summaryrefslogtreecommitdiffstats
path: root/src/analyze.c
blob: 8c48a8ff2aa29c9ec8209802df1147861f374316 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
/*
** 2005-07-08
**
** The author disclaims copyright to this source code.  In place of
** a legal notice, here is a blessing:
**
**    May you do good and not evil.
**    May you find forgiveness for yourself and forgive others.
**    May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains code associated with the ANALYZE command.
**
** The ANALYZE command gather statistics about the content of tables
** and indices.  These statistics are made available to the query planner
** to help it make better decisions about how to perform queries.
**
** The following system tables are or have been supported:
**
**    CREATE TABLE sqlite_stat1(tbl, idx, stat);
**    CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
**    CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
**    CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
**
** Additional tables might be added in future releases of SQLite.
** The sqlite_stat2 table is not created or used unless the SQLite version
** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
** with SQLITE_ENABLE_STAT2.  The sqlite_stat2 table is deprecated.
** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
** created and used by SQLite versions 3.7.9 through 3.29.0 when
** SQLITE_ENABLE_STAT3 defined.  The functionality of sqlite_stat3
** is a superset of sqlite_stat2 and is also now deprecated.  The
** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only 
** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
** versions 3.8.1 and later.  STAT4 is the only variant that is still
** supported.
**
** For most applications, sqlite_stat1 provides all the statistics required
** for the query planner to make good choices.
**
** Format of sqlite_stat1:
**
** There is normally one row per index, with the index identified by the
** name in the idx column.  The tbl column is the name of the table to
** which the index belongs.  In each such row, the stat column will be
** a string consisting of a list of integers.  The first integer in this
** list is the number of rows in the index.  (This is the same as the
** number of rows in the table, except for partial indices.)  The second
** integer is the average number of rows in the index that have the same
** value in the first column of the index.  The third integer is the average
** number of rows in the index that have the same value for the first two
** columns.  The N-th integer (for N>1) is the average number of rows in 
** the index which have the same value for the first N-1 columns.  For
** a K-column index, there will be K+1 integers in the stat column.  If
** the index is unique, then the last integer will be 1.
**
** The list of integers in the stat column can optionally be followed
** by the keyword "unordered".  The "unordered" keyword, if it is present,
** must be separated from the last integer by a single space.  If the
** "unordered" keyword is present, then the query planner assumes that
** the index is unordered and will not use the index for a range query.
** 
** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
** column contains a single integer which is the (estimated) number of
** rows in the table identified by sqlite_stat1.tbl.
**
** Format of sqlite_stat2:
**
** The sqlite_stat2 is only created and is only used if SQLite is compiled
** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
** 3.6.18 and 3.7.8.  The "stat2" table contains additional information
** about the distribution of keys within an index.  The index is identified by
** the "idx" column and the "tbl" column is the name of the table to which
** the index belongs.  There are usually 10 rows in the sqlite_stat2
** table for each index.
**
** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
** inclusive are samples of the left-most key value in the index taken at
** evenly spaced points along the index.  Let the number of samples be S
** (10 in the standard build) and let C be the number of rows in the index.
** Then the sampled rows are given by:
**
**     rownumber = (i*C*2 + C)/(S*2)
**
** For i between 0 and S-1.  Conceptually, the index space is divided into
** S uniform buckets and the samples are the middle row from each bucket.
**
** The format for sqlite_stat2 is recorded here for legacy reference.  This
** version of SQLite does not support sqlite_stat2.  It neither reads nor
** writes the sqlite_stat2 table.  This version of SQLite only supports
** sqlite_stat3.
**
** Format for sqlite_stat3:
**
** The sqlite_stat3 format is a subset of sqlite_stat4.  Hence, the
** sqlite_stat4 format will be described first.  Further information
** about sqlite_stat3 follows the sqlite_stat4 description.
**
** Format for sqlite_stat4:
**
** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
** to aid the query planner in choosing good indices based on the values
** that indexed columns are compared against in the WHERE clauses of
** queries.
**
** The sqlite_stat4 table contains multiple entries for each index.
** The idx column names the index and the tbl column is the table of the
** index.  If the idx and tbl columns are the same, then the sample is
** of the INTEGER PRIMARY KEY.  The sample column is a blob which is the
** binary encoding of a key from the index.  The nEq column is a
** list of integers.  The first integer is the approximate number
** of entries in the index whose left-most column exactly matches
** the left-most column of the sample.  The second integer in nEq
** is the approximate number of entries in the index where the
** first two columns match the first two columns of the sample.
** And so forth.  nLt is another list of integers that show the approximate
** number of entries that are strictly less than the sample.  The first
** integer in nLt contains the number of entries in the index where the
** left-most column is less than the left-most column of the sample.
** The K-th integer in the nLt entry is the number of index entries 
** where the first K columns are less than the first K columns of the
** sample.  The nDLt column is like nLt except that it contains the 
** number of distinct entries in the index that are less than the
** sample.
**
** There can be an arbitrary number of sqlite_stat4 entries per index.
** The ANALYZE command will typically generate sqlite_stat4 tables
** that contain between 10 and 40 samples which are distributed across
** the key space, though not uniformly, and which include samples with
** large nEq values.
**
** Format for sqlite_stat3 redux:
**
** The sqlite_stat3 table is like sqlite_stat4 except that it only
** looks at the left-most column of the index.  The sqlite_stat3.sample
** column contains the actual value of the left-most column instead
** of a blob encoding of the complete index key as is found in
** sqlite_stat4.sample.  The nEq, nLt, and nDLt entries of sqlite_stat3
** all contain just a single integer which is the same as the first
** integer in the equivalent columns in sqlite_stat4.
*/
#ifndef SQLITE_OMIT_ANALYZE
#include "sqliteInt.h"

#if defined(SQLITE_ENABLE_STAT4)
# define IsStat4     1
#else
# define IsStat4     0
# undef SQLITE_STAT4_SAMPLES
# define SQLITE_STAT4_SAMPLES 1
#endif

/*
** This routine generates code that opens the sqlite_statN tables.
** The sqlite_stat1 table is always relevant.  sqlite_stat2 is now
** obsolete.  sqlite_stat3 and sqlite_stat4 are only opened when
** appropriate compile-time options are provided.
**
** If the sqlite_statN tables do not previously exist, it is created.
**
** Argument zWhere may be a pointer to a buffer containing a table name,
** or it may be a NULL pointer. If it is not NULL, then all entries in
** the sqlite_statN tables associated with the named table are deleted.
** If zWhere==0, then code is generated to delete all stat table entries.
*/
static void openStatTable(
  Parse *pParse,          /* Parsing context */
  int iDb,                /* The database we are looking in */
  int iStatCur,           /* Open the sqlite_stat1 table on this cursor */
  const char *zWhere,     /* Delete entries for this table or index */
  const char *zWhereType  /* Either "tbl" or "idx" */
){
  static const struct {
    const char *zName;
    const char *zCols;
  } aTable[] = {
    { "sqlite_stat1", "tbl,idx,stat" },
#if defined(SQLITE_ENABLE_STAT4)
    { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
#else
    { "sqlite_stat4", 0 },
#endif
    { "sqlite_stat3", 0 },
  };
  int i;
  sqlite3 *db = pParse->db;
  Db *pDb;
  Vdbe *v = sqlite3GetVdbe(pParse);
  u32 aRoot[ArraySize(aTable)];
  u8 aCreateTbl[ArraySize(aTable)];
#ifdef SQLITE_ENABLE_STAT4
  const int nToOpen = OptimizationEnabled(db,SQLITE_Stat4) ? 2 : 1;
#else
  const int nToOpen = 1;
#endif

  if( v==0 ) return;
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  assert( sqlite3VdbeDb(v)==db );
  pDb = &db->aDb[iDb];

  /* Create new statistic tables if they do not exist, or clear them
  ** if they do already exist.
  */
  for(i=0; i<ArraySize(aTable); i++){
    const char *zTab = aTable[i].zName;
    Table *pStat;
    aCreateTbl[i] = 0;
    if( (pStat = sqlite3FindTable(db, zTab, pDb->zDbSName))==0 ){
      if( i<nToOpen ){
        /* The sqlite_statN table does not exist. Create it. Note that a 
        ** side-effect of the CREATE TABLE statement is to leave the rootpage 
        ** of the new table in register pParse->regRoot. This is important 
        ** because the OpenWrite opcode below will be needing it. */
        sqlite3NestedParse(pParse,
            "CREATE TABLE %Q.%s(%s)", pDb->zDbSName, zTab, aTable[i].zCols
        );
        aRoot[i] = (u32)pParse->regRoot;
        aCreateTbl[i] = OPFLAG_P2ISREG;
      }
    }else{
      /* The table already exists. If zWhere is not NULL, delete all entries 
      ** associated with the table zWhere. If zWhere is NULL, delete the
      ** entire contents of the table. */
      aRoot[i] = pStat->tnum;
      sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
      if( zWhere ){
        sqlite3NestedParse(pParse,
           "DELETE FROM %Q.%s WHERE %s=%Q",
           pDb->zDbSName, zTab, zWhereType, zWhere
        );
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
      }else if( db->xPreUpdateCallback ){
        sqlite3NestedParse(pParse, "DELETE FROM %Q.%s", pDb->zDbSName, zTab);
#endif
      }else{
        /* The sqlite_stat[134] table already exists.  Delete all rows. */
        sqlite3VdbeAddOp2(v, OP_Clear, (int)aRoot[i], iDb);
      }
    }
  }

