UNLOCK && (db->mLock & (me|ms))!=0)
|| (eOp==LSM_LOCK_SHARED && (db->mLock & (me|ms))!=ms)
|| (eOp==LSM_LOCK_EXCL && (db->mLock & me)==0)
){
int nExcl = 0; /* Number of connections holding EXCLUSIVE */
int nShared = 0; /* Number of connections holding SHARED */
lsmMutexEnter(db->pEnv, p->pClientMutex);
/* Figure out the locks currently held by this process on iLock, not
** including any held by connection db. */
for(pIter=p->pConn; pIter; pIter=pIter->pNext){
assert( (pIter->mLock & me)==0 || (pIter->mLock & ms)!=0 );
if( pIter!=db ){
if( pIter->mLock & me ){
nExcl++;
}else if( pIter->mLock & ms ){
nShared++;
}
}
}
assert( nExcl==0 || nExcl==1 );
assert( nExcl==0 || nShared==0 );
assert( nExcl==0 || (db->mLock & (me|ms))==0 );
switch( eOp ){
case LSM_LOCK_UNLOCK:
if( nShared==0 ){
lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_UNLOCK);
}
db->mLock &= ~(me|ms);
break;
case LSM_LOCK_SHARED:
if( nExcl ){
rc = LSM_BUSY;
}else{
if( nShared==0 ){
rc = lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_SHARED);
}
if( rc==LSM_OK ){
db->mLock |= ms;
db->mLock &= ~me;
}
}
break;
default:
assert( eOp==LSM_LOCK_EXCL );
if( nExcl || nShared ){
rc = LSM_BUSY;
}else{
rc = lockSharedFile(db->pEnv, p, iLock, LSM_LOCK_EXCL);
if( rc==LSM_OK ){
db->mLock |= (me|ms);
}
}
break;
}
lsmMutexLeave(db->pEnv, p->pClientMutex);
}
return rc;
}
#ifdef LSM_DEBUG
int shmLockType(lsm_db *db, int iLock){
const u64 me = ((u64)1 << (iLock-1));
const u64 ms = ((u64)1 << (iLock+32-1));
if( db->mLock & me ) return LSM_LOCK_EXCL;
if( db->mLock & ms ) return LSM_LOCK_SHARED;
return LSM_LOCK_UNLOCK;
}
/*
** The arguments passed to this function are similar to those passed to
** the lsmShmLock() function. However, instead of obtaining a new lock
** this function returns true if the specified connection already holds
** (or does not hold) such a lock, depending on the value of eOp. As
** follows:
**
** (eOp==LSM_LOCK_UNLOCK) -> true if db has no lock on iLock
** (eOp==LSM_LOCK_SHARED) -> true if db has at least a SHARED lock on iLock.
** (eOp==LSM_LOCK_EXCL) -> true if db has an EXCLUSIVE lock on iLock.
*/
int lsmShmAssertLock(lsm_db *db, int iLock, int eOp){
int ret = 0;
int eHave;
assert( iLock>=1 && iLock<=LSM_LOCK_READER(LSM_LOCK_NREADER-1) );
assert( iLock<=16 );
assert( eOp==LSM_LOCK_UNLOCK || eOp==LSM_LOCK_SHARED || eOp==LSM_LOCK_EXCL );
eHave = shmLockType(db, iLock);
switch( eOp ){
case LSM_LOCK_UNLOCK:
ret = (eHave==LSM_LOCK_UNLOCK);
break;
case LSM_LOCK_SHARED:
ret = (eHave!=LSM_LOCK_UNLOCK);
break;
case LSM_LOCK_EXCL:
ret = (eHave==LSM_LOCK_EXCL);
break;
default:
assert( !"bad eOp value passed to lsmShmAssertLock()" );
break;
}
return ret;
}
int lsmShmAssertWorker(lsm_db *db){
return lsmShmAssertLock(db, LSM_LOCK_WORKER, LSM_LOCK_EXCL) && db->pWorker;
}
/*
** This function does not contribute to library functionality, and is not
** included in release builds. It is intended to be called from within
** an interactive debugger.
**
** When called, this function prints a single line of human readable output
** to stdout describing the locks currently held by the connection. For
** example:
**
** (gdb) call print_db_locks(pDb)
** (shared on dms2) (exclusive on writer)
*/
void print_db_locks(lsm_db *db){
int iLock;
for(iLock=0; iLock<16; iLock++){
int bOne = 0;
const char *azLock[] = {0, "shared", "exclusive"};
const char *azName[] = {
0, "dms1", "dms2", "writer", "worker", "checkpointer",
"reader0", "reader1", "reader2", "reader3", "reader4", "reader5"
};
int eHave = shmLockType(db, iLock);
if( azLock[eHave] ){
printf("%s(%s on %s)", (bOne?" ":""), azLock[eHave], azName[iLock]);
bOne = 1;
}
}
printf("\n");
}
void print_all_db_locks(lsm_db *db){
lsm_db *p;
for(p=db->pDatabase->pConn; p; p=p->pNext){
printf("%s connection %p ", ((p==db)?"*":""), p);
print_db_locks(p);
}
}
#endif
void lsmShmBarrier(lsm_db *db){
lsmEnvShmBarrier(db->pEnv);
}
int lsm_checkpoint(lsm_db *pDb, int *pnKB){
int rc; /* Return code */
u32 nWrite = 0; /* Number of pages checkpointed */
/* Attempt the checkpoint. If successful, nWrite is set to the number of
** pages written between this and the previous checkpoint. */
rc = lsmCheckpointWrite(pDb, &nWrite);
/* If required, calculate the output variable (KB of data checkpointed).
** Set it to zero if an error occured. */
if( pnKB ){
int nKB = 0;
if( rc==LSM_OK && nWrite ){
nKB = (((i64)nWrite * lsmFsPageSize(pDb->pFS)) + 1023) / 1024;
}
*pnKB = nKB;
}
return rc;
}
|