  /* Open the sqlite_stat[134] tables for writing. */
  for(i=0; i<nToOpen; i++){
    assert( i<ArraySize(aTable) );
    sqlite3VdbeAddOp4Int(v, OP_OpenWrite, iStatCur+i, (int)aRoot[i], iDb, 3);
    sqlite3VdbeChangeP5(v, aCreateTbl[i]);
    VdbeComment((v, aTable[i].zName));
  }
}

/*
** Recommended number of samples for sqlite_stat4
*/
#ifndef SQLITE_STAT4_SAMPLES
# define SQLITE_STAT4_SAMPLES 24
#endif

/*
** Three SQL functions - stat_init(), stat_push(), and stat_get() -
** share an instance of the following structure to hold their state
** information.
*/
typedef struct StatAccum StatAccum;
typedef struct StatSample StatSample;
struct StatSample {
  tRowcnt *anDLt;                 /* sqlite_stat4.nDLt */
#ifdef SQLITE_ENABLE_STAT4
  tRowcnt *anEq;                  /* sqlite_stat4.nEq */
  tRowcnt *anLt;                  /* sqlite_stat4.nLt */
  union {
    i64 iRowid;                     /* Rowid in main table of the key */
    u8 *aRowid;                     /* Key for WITHOUT ROWID tables */
  } u;
  u32 nRowid;                     /* Sizeof aRowid[] */
  u8 isPSample;                   /* True if a periodic sample */
  int iCol;                       /* If !isPSample, the reason for inclusion */
  u32 iHash;                      /* Tiebreaker hash */
#endif
};                                                    
struct StatAccum {
  sqlite3 *db;              /* Database connection, for malloc() */
  tRowcnt nEst;             /* Estimated number of rows */
  tRowcnt nRow;             /* Number of rows visited so far */
  int nLimit;               /* Analysis row-scan limit */
  int nCol;                 /* Number of columns in index + pk/rowid */
  int nKeyCol;              /* Number of index columns w/o the pk/rowid */
  u8 nSkipAhead;            /* Number of times of skip-ahead */
  StatSample current;       /* Current row as a StatSample */
#ifdef SQLITE_ENABLE_STAT4
  tRowcnt nPSample;         /* How often to do a periodic sample */
  int mxSample;             /* Maximum number of samples to accumulate */
  u32 iPrn;                 /* Pseudo-random number used for sampling */
  StatSample *aBest;        /* Array of nCol best samples */
  int iMin;                 /* Index in a[] of entry with minimum score */
  int nSample;              /* Current number of samples */
  int nMaxEqZero;           /* Max leading 0 in anEq[] for any a[] entry */
  int iGet;                 /* Index of current sample accessed by stat_get() */
  StatSample *a;            /* Array of mxSample StatSample objects */
#endif
};

/* Reclaim memory used by a StatSample
*/
#ifdef SQLITE_ENABLE_STAT4
static void sampleClear(sqlite3 *db, StatSample *p){
  assert( db!=0 );
  if( p->nRowid ){
    sqlite3DbFree(db, p->u.aRowid);
    p->nRowid = 0;
  }
}
#endif

/* Initialize the BLOB value of a ROWID
*/
#ifdef SQLITE_ENABLE_STAT4
static void sampleSetRowid(sqlite3 *db, StatSample *p, int n, const u8 *pData){
  assert( db!=0 );
  if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
  p->u.aRowid = sqlite3DbMallocRawNN(db, n);
  if( p->u.aRowid ){
    p->nRowid = n;
    memcpy(p->u.aRowid, pData, n);
  }else{
    p->nRowid = 0;
  }
}
#endif

/* Initialize the INTEGER value of a ROWID.
*/
#ifdef SQLITE_ENABLE_STAT4
static void sampleSetRowidInt64(sqlite3 *db, StatSample *p, i64 iRowid){
  assert( db!=0 );
  if( p->nRowid ) sqlite3DbFree(db, p->u.aRowid);
  p->nRowid = 0;
  p->u.iRowid = iRowid;
}
#endif


/*
** Copy the contents of object (*pFrom) into (*pTo).
*/
#ifdef SQLITE_ENABLE_STAT4
static void sampleCopy(StatAccum *p, StatSample *pTo, StatSample *pFrom){
  pTo->isPSample = pFrom->isPSample;
  pTo->iCol = pFrom->iCol;
  pTo->iHash = pFrom->iHash;
  memcpy(pTo->anEq, pFrom->anEq, sizeof(tRowcnt)*p->nCol);
  memcpy(pTo->anLt, pFrom->anLt, sizeof(tRowcnt)*p->nCol);
  memcpy(pTo->anDLt, pFrom->anDLt, sizeof(tRowcnt)*p->nCol);
  if( pFrom->nRowid ){
    sampleSetRowid(p->db, pTo, pFrom->nRowid, pFrom->u.aRowid);
  }else{
    sampleSetRowidInt64(p->db, pTo, pFrom->u.iRowid);
  }
}
#endif

/*
** Reclaim all memory of a StatAccum structure.
*/
static void statAccumDestructor(void *pOld){
  StatAccum *p = (StatAccum*)pOld;
#ifdef SQLITE_ENABLE_STAT4
  if( p->mxSample ){
    int i;
    for(i=0; i<p->nCol; i++) sampleClear(p->db, p->aBest+i);
    for(i=0; i<p->mxSample; i++) sampleClear(p->db, p->a+i);
    sampleClear(p->db, &p->current);
  }
#endif
  sqlite3DbFree(p->db, p);
}

/*
** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
** are:
**     N:    The number of columns in the index including the rowid/pk (note 1)
**     K:    The number of columns in the index excluding the rowid/pk.
**     C:    Estimated number of rows in the index
**     L:    A limit on the number of rows to scan, or 0 for no-limit 
**
** Note 1:  In the special case of the covering index that implements a
** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
** total number of columns in the table.
**
** For indexes on ordinary rowid tables, N==K+1.  But for indexes on
** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
** PRIMARY KEY of the table.  The covering index that implements the
** original WITHOUT ROWID table as N==K as a special case.
**
** This routine allocates the StatAccum object in heap memory. The return 
** value is a pointer to the StatAccum object.  The datatype of the
** return value is BLOB, but it is really just a pointer to the StatAccum
** object.
*/
static void statInit(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  StatAccum *p;
  int nCol;                       /* Number of columns in index being sampled */
  int nKeyCol;                    /* Number of key columns */
  int nColUp;                     /* nCol rounded up for alignment */
  int n;                          /* Bytes of space to allocate */
  sqlite3 *db = sqlite3_context_db_handle(context);   /* Database connection */
#ifdef SQLITE_ENABLE_STAT4
  /* Maximum number of samples.  0 if STAT4 data is not collected */
  int mxSample = OptimizationEnabled(db,SQLITE_Stat4) ?SQLITE_STAT4_SAMPLES :0;
#endif

  /* Decode the three function arguments */
  UNUSED_PARAMETER(argc);
  nCol = sqlite3_value_int(argv[0]);
  assert( nCol>0 );
  nColUp = sizeof(tRowcnt)<8 ? (nCol+1)&~1 : nCol;
  nKeyCol = sqlite3_value_int(argv[1]);
  assert( nKeyCol<=nCol );
  assert( nKeyCol>0 );

  /* Allocate the space required for the StatAccum object */
  n = sizeof(*p) 
    + sizeof(tRowcnt)*nColUp;                    /* StatAccum.anDLt */
#ifdef SQLITE_ENABLE_STAT4
  n += sizeof(tRowcnt)*nColUp;                   /* StatAccum.anEq */
  if( mxSample ){
    n += sizeof(tRowcnt)*nColUp                  /* StatAccum.anLt */
      + sizeof(StatSample)*(nCol+mxSample)       /* StatAccum.aBest[], a[] */
      + sizeof(tRowcnt)*3*nColUp*(nCol+mxSample);
  }
#endif
  p = sqlite3DbMallocZero(db, n);
  if( p==0 ){
    sqlite3_result_error_nomem(context);
    return;
  }

  p->db = db;
  p->nEst = sqlite3_value_int64(argv[2]);
  p->nRow = 0;
  p->nLimit = sqlite3_value_int64(argv[3]);
  p->nCol = nCol;
  p->nKeyCol = nKeyCol;
  p->nSkipAhead = 0;
  p->current.anDLt = (tRowcnt*)&p[1];

#ifdef SQLITE_ENABLE_STAT4
  p->current.anEq = &p->current.anDLt[nColUp];
  p->mxSample = p->nLimit==0 ? mxSample : 0;
  if( mxSample ){
    u8 *pSpace;                     /* Allocated space not yet assigned */
    int i;                          /* Used to iterate through p->aSample[] */

    p->iGet = -1;
    p->nPSample = (tRowcnt)(p->nEst/(mxSample/3+1) + 1);
    p->current.anLt = &p->current.anEq[nColUp];
    p->iPrn = 0x689e962d*(u32)nCol ^ 0xd0944565*(u32)sqlite3_value_int(argv[2]);
  
    /* Set up the StatAccum.a[] and aBest[] arrays */
    p->a = (struct StatSample*)&p->current.anLt[nColUp];
    p->aBest = &p->a[mxSample];
    pSpace = (u8*)(&p->a[mxSample+nCol]);
    for(i=0; i<(mxSample+nCol); i++){
      p->a[i].anEq = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
      p->a[i].anLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
      p->a[i].anDLt = (tRowcnt *)pSpace; pSpace += (sizeof(tRowcnt) * nColUp);
    }
    assert( (pSpace - (u8*)p)==n );
  
    for(i=0; i<nCol; i++){
      p->aBest[i].iCol = i;
    }
  }
#endif

  /* Return a pointer to the allocated object to the caller.  Note that
  ** only the pointer (the 2nd parameter) matters.  The size of the object
  ** (given by the 3rd parameter) is never used and can be any positive
  ** value. */
  sqlite3_result_blob(context, p, sizeof(*p), statAccumDestructor);
}
static const FuncDef statInitFuncdef = {
  4,               /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statInit,        /* xSFunc */
  0,               /* xFinalize */
  0, 0,            /* xValue, xInverse */
  "stat_init",     /* zName */
  {0}
};

#ifdef SQLITE_ENABLE_STAT4
/*
** pNew and pOld are both candidate non-periodic samples selected for 
** the same column (pNew->iCol==pOld->iCol). Ignoring this column and 
** considering only any trailing columns and the sample hash value, this
** function returns true if sample pNew is to be preferred over pOld.
** In other words, if we assume that the cardinalities of the selected
** column for pNew and pOld are equal, is pNew to be preferred over pOld.
**
** This function assumes that for each argument sample, the contents of
** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid. 
*/
static int sampleIsBetterPost(
  StatAccum *pAccum, 
  StatSample *pNew, 
  StatSample *pOld
){
  int nCol = pAccum->nCol;
  int i;
  assert( pNew->iCol==pOld->iCol );
  for(i=pNew->iCol+1; i<nCol; i++){
    if( pNew->anEq[i]>pOld->anEq[i] ) return 1;
    if( pNew->anEq[i]<pOld->anEq[i] ) return 0;
  }
  if( pNew->iHash>pOld->iHash ) return 1;
  return 0;
}
#endif

#ifdef SQLITE_ENABLE_STAT4
/*
** Return true if pNew is to be preferred over pOld.
**
** This function assumes that for each argument sample, the contents of
** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid. 
*/
static int sampleIsBetter(
  StatAccum *pAccum, 
  StatSample *pNew, 
  StatSample *pOld
){
  tRowcnt nEqNew = pNew->anEq[pNew->iCol];
  tRowcnt nEqOld = pOld->anEq[pOld->iCol];

  assert( pOld->isPSample==0 && pNew->isPSample==0 );
  assert( IsStat4 || (pNew->iCol==0 && pOld->iCol==0) );

  if( (nEqNew>nEqOld) ) return 1;
  if( nEqNew==nEqOld ){
    if( pNew->iCol<pOld->iCol ) return 1;
    return (pNew->iCol==pOld->iCol && sampleIsBetterPost(pAccum, pNew, pOld));
  }
  return 0;
}

/*
** Copy the contents of sample *pNew into the p->a[] array. If necessary,
** remove the least desirable sample from p->a[] to make room.
*/
static void sampleInsert(StatAccum *p, StatSample *pNew, int nEqZero){
  StatSample *pSample = 0;
  int i;

  assert( IsStat4 || nEqZero==0 );

  /* StatAccum.nMaxEqZero is set to the maximum number of leading 0
  ** values in the anEq[] array of any sample in StatAccum.a[]. In
  ** other words, if nMaxEqZero is n, then it is guaranteed that there
  ** are no samples with StatSample.anEq[m]==0 for (m>=n). */
  if( nEqZero>p->nMaxEqZero ){
    p->nMaxEqZero = nEqZero;
  }
  if( pNew->isPSample==0 ){
    StatSample *pUpgrade = 0;
    assert( pNew->anEq[pNew->iCol]>0 );

    /* This sample is being added because the prefix that ends in column 
    ** iCol occurs many times in the table. However, if we have already
    ** added a sample that shares this prefix, there is no need to add
    ** this one. Instead, upgrade the priority of the highest priority
    ** existing sample that shares this prefix.  */
    for(i=p->nSample-1; i>=0; i--){
      StatSample *pOld = &p->a[i];
      if( pOld->anEq[pNew->iCol]==0 ){
        if( pOld->isPSample ) return;
        assert( pOld->iCol>pNew->iCol );
        assert( sampleIsBetter(p, pNew, pOld) );
        if( pUpgrade==0 || sampleIsBetter(p, pOld, pUpgrade) ){
          pUpgrade = pOld;
        }
      }
    }
    if( pUpgrade ){
      pUpgrade->iCol = pNew->iCol;
      pUpgrade->anEq[pUpgrade->iCol] = pNew->anEq[pUpgrade->iCol];
      goto find_new_min;
    }
  }

  /* If necessary, remove sample iMin to make room for the new sample. */
  if( p->nSample>=p->mxSample ){
    StatSample *pMin = &p->a[p->iMin];
    tRowcnt *anEq = pMin->anEq;
    tRowcnt *anLt = pMin->anLt;
    tRowcnt *anDLt = pMin->anDLt;
    sampleClear(p->db, pMin);
    memmove(pMin, &pMin[1], sizeof(p->a[0])*(p->nSample-p->iMin-1));
    pSample = &p->a[p->nSample-1];
    pSample->nRowid = 0;
    pSample->anEq = anEq;
    pSample->anDLt = anDLt;
    pSample->anLt = anLt;
    p->nSample = p->mxSample-1;
  }

  /* The "rows less-than" for the rowid column must be greater than that
  ** for the last sample in the p->a[] array. Otherwise, the samples would
  ** be out of order. */
  assert( p->nSample==0 
       || pNew->anLt[p->nCol-1] > p->a[p->nSample-1].anLt[p->nCol-1] );

  /* Insert the new sample */
  pSample = &p->a[p->nSample];
  sampleCopy(p, pSample, pNew);
  p->nSample++;

  /* Zero the first nEqZero entries in the anEq[] array. */
  memset(pSample->anEq, 0, sizeof(tRowcnt)*nEqZero);

find_new_min:
  if( p->nSample>=p->mxSample ){
    int iMin = -1;
    for(i=0; i<p->mxSample; i++){
      if( p->a[i].isPSample ) continue;
      if( iMin<0 || sampleIsBetter(p, &p->a[iMin], &p->a[i]) ){
        iMin = i;
      }
    }
    assert( iMin>=0 );
    p->iMin = iMin;
  }
}
#endif /* SQLITE_ENABLE_STAT4 */

#ifdef SQLITE_ENABLE_STAT4
/*
** Field iChng of the index being scanned has changed. So at this point
** p->current contains a sample that reflects the previous row of the
** index. The value of anEq[iChng] and subsequent anEq[] elements are
** correct at this point.
*/
static void samplePushPrevious(StatAccum *p, int iChng){
  int i;

  /* Check if any samples from the aBest[] array should be pushed
  ** into IndexSample.a[] at this point.  */
  for(i=(p->nCol-2); i>=iChng; i--){
    StatSample *pBest = &p->aBest[i];
    pBest->anEq[i] = p->current.anEq[i];
    if( p->nSample<p->mxSample || sampleIsBetter(p, pBest, &p->a[p->iMin]) ){
      sampleInsert(p, pBest, i);
    }
  }

  /* Check that no sample contains an anEq[] entry with an index of
  ** p->nMaxEqZero or greater set to zero. */
  for(i=p->nSample-1; i>=0; i--){
    int j;
    for(j=p->nMaxEqZero; j<p->nCol; j++) assert( p->a[i].anEq[j]>0 );
  }

  /* Update the anEq[] fields of any samples already collected. */
  if( iChng<p->nMaxEqZero ){
    for(i=p->nSample-1; i>=0; i--){
      int j;
      for(j=iChng; j<p->nCol; j++){
        if( p->a[i].anEq[j]==0 ) p->a[i].anEq[j] = p->current.anEq[j];
      }
    }
    p->nMaxEqZero = iChng;
  }
}
#endif /* SQLITE_ENABLE_STAT4 */

/*
** Implementation of the stat_push SQL function:  stat_push(P,C,R)
** Arguments:
**
**    P     Pointer to the StatAccum object created by stat_init()
**    C     Index of left-most column to differ from previous row
**    R     Rowid for the current row.  Might be a key record for
**          WITHOUT ROWID tables.
**
** The purpose of this routine is to collect statistical data and/or
** samples from the index being analyzed into the StatAccum object.
** The stat_get() SQL function will be used afterwards to
** retrieve the information gathered.
**
** This SQL function usually returns NULL, but might return an integer
** if it wants the byte-code to do special processing.
**
** The R parameter is only used for STAT4
*/
static void statPush(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  int i;

  /* The three function arguments */
  StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
  int iChng = sqlite3_value_int(argv[1]);

  UNUSED_PARAMETER( argc );
  UNUSED_PARAMETER( context );
  assert( p->nCol>0 );
  assert( iChng<p->nCol );

  if( p->nRow==0 ){
    /* This is the first call to this function. Do initialization. */
#ifdef SQLITE_ENABLE_STAT4
    for(i=0; i<p->nCol; i++) p->current.anEq[i] = 1;
#endif
  }else{
    /* Second and subsequent calls get processed here */
#ifdef SQLITE_ENABLE_STAT4
    if( p->mxSample ) samplePushPrevious(p, iChng);
#endif

    /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
    ** to the current row of the index. */
#ifdef SQLITE_ENABLE_STAT4
    for(i=0; i<iChng; i++){
      p->current.anEq[i]++;
    }
#endif
    for(i=iChng; i<p->nCol; i++){
      p->current.anDLt[i]++;
#ifdef SQLITE_ENABLE_STAT4
      if( p->mxSample ) p->current.anLt[i] += p->current.anEq[i];
      p->current.anEq[i] = 1;
#endif
    }
  }

  p->nRow++;
#ifdef SQLITE_ENABLE_STAT4
  if( p->mxSample ){
    tRowcnt nLt;
    if( sqlite3_value_type(argv[2])==SQLITE_INTEGER ){
      sampleSetRowidInt64(p->db, &p->current, sqlite3_value_int64(argv[2]));
    }else{
      sampleSetRowid(p->db, &p->current, sqlite3_value_bytes(argv[2]),
                                         sqlite3_value_blob(argv[2]));
    }
    p->current.iHash = p->iPrn = p->iPrn*1103515245 + 12345;

    nLt = p->current.anLt[p->nCol-1];
    /* Check if this is to be a periodic sample. If so, add it. */
    if( (nLt/p->nPSample)!=(nLt+1)/p->nPSample ){
      p->current.isPSample = 1;
      p->current.iCol = 0;
      sampleInsert(p, &p->current, p->nCol-1);
      p->current.isPSample = 0;
    }

    /* Update the aBest[] array. */
    for(i=0; i<(p->nCol-1); i++){
      p->current.iCol = i;
      if( i>=iChng || sampleIsBetterPost(p, &p->current, &p->aBest[i]) ){
        sampleCopy(p, &p->aBest[i], &p->current);
      }
    }
  }else
#endif
  if( p->nLimit && p->nRow>(tRowcnt)p->nLimit*(p->nSkipAhead+1) ){
    p->nSkipAhead++;
    sqlite3_result_int(context, p->current.anDLt[0]>0);
  }
}

static const FuncDef statPushFuncdef = {
  2+IsStat4,       /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statPush,        /* xSFunc */
  0,               /* xFinalize */
  0, 0,            /* xValue, xInverse */
  "stat_push",     /* zName */
  {0}
};

#define STAT_GET_STAT1 0          /* "stat" column of stat1 table */
#define STAT_GET_ROWID 1          /* "rowid" column of stat[34] entry */
#define STAT_GET_NEQ   2          /* "neq" column of stat[34] entry */
#define STAT_GET_NLT   3          /* "nlt" column of stat[34] entry */
#define STAT_GET_NDLT  4          /* "ndlt" column of stat[34] entry */

/*
** Implementation of the stat_get(P,J) SQL function.  This routine is
** used to query statistical information that has been gathered into
** the StatAccum object by prior calls to stat_push().  The P parameter
** has type BLOB but it is really just a pointer to the StatAccum object.
** The content to returned is determined by the parameter J
** which is one of the STAT_GET_xxxx values defined above.
**
** The stat_get(P,J) function is not available to generic SQL.  It is
** inserted as part of a manually constructed bytecode program.  (See
** the callStatGet() routine below.)  It is guaranteed that the P
** parameter will always be a pointer to a StatAccum object, never a
** NULL.
**
** If STAT4 is not enabled, then J is always
** STAT_GET_STAT1 and is hence omitted and this routine becomes
** a one-parameter function, stat_get(P), that always returns the
** stat1 table entry information.
*/
static void statGet(
  sqlite3_context *context,
  int argc,
  sqlite3_value **argv
){
  StatAccum *p = (StatAccum*)sqlite3_value_blob(argv[0]);
#ifdef SQLITE_ENABLE_STAT4
  /* STAT4 has a parameter on this routine. */
  int eCall = sqlite3_value_int(argv[1]);
  assert( argc==2 );
  assert( eCall==STAT_GET_STAT1 || eCall==STAT_GET_NEQ 
       || eCall==STAT_GET_ROWID || eCall==STAT_GET_NLT
       || eCall==STAT_GET_NDLT 
  );
  assert( eCall==STAT_GET_STAT1 || p->mxSample );
  if( eCall==STAT_GET_STAT1 )
#else
  assert( argc==1 );
#endif
  {
    /* Return the value to store in the "stat" column of the sqlite_stat1
    ** table for this index.
    **
    ** The value is a string composed of a list of integers describing 
    ** the index. The first integer in the list is the total number of 
    ** entries in the index. There is one additional integer in the list 
    ** for each indexed column. This additional integer is an estimate of
    ** the number of rows matched by a equality query on the index using
    ** a key with the corresponding number of fields. In other words,
    ** if the index is on columns (a,b) and the sqlite_stat1 value is 
    ** "100 10 2", then SQLite estimates that:
    **
    **   * the index contains 100 rows,
    **   * "WHERE a=?" matches 10 rows, and
    **   * "WHERE a=? AND b=?" matches 2 rows.
    **
    ** If D is the count of distinct values and K is the total number of 
    ** rows, then each estimate is usually computed as:
    **
    **        I = (K+D-1)/D
    **
    ** In other words, I is K/D rounded up to the next whole integer.
    ** However, if I is between 1.0 and 1.1 (in other words if I is
    ** close to 1.0 but just a little larger) then do not round up but
    ** instead keep the I value at 1.0.
    */
    sqlite3_str sStat;   /* Text of the constructed "stat" line */
    int i;               /* Loop counter */

    sqlite3StrAccumInit(&sStat, 0, 0, 0, (p->nKeyCol+1)*100);
    sqlite3_str_appendf(&sStat, "%llu", 
        p->nSkipAhead ? (u64)p->nEst : (u64)p->nRow);
    for(i=0; i<p->nKeyCol; i++){
      u64 nDistinct = p->current.anDLt[i] + 1;
      u64 iVal = (p->nRow + nDistinct - 1) / nDistinct;
      if( iVal==2 && p->nRow*10 <= nDistinct*11 ) iVal = 1;
      sqlite3_str_appendf(&sStat, " %llu", iVal);
#ifdef SQLITE_ENABLE_STAT4
      assert( p->current.anEq[i] || p->nRow==0 );
#endif
    }
    sqlite3ResultStrAccum(context, &sStat);
  }
#ifdef SQLITE_ENABLE_STAT4
  else if( eCall==STAT_GET_ROWID ){
    if( p->iGet<0 ){
      samplePushPrevious(p, 0);
      p->iGet = 0;
    }
    if( p->iGet<p->nSample ){
      StatSample *pS = p->a + p->iGet;
      if( pS->nRowid==0 ){
        sqlite3_result_int64(context, pS->u.iRowid);
      }else{
        sqlite3_result_blob(context, pS->u.aRowid, pS->nRowid,
                            SQLITE_TRANSIENT);
      }
    }
  }else{
    tRowcnt *aCnt = 0;
    sqlite3_str sStat;
    int i;

    assert( p->iGet<p->nSample );
    switch( eCall ){
      case STAT_GET_NEQ:  aCnt = p->a[p->iGet].anEq; break;
      case STAT_GET_NLT:  aCnt = p->a[p->iGet].anLt; break;
      default: {
        aCnt = p->a[p->iGet].anDLt; 
        p->iGet++;
        break;
      }
    }
    sqlite3StrAccumInit(&sStat, 0, 0, 0, p->nCol*100);
    for(i=0; i<p->nCol; i++){
      sqlite3_str_appendf(&sStat, "%llu ", (u64)aCnt[i]);
    }
    if( sStat.nChar ) sStat.nChar--;
    sqlite3ResultStrAccum(context, &sStat);
  }
#endif /* SQLITE_ENABLE_STAT4 */
#ifndef SQLITE_DEBUG
  UNUSED_PARAMETER( argc );
#endif
}
static const FuncDef statGetFuncdef = {
  1+IsStat4,       /* nArg */
  SQLITE_UTF8,     /* funcFlags */
  0,               /* pUserData */
  0,               /* pNext */
  statGet,         /* xSFunc */
  0,               /* xFinalize */
  0, 0,            /* xValue, xInverse */
  "stat_get",      /* zName */
  {0}
};

static void callStatGet(Parse *pParse, int regStat, int iParam, int regOut){
#ifdef SQLITE_ENABLE_STAT4
  sqlite3VdbeAddOp2(pParse->pVdbe, OP_Integer, iParam, regStat+1);
#elif SQLITE_DEBUG
  assert( iParam==STAT_GET_STAT1 );
#else
  UNUSED_PARAMETER( iParam );
#endif
  assert( regOut!=regStat && regOut!=regStat+1 );
  sqlite3VdbeAddFunctionCall(pParse, 0, regStat, regOut, 1+IsStat4,
                             &statGetFuncdef, 0);
}

#ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
/* Add a comment to the most recent VDBE opcode that is the name
** of the k-th column of the pIdx index.
*/
static void analyzeVdbeCommentIndexWithColumnName(
  Vdbe *v,         /* Prepared statement under construction */
  Index *pIdx,     /* Index whose column is being loaded */
  int k            /* Which column index */
){
  int i;           /* Index of column in the table */
  assert( k>=0 && k<pIdx->nColumn );
  i = pIdx->aiColumn[k];
  if( NEVER(i==XN_ROWID) ){
    VdbeComment((v,"%s.rowid",pIdx->zName));
  }else if( i==XN_EXPR ){
    assert( pIdx->bHasExpr );
    VdbeComment((v,"%s.expr(%d)",pIdx->zName, k));
  }else{
    VdbeComment((v,"%s.%s", pIdx->zName, pIdx->pTable->aCol[i].zCnName));
  }
}
#else
# define analyzeVdbeCommentIndexWithColumnName(a,b,c)
#endif /* SQLITE_DEBUG */

/*
** Generate code to do an analysis of all indices associated with
** a single table.
*/
static void analyzeOneTable(
  Parse *pParse,   /* Parser context */
  Table *pTab,     /* Table whose indices are to be analyzed */
  Index *pOnlyIdx, /* If not NULL, only analyze this one index */
  int iStatCur,    /* Index of VdbeCursor that writes the sqlite_stat1 table */
  int iMem,        /* Available memory locations begin here */
  int iTab         /* Next available cursor */
){
  sqlite3 *db = pParse->db;    /* Database handle */
  Index *pIdx;                 /* An index to being analyzed */
  int iIdxCur;                 /* Cursor open on index being analyzed */
  int iTabCur;                 /* Table cursor */
  Vdbe *v;                     /* The virtual machine being built up */
  int i;                       /* Loop counter */
  int jZeroRows = -1;          /* Jump from here if number of rows is zero */
  int iDb;                     /* Index of database containing pTab */
  u8 needTableCnt = 1;         /* True to count the table */
  int regNewRowid = iMem++;    /* Rowid for the inserted record */
  int regStat = iMem++;        /* Register to hold StatAccum object */
  int regChng = iMem++;        /* Index of changed index field */
  int regRowid = iMem++;       /* Rowid argument passed to stat_push() */
  int regTemp = iMem++;        /* Temporary use register */
  int regTemp2 = iMem++;       /* Second temporary use register */
  int regTabname = iMem++;     /* Register containing table name */
  int regIdxname = iMem++;     /* Register containing index name */
  int regStat1 = iMem++;       /* Value for the stat column of sqlite_stat1 */
  int regPrev = iMem;          /* MUST BE LAST (see below) */
#ifdef SQLITE_ENABLE_STAT4
  int doOnce = 1;              /* Flag for a one-time computation */
#endif
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
  Table *pStat1 = 0;
#endif

  sqlite3TouchRegister(pParse, iMem);
  assert( sqlite3NoTempsInRange(pParse, regNewRowid, iMem) );
  v = sqlite3GetVdbe(pParse);
  if( v==0 || NEVER(pTab==0) ){
    return;
  }
  if( !IsOrdinaryTable(pTab) ){
    /* Do not gather statistics on views or virtual tables */
    return;
  }
  if( sqlite3_strlike("sqlite\\_%", pTab->zName, '\\')==0 ){
    /* Do not gather statistics on system tables */
    return;
  }
  assert( sqlite3BtreeHoldsAllMutexes(db) );
  iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
  assert( iDb>=0 );
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
#ifndef SQLITE_OMIT_AUTHORIZATION
  if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
      db->aDb[iDb].zDbSName ) ){
    return;
  }
#endif

#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
  if( db->xPreUpdateCallback ){
    pStat1 = (Table*)sqlite3DbMallocZero(db, sizeof(Table) + 13);
    if( pStat1==0 ) return;
    pStat1->zName = (char*)&pStat1[1];
    memcpy(pStat1->zName, "sqlite_stat1", 13);
    pStat1->nCol = 3;
    pStat1->iPKey = -1;
    sqlite3VdbeAddOp4(pParse->pVdbe, OP_Noop, 0, 0, 0,(char*)pStat1,P4_DYNAMIC);
  }
#endif

  /* Establish a read-lock on the table at the shared-cache level. 
  ** Open a read-only cursor on the table. Also allocate a cursor number
  ** to use for scanning indexes (iIdxCur). No index cursor is opened at
  ** this time though.  */
  sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
  iTabCur = iTab++;
  iIdxCur = iTab++;
  pParse->nTab = MAX(pParse->nTab, iTab);
  sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
  sqlite3VdbeLoadString(v, regTabname, pTab->zName);

  for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
    int nCol;                     /* Number of columns in pIdx. "N" */
    int addrGotoEnd;               /* Address of "OP_Rewind iIdxCur" */
    int addrNextRow;              /* Address of "next_row:" */
    const char *zIdxName;         /* Name of the index */
    int nColTest;                 /* Number of columns to test for changes */

    if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
    if( pIdx->pPartIdxWhere==0 ) needTableCnt = 0;
    if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIdx) ){
      nCol = pIdx->nKeyCol;
      zIdxName = pTab->zName;
      nColTest = nCol - 1;
    }else{
      nCol = pIdx->nColumn;
      zIdxName = pIdx->zName;
      nColTest = pIdx->uniqNotNull ? pIdx->nKeyCol-1 : nCol-1;
    }

    /* Populate the register containing the index name. */
    sqlite3VdbeLoadString(v, regIdxname, zIdxName);
    VdbeComment((v, "Analysis for %s.%s", pTab->zName, zIdxName));

    /*
    ** Pseudo-code for loop that calls stat_push():
    **
    **   regChng = 0
    **   Rewind csr
    **   if eof(csr){
    **      stat_init() with count = 0;
    **      goto end_of_scan;
    **   }
    **   count()
    **   stat_init()
    **   goto chng_addr_0;
    **
    **  next_row:
    **   regChng = 0
    **   if( idx(0) != regPrev(0) ) goto chng_addr_0
    **   regChng = 1
    **   if( idx(1) != regPrev(1) ) goto chng_addr_1
    **   ...
    **   regChng = N
    **   goto chng_addr_N
    **
    **  chng_addr_0:
    **   regPrev(0) = idx(0)
    **  chng_addr_1:
    **   regPrev(1) = idx(1)
    **  ...
    **
    **  endDistinctTest:
    **   regRowid = idx(rowid)
    **   stat_push(P, regChng, regRowid)
    **   Next csr
    **   if !eof(csr) goto next_row;
    **
    **  end_of_scan:
    */

    /* Make sure there are enough memory cells allocated to accommodate 
    ** the regPrev array and a trailing rowid (the rowid slot is required
    ** when building a record to insert into the sample column of 
    ** the sqlite_stat4 table.  */
    sqlite3TouchRegister(pParse, regPrev+nColTest);

    /* Open a read-only cursor on the index being analyzed. */
    assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
    sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb);
    sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
    VdbeComment((v, "%s", pIdx->zName));

    /* Implementation of the following:
    **
    **   regChng = 0
    **   Rewind csr
    **   if eof(csr){
    **      stat_init() with count = 0;
    **      goto end_of_scan;
    **   }
    **   count()
    **   stat_init()
    **   goto chng_addr_0;
    */
    assert( regTemp2==regStat+4 );
    sqlite3VdbeAddOp2(v, OP_Integer, db->nAnalysisLimit, regTemp2);

    /* Arguments to stat_init(): 
    **    (1) the number of columns in the index including the rowid
    **        (or for a WITHOUT ROWID table, the number of PK columns),
    **    (2) the number of columns in the key without the rowid/pk
    **    (3) estimated number of rows in the index. */
    sqlite3VdbeAddOp2(v, OP_Integer, nCol, regStat+1);
    assert( regRowid==regStat+2 );
    sqlite3VdbeAddOp2(v, OP_Integer, pIdx->nKeyCol, regRowid);
    sqlite3VdbeAddOp3(v, OP_Count, iIdxCur, regTemp,
                      OptimizationDisabled(db, SQLITE_Stat4));
    sqlite3VdbeAddFunctionCall(pParse, 0, regStat+1, regStat, 4,
                               &statInitFuncdef, 0);
    addrGotoEnd = sqlite3VdbeAddOp1(v, OP_Rewind, iIdxCur);
    VdbeCoverage(v);

    sqlite3VdbeAddOp2(v, OP_Integer, 0, regChng);
    addrNextRow = sqlite3VdbeCurrentAddr(v);

    if( nColTest>0 ){
      int endDistinctTest = sqlite3VdbeMakeLabel(pParse);
      int *aGotoChng;               /* Array of jump instruction addresses */
      aGotoChng = sqlite3DbMallocRawNN(db, sizeof(int)*nColTest);
      if( aGotoChng==0 ) continue;

      /*
      **  next_row:
      **   regChng = 0
      **   if( idx(0) != regPrev(0) ) goto chng_addr_0
      **   regChng = 1
      **   if( idx(1) != regPrev(1) ) goto chng_addr_1
      **   ...
      **   regChng = N
      **   goto endDistinctTest
      */
      sqlite3VdbeAddOp0(v, OP_Goto);
      addrNextRow = sqlite3VdbeCurrentAddr(v);
      if( nColTest==1 && pIdx->nKeyCol==1 && IsUniqueIndex(pIdx) ){
        /* For a single-column UNIQUE index, once we have found a non-NULL
        ** row, we know that all the rest will be distinct, so skip 
        ** subsequent distinctness tests. */
        sqlite3VdbeAddOp2(v, OP_NotNull, regPrev, endDistinctTest);
        VdbeCoverage(v);
      }
      for(i=0; i<nColTest; i++){
        char *pColl = (char*)sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
        sqlite3VdbeAddOp2(v, OP_Integer, i, regChng);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regTemp);
        analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
        aGotoChng[i] = 
        sqlite3VdbeAddOp4(v, OP_Ne, regTemp, 0, regPrev+i, pColl, P4_COLLSEQ);
        sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
        VdbeCoverage(v);
      }
      sqlite3VdbeAddOp2(v, OP_Integer, nColTest, regChng);
      sqlite3VdbeGoto(v, endDistinctTest);
  
  
      /*
      **  chng_addr_0:
      **   regPrev(0) = idx(0)
      **  chng_addr_1:
      **   regPrev(1) = idx(1)
      **  ...
      */
      sqlite3VdbeJumpHere(v, addrNextRow-1);
      for(i=0; i<nColTest; i++){
        sqlite3VdbeJumpHere(v, aGotoChng[i]);
        sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regPrev+i);
        analyzeVdbeCommentIndexWithColumnName(v,pIdx,i);
      }
      sqlite3VdbeResolveLabel(v, endDistinctTest);
      sqlite3DbFree(db, aGotoChng);
    }
  
    /*
    **  chng_addr_N:
    **   regRowid = idx(rowid)            // STAT4 only
    **   stat_push(P, regChng, regRowid)  // 3rd parameter STAT4 only
    **   Next csr
    **   if !eof(csr) goto next_row;
    */
#ifdef SQLITE_ENABLE_STAT4
    if( OptimizationEnabled(db, SQLITE_Stat4) ){
      assert( regRowid==(regStat+2) );
      if( HasRowid(pTab) ){
        sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, regRowid);
      }else{
        Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
        int j, k, regKey;
        regKey = sqlite3GetTempRange(pParse, pPk->nKeyCol);
        for(j=0; j<pPk->nKeyCol; j++){
          k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
          assert( k>=0 && k<pIdx->nColumn );
          sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, regKey+j);
          analyzeVdbeCommentIndexWithColumnName(v,pIdx,k);
        }
        sqlite3VdbeAddOp3(v, OP_MakeRecord, regKey, pPk->nKeyCol, regRowid);
        sqlite3ReleaseTempRange(pParse, regKey, pPk->nKeyCol);
      }
    }
#endif
    assert( regChng==(regStat+1) );
    {
      sqlite3VdbeAddFunctionCall(pParse, 1, regStat, regTemp, 2+IsStat4,
                                 &statPushFuncdef, 0);
      if( db->nAnalysisLimit ){
        int j1, j2, j3;
        j1 = sqlite3VdbeAddOp1(v, OP_IsNull, regTemp); VdbeCoverage(v);
        j2 = sqlite3VdbeAddOp1(v, OP_If, regTemp); VdbeCoverage(v);
        j3 = sqlite3VdbeAddOp4Int(v, OP_SeekGT, iIdxCur, 0, regPrev, 1);
        VdbeCoverage(v);
        sqlite3VdbeJumpHere(v, j1);
        sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
        sqlite3VdbeJumpHere(v, j2);
        sqlite3VdbeJumpHere(v, j3);
      }else{
        sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, addrNextRow); VdbeCoverage(v);
      }
    }

    /* Add the entry to the stat1 table. */
    if( pIdx->pPartIdxWhere ){
      /* Partial indexes might get a zero-entry in sqlite_stat1.  But
      ** an empty table is omitted from sqlite_stat1. */
      sqlite3VdbeJumpHere(v, addrGotoEnd);
      addrGotoEnd = 0;
    }
    callStatGet(pParse, regStat, STAT_GET_STAT1, regStat1);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
#endif
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);

    /* Add the entries to the stat4 table. */
#ifdef SQLITE_ENABLE_STAT4
    if( OptimizationEnabled(db, SQLITE_Stat4) && db->nAnalysisLimit==0 ){
      int regEq = regStat1;
      int regLt = regStat1+1;
      int regDLt = regStat1+2;
      int regSample = regStat1+3;
      int regCol = regStat1+4;
      int regSampleRowid = regCol + nCol;
      int addrNext;
      int addrIsNull;
      u8 seekOp = HasRowid(pTab) ? OP_NotExists : OP_NotFound;

      /* No STAT4 data is generated if the number of rows is zero */
      if( addrGotoEnd==0 ){
        sqlite3VdbeAddOp2(v, OP_Cast, regStat1, SQLITE_AFF_INTEGER);
        addrGotoEnd = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
        VdbeCoverage(v);
      }

      if( doOnce ){
        int mxCol = nCol;
        Index *pX;

        /* Compute the maximum number of columns in any index */
        for(pX=pTab->pIndex; pX; pX=pX->pNext){
          int nColX;                     /* Number of columns in pX */
          if( !HasRowid(pTab) && IsPrimaryKeyIndex(pX) ){
            nColX = pX->nKeyCol;
          }else{
            nColX = pX->nColumn;
          }
          if( nColX>mxCol ) mxCol = nColX;
        }

        /* Allocate space to compute results for the largest index */
        sqlite3TouchRegister(pParse, regCol+mxCol);
        doOnce = 0;
#ifdef SQLITE_DEBUG
        /* Verify that the call to sqlite3ClearTempRegCache() below
        ** really is needed.
        ** https://sqlite.org/forum/forumpost/83cb4a95a0 (2023-03-25)
        */
        testcase( !sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) );
#endif
        sqlite3ClearTempRegCache(pParse);  /* tag-20230325-1 */
        assert( sqlite3NoTempsInRange(pParse, regEq, regCol+mxCol) );
      }
      assert( sqlite3NoTempsInRange(pParse, regEq, regCol+nCol) );

      addrNext = sqlite3VdbeCurrentAddr(v);
      callStatGet(pParse, regStat, STAT_GET_ROWID, regSampleRowid);
      addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regSampleRowid);
      VdbeCoverage(v);
      callStatGet(pParse, regStat, STAT_GET_NEQ, regEq);
      callStatGet(pParse, regStat, STAT_GET_NLT, regLt);
      callStatGet(pParse, regStat, STAT_GET_NDLT, regDLt);
      sqlite3VdbeAddOp4Int(v, seekOp, iTabCur, addrNext, regSampleRowid, 0);
      VdbeCoverage(v);
      for(i=0; i<nCol; i++){
        sqlite3ExprCodeLoadIndexColumn(pParse, pIdx, iTabCur, i, regCol+i);
      }
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regCol, nCol, regSample);
      sqlite3VdbeAddOp3(v, OP_MakeRecord, regTabname, 6, regTemp);
      sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
      sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regTemp, regNewRowid);
      sqlite3VdbeAddOp2(v, OP_Goto, 1, addrNext); /* P1==1 for end-of-loop */
      sqlite3VdbeJumpHere(v, addrIsNull);
    }
#endif /* SQLITE_ENABLE_STAT4 */

    /* End of analysis */
    if( addrGotoEnd ) sqlite3VdbeJumpHere(v, addrGotoEnd);
  }


  /* Create a single sqlite_stat1 entry containing NULL as the index
  ** name and the row count as the content.
  */
  if( pOnlyIdx==0 && needTableCnt ){
    VdbeComment((v, "%s", pTab->zName));
    sqlite3VdbeAddOp2(v, OP_Count, iTabCur, regStat1);
    jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1); VdbeCoverage(v);
    sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
    assert( "BBB"[0]==SQLITE_AFF_TEXT );
    sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regTemp, "BBB", 0);
    sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
    sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regTemp, regNewRowid);
    sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
#ifdef SQLITE_ENABLE_PREUPDATE_HOOK
    sqlite3VdbeChangeP4(v, -1, (char*)pStat1, P4_TABLE);
#endif
    sqlite3VdbeJumpHere(v, jZeroRows);
  }
}


/*
** Generate code that will cause the most recent index analysis to
** be loaded into internal hash tables where is can be used.
*/
static void loadAnalysis(Parse *pParse, int iDb){
  Vdbe *v = sqlite3GetVdbe(pParse);
  if( v ){
    sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
  }
}

/*
** Generate code that will do an analysis of an entire database
*/
static void analyzeDatabase(Parse *pParse, int iDb){
  sqlite3 *db = pParse->db;
  Schema *pSchema = db->aDb[iDb].pSchema;    /* Schema of database iDb */
  HashElem *k;
  int iStatCur;
  int iMem;
  int iTab;

  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  openStatTable(pParse, iDb, iStatCur, 0, 0);
  iMem = pParse->nMem+1;
  iTab = pParse->nTab;
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
    Table *pTab = (Table*)sqliteHashData(k);
    analyzeOneTable(pParse, pTab, 0, iStatCur, iMem, iTab);
#ifdef SQLITE_ENABLE_STAT4
    iMem = sqlite3FirstAvailableRegister(pParse, iMem);
#else
    assert( iMem==sqlite3FirstAvailableRegister(pParse,iMem) );
#endif
  }
  loadAnalysis(pParse, iDb);
}

/*
** Generate code that will do an analysis of a single table in
** a database.  If pOnlyIdx is not NULL then it is a single index
** in pTab that should be analyzed.
*/
static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
  int iDb;
  int iStatCur;

  assert( pTab!=0 );
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
  sqlite3BeginWriteOperation(pParse, 0, iDb);
  iStatCur = pParse->nTab;
  pParse->nTab += 3;
  if( pOnlyIdx ){
    openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
  }else{
    openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
  }
  analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur,pParse->nMem+1,pParse->nTab);
  loadAnalysis(pParse, iDb);
}

/*
** Generate code for the ANALYZE command.  The parser calls this routine
** when it recognizes an ANALYZE command.
**
**        ANALYZE                            -- 1
**        ANALYZE  <database>                -- 2
**        ANALYZE  ?<database>.?<tablename>  -- 3
**
** Form 1 causes all indices in all attached databases to be analyzed.
** Form 2 analyzes all indices the single database named.
** Form 3 analyzes all indices associated with the named table.
*/
void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
  sqlite3 *db = pParse->db;
  int iDb;
  int i;
  char *z, *zDb;
  Table *pTab;
  Index *pIdx;
  Token *pTableName;
  Vdbe *v;

  /* Read the database schema. If an error occurs, leave an error message
  ** and code in pParse and return NULL. */
  assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
  if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
    return;
  }

  assert( pName2!=0 || pName1==0 );
  if( pName1==0 ){
    /* Form 1:  Analyze everything */
    for(i=0; i<db->nDb; i++){
      if( i==1 ) continue;  /* Do not analyze the TEMP database */
      analyzeDatabase(pParse, i);
    }
  }else if( pName2->n==0 && (iDb = sqlite3FindDb(db, pName1))>=0 ){
    /* Analyze the schema named as the argument */
    analyzeDatabase(pParse, iDb);
  }else{
    /* Form 3: Analyze the table or index named as an argument */
    iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
    if( iDb>=0 ){
      zDb = pName2->n ? db->aDb[iDb].zDbSName : 0;
      z = sqlite3NameFromToken(db, pTableName);
      if( z ){
        if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
          analyzeTable(pParse, pIdx->pTable, pIdx);
        }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
          analyzeTable(pParse, pTab, 0);
        }
        sqlite3DbFree(db, z);
      }
    }
  }
  if( db->nSqlExec==0 && (v = sqlite3GetVdbe(pParse))!=0 ){
    sqlite3VdbeAddOp0(v, OP_Expire);
  }
}

/*
** Used to pass information from the analyzer reader through to the
** callback routine.
*/
typedef struct analysisInfo analysisInfo;
struct analysisInfo {
  sqlite3 *db;
  const char *zDatabase;
};

/*
** The first argument points to a nul-terminated string containing a
** list of space separated integers. Read the first nOut of these into
** the array aOut[].
*/
static void decodeIntArray(
  char *zIntArray,       /* String containing int array to decode */
  int nOut,              /* Number of slots in aOut[] */
  tRowcnt *aOut,         /* Store integers here */
  LogEst *aLog,          /* Or, if aOut==0, here */
  Index *pIndex          /* Handle extra flags for this index, if not NULL */
){
  char *z = zIntArray;
  int c;
  int i;
  tRowcnt v;

#ifdef SQLITE_ENABLE_STAT4
  if( z==0 ) z = "";
#else
  assert( z!=0 );
#endif
  for(i=0; *z && i<nOut; i++){
    v = 0;
    while( (c=z[0])>='0' && c<='9' ){
      v = v*10 + c - '0';
      z++;
    }
#ifdef SQLITE_ENABLE_STAT4
    if( aOut ) aOut[i] = v;
    if( aLog ) aLog[i] = sqlite3LogEst(v);
#else
    assert( aOut==0 );
    UNUSED_PARAMETER(aOut);
    assert( aLog!=0 );
    aLog[i] = sqlite3LogEst(v);
#endif
    if( *z==' ' ) z++;
  }
#ifndef SQLITE_ENABLE_STAT4
  assert( pIndex!=0 ); {
#else
  if( pIndex ){
#endif
    pIndex->bUnordered = 0;
    pIndex->noSkipScan = 0;
    while( z[0] ){
      if( sqlite3_strglob("unordered*", z)==0 ){
        pIndex->bUnordered = 1;
      }else if( sqlite3_strglob("sz=[0-9]*", z)==0 ){
        int sz = sqlite3Atoi(z+3);
        if( sz<2 ) sz = 2;
        pIndex->szIdxRow = sqlite3LogEst(sz);
      }else if( sqlite3_strglob("noskipscan*", z)==0 ){
        pIndex->noSkipScan = 1;
      }
#ifdef SQLITE_ENABLE_COSTMULT
      else if( sqlite3_strglob("costmult=[0-9]*",z)==0 ){
        pIndex->pTable->costMult = sqlite3LogEst(sqlite3Atoi(z+9));
      }
#endif
      while( z[0]!=0 && z[0]!=' ' ) z++;
      while( z[0]==' ' ) z++;
    }

    /* Set the bLowQual flag if the peak number of rows obtained
    ** from a full equality match is so large that a full table scan
    ** seems likely to be faster than using the index.
    */
    if( aLog[0] > 66              /* Index has more than 100 rows */
     && aLog[0] <= aLog[nOut-1]   /* And only a single value seen */
    ){
      pIndex->bLowQual = 1;
    }
  }
}

/*
** This callback is invoked once for each index when reading the
** sqlite_stat1 table.  
**
**     argv[0] = name of the table
**     argv[1] = name of the index (might be NULL)
**     argv[2] = results of analysis - on integer for each column
**
** Entries for which argv[1]==NULL simply record the number of rows in
** the table.
*/
static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
  analysisInfo *pInfo = (analysisInfo*)pData;
  Index *pIndex;
  Table *pTable;
  const char *z;

  assert( argc==3 );
  UNUSED_PARAMETER2(NotUsed, argc);

  if( argv==0 || argv[0]==0 || argv[2]==0 ){
    return 0;
  }
  pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
  if( pTable==0 ){
    return 0;
  }
  if( argv[1]==0 ){
    pIndex = 0;
  }else if( sqlite3_stricmp(argv[0],argv[1])==0 ){
    pIndex = sqlite3PrimaryKeyIndex(pTable);
  }else{
    pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
  }
  z = argv[2];

  if( pIndex ){
    tRowcnt *aiRowEst = 0;
    int nCol = pIndex->nKeyCol+1;
#ifdef SQLITE_ENABLE_STAT4
    /* Index.aiRowEst may already be set here if there are duplicate 
    ** sqlite_stat1 entries for this index. In that case just clobber
    ** the old data with the new instead of allocating a new array.  */
    if( pIndex->aiRowEst==0 ){
      pIndex->aiRowEst = (tRowcnt*)sqlite3MallocZero(sizeof(tRowcnt) * nCol);
      if( pIndex->aiRowEst==0 ) sqlite3OomFault(pInfo->db);
    }
    aiRowEst = pIndex->aiRowEst;
#endif
    pIndex->bUnordered = 0;
    decodeIntArray((char*)z, nCol, aiRowEst, pIndex->aiRowLogEst, pIndex);
    pIndex->hasStat1 = 1;
    if( pIndex->pPartIdxWhere==0 ){
      pTable->nRowLogEst = pIndex->aiRowLogEst[0];
      pTable->tabFlags |= TF_HasStat1;
    }
  }else{
    Index fakeIdx;
    fakeIdx.szIdxRow = pTable->szTabRow;
#ifdef SQLITE_ENABLE_COSTMULT
    fakeIdx.pTable = pTable;
#endif
    decodeIntArray((char*)z, 1, 0, &pTable->nRowLogEst, &fakeIdx);
    pTable->szTabRow = fakeIdx.szIdxRow;
    pTable->tabFlags |= TF_HasStat1;
  }

  return 0;
}

/*
** If the Index.aSample variable is not NULL, delete the aSample[] array
** and its contents.
*/
void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
  assert( db!=0 );
  assert( pIdx!=0 );
#ifdef SQLITE_ENABLE_STAT4
  if( pIdx->aSample ){
    int j;
    for(j=0; j<pIdx->nSample; j++){
      IndexSample *p = &pIdx->aSample[j];
      sqlite3DbFree(db, p->p);
    }
    sqlite3DbFree(db, pIdx->aSample);
  }
  if( db->pnBytesFreed==0 ){
    pIdx->nSample = 0;
    pIdx->aSample = 0;
  }
#else
  UNUSED_PARAMETER(db);
  UNUSED_PARAMETER(pIdx);
#endif /* SQLITE_ENABLE_STAT4 */
}

#ifdef SQLITE_ENABLE_STAT4
/*
** Populate the pIdx->aAvgEq[] array based on the samples currently
** stored in pIdx->aSample[]. 
*/
static void initAvgEq(Index *pIdx){
  if( pIdx ){
    IndexSample *aSample = pIdx->aSample;
    IndexSample *pFinal = &aSample[pIdx->nSample-1];
    int iCol;
    int nCol = 1;
    if( pIdx->nSampleCol>1 ){
      /* If this is stat4 data, then calculate aAvgEq[] values for all
      ** sample columns except the last. The last is always set to 1, as
      ** once the trailing PK fields are considered all index keys are
      ** unique.  */
      nCol = pIdx->nSampleCol-1;
      pIdx->aAvgEq[nCol] = 1;
    }
    for(iCol=0; iCol<nCol; iCol++){
      int nSample = pIdx->nSample;
      int i;                    /* Used to iterate through samples */
      tRowcnt sumEq = 0;        /* Sum of the nEq values */
      tRowcnt avgEq = 0;
      tRowcnt nRow;             /* Number of rows in index */
      i64 nSum100 = 0;          /* Number of terms contributing to sumEq */
      i64 nDist100;             /* Number of distinct values in index */

      if( !pIdx->aiRowEst || iCol>=pIdx->nKeyCol || pIdx->aiRowEst[iCol+1]==0 ){
        nRow = pFinal->anLt[iCol];
        nDist100 = (i64)100 * pFinal->anDLt[iCol];
        nSample--;
      }else{
        nRow = pIdx->aiRowEst[0];
        nDist100 = ((i64)100 * pIdx->aiRowEst[0]) / pIdx->aiRowEst[iCol+1];
      }
      pIdx->nRowEst0 = nRow;

      /* Set nSum to the number of distinct (iCol+1) field prefixes that
      ** occur in the stat4 table for this index. Set sumEq to the sum of 
      ** the nEq values for column iCol for the same set (adding the value 
      ** only once where there exist duplicate prefixes).  */
      for(i=0; i<nSample; i++){
        if( i==(pIdx->nSample-1)
         || aSample[i].anDLt[iCol]!=aSample[i+1].anDLt[iCol] 
        ){
          sumEq += aSample[i].anEq[iCol];
          nSum100 += 100;
        }
      }

      if( nDist100>nSum100 && sumEq<nRow ){
        avgEq = ((i64)100 * (nRow - sumEq))/(nDist100 - nSum100);
      }
      if( avgEq==0 ) avgEq = 1;
      pIdx->aAvgEq[iCol] = avgEq;
    }
  }
}

/*
** Look up an index by name.  Or, if the name of a WITHOUT ROWID table
** is supplied instead, find the PRIMARY KEY index for that table.
*/
static Index *findIndexOrPrimaryKey(
  sqlite3 *db,
  const char *zName,
  const char *zDb
){
  Index *pIdx = sqlite3FindIndex(db, zName, zDb);
  if( pIdx==0 ){
    Table *pTab = sqlite3FindTable(db, zName, zDb);
    if( pTab && !HasRowid(pTab) ) pIdx = sqlite3PrimaryKeyIndex(pTab);
  }
  return pIdx;
}

/*
** Load the content from either the sqlite_stat4
** into the relevant Index.aSample[] arrays.
**
** Arguments zSql1 and zSql2 must point to SQL statements that return
** data equivalent to the following:
**
**    zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
**    zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
**
** where %Q is replaced with the database name before the SQL is executed.
*/
static int loadStatTbl(
  sqlite3 *db,                  /* Database handle */
  const char *zSql1,            /* SQL statement 1 (see above) */
  const char *zSql2,            /* SQL statement 2 (see above) */
  const char *zDb               /* Database name (e.g. "main") */
){
  int rc;                       /* Result codes from subroutines */
  sqlite3_stmt *pStmt = 0;      /* An SQL statement being run */
  char *zSql;                   /* Text of the SQL statement */
  Index *pPrevIdx = 0;          /* Previous index in the loop */
  IndexSample *pSample;         /* A slot in pIdx->aSample[] */

  assert( db->lookaside.bDisable );
  zSql = sqlite3MPrintf(db, zSql1, zDb);
  if( !zSql ){
    return SQLITE_NOMEM_BKPT;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    int nIdxCol = 1;              /* Number of columns in stat4 records */

    char *zIndex;   /* Index name */
    Index *pIdx;    /* Pointer to the index object */
    int nSample;    /* Number of samples */
    int nByte;      /* Bytes of space required */
    int i;          /* Bytes of space required */
    tRowcnt *pSpace;

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    nSample = sqlite3_column_int(pStmt, 1);
    pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
    assert( pIdx==0 || pIdx->nSample==0 );
    if( pIdx==0 ) continue;
    if( pIdx->aSample!=0 ){
      /* The same index appears in sqlite_stat4 under multiple names */
      continue;
    }
    assert( !HasRowid(pIdx->pTable) || pIdx->nColumn==pIdx->nKeyCol+1 );
    if( !HasRowid(pIdx->pTable) && IsPrimaryKeyIndex(pIdx) ){
      nIdxCol = pIdx->nKeyCol;
    }else{
      nIdxCol = pIdx->nColumn;
    }
    pIdx->nSampleCol = nIdxCol;
    pIdx->mxSample = nSample;
    nByte = sizeof(IndexSample) * nSample;
    nByte += sizeof(tRowcnt) * nIdxCol * 3 * nSample;
    nByte += nIdxCol * sizeof(tRowcnt);     /* Space for Index.aAvgEq[] */

    pIdx->aSample = sqlite3DbMallocZero(db, nByte);
    if( pIdx->aSample==0 ){
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM_BKPT;
    }
    pSpace = (tRowcnt*)&pIdx->aSample[nSample];
    pIdx->aAvgEq = pSpace; pSpace += nIdxCol;
    pIdx->pTable->tabFlags |= TF_HasStat4;
    for(i=0; i<nSample; i++){
      pIdx->aSample[i].anEq = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anLt = pSpace; pSpace += nIdxCol;
      pIdx->aSample[i].anDLt = pSpace; pSpace += nIdxCol;
    }
    assert( ((u8*)pSpace)-nByte==(u8*)(pIdx->aSample) );
  }
  rc = sqlite3_finalize(pStmt);
  if( rc ) return rc;

  zSql = sqlite3MPrintf(db, zSql2, zDb);
  if( !zSql ){
    return SQLITE_NOMEM_BKPT;
  }
  rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
  sqlite3DbFree(db, zSql);
  if( rc ) return rc;

  while( sqlite3_step(pStmt)==SQLITE_ROW ){
    char *zIndex;                 /* Index name */
    Index *pIdx;                  /* Pointer to the index object */
    int nCol = 1;                 /* Number of columns in index */

    zIndex = (char *)sqlite3_column_text(pStmt, 0);
    if( zIndex==0 ) continue;
    pIdx = findIndexOrPrimaryKey(db, zIndex, zDb);
    if( pIdx==0 ) continue;
    if( pIdx->nSample>=pIdx->mxSample ){
      /* Too many slots used because the same index appears in
      ** sqlite_stat4 using multiple names */
      continue;
    }
    /* This next condition is true if data has already been loaded from 
    ** the sqlite_stat4 table. */
    nCol = pIdx->nSampleCol;
    if( pIdx!=pPrevIdx ){
      initAvgEq(pPrevIdx);
      pPrevIdx = pIdx;
    }
    pSample = &pIdx->aSample[pIdx->nSample];
    decodeIntArray((char*)sqlite3_column_text(pStmt,1),nCol,pSample->anEq,0,0);
    decodeIntArray((char*)sqlite3_column_text(pStmt,2),nCol,pSample->anLt,0,0);
    decodeIntArray((char*)sqlite3_column_text(pStmt,3),nCol,pSample->anDLt,0,0);

    /* Take a copy of the sample. Add 8 extra 0x00 bytes the end of the buffer.
    ** This is in case the sample record is corrupted. In that case, the
    ** sqlite3VdbeRecordCompare() may read up to two varints past the
    ** end of the allocated buffer before it realizes it is dealing with
    ** a corrupt record.  Or it might try to read a large integer from the
    ** buffer.  In any case, eight 0x00 bytes prevents this from causing
    ** a buffer overread.  */
    pSample->n = sqlite3_column_bytes(pStmt, 4);
    pSample->p = sqlite3DbMallocZero(db, pSample->n + 8);
    if( pSample->p==0 ){
      sqlite3_finalize(pStmt);
      return SQLITE_NOMEM_BKPT;
    }
    if( pSample->n ){
      memcpy(pSample->p, sqlite3_column_blob(pStmt, 4), pSample->n);
    }
    pIdx->nSample++;
  }
  rc = sqlite3_finalize(pStmt);
  if( rc==SQLITE_OK ) initAvgEq(pPrevIdx);
  return rc;
}

/*
** Load content from the sqlite_stat4 table into 
** the Index.aSample[] arrays of all indices.
*/
static int loadStat4(sqlite3 *db, const char *zDb){
  int rc = SQLITE_OK;             /* Result codes from subroutines */
  const Table *pStat4;

  assert( db->lookaside.bDisable );
  if( OptimizationEnabled(db, SQLITE_Stat4)
   && (pStat4 = sqlite3FindTable(db, "sqlite_stat4", zDb))!=0
   && IsOrdinaryTable(pStat4)
  ){
    rc = loadStatTbl(db,
      "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx COLLATE nocase", 
      "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
      zDb
    );
  }
  return rc;
}
#endif /* SQLITE_ENABLE_STAT4 */

/*
** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
** arrays. The contents of sqlite_stat4 are used to populate the
** Index.aSample[] arrays.
**
** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined 
** during compilation and the sqlite_stat4 table is present, no data is 
** read from it.
**
** If SQLITE_ENABLE_STAT4 was defined during compilation and the 
** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
** returned. However, in this case, data is read from the sqlite_stat1
** table (if it is present) before returning.
**
** If an OOM error occurs, this function always sets db->mallocFailed.
** This means if the caller does not care about other errors, the return
** code may be ignored.
*/
int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
  analysisInfo sInfo;
  HashElem *i;
  char *zSql;
  int rc = SQLITE_OK;
  Schema *pSchema = db->aDb[iDb].pSchema;
  const Table *pStat1;

  assert( iDb>=0 && iDb<db->nDb );
  assert( db->aDb[iDb].pBt!=0 );

  /* Clear any prior statistics */
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(i=sqliteHashFirst(&pSchema->tblHash); i; i=sqliteHashNext(i)){
    Table *pTab = sqliteHashData(i);
    pTab->tabFlags &= ~TF_HasStat1;
  }
  for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    pIdx->hasStat1 = 0;
#ifdef SQLITE_ENABLE_STAT4
    sqlite3DeleteIndexSamples(db, pIdx);
    pIdx->aSample = 0;
#endif
  }

  /* Load new statistics out of the sqlite_stat1 table */
  sInfo.db = db;
  sInfo.zDatabase = db->aDb[iDb].zDbSName;
  if( (pStat1 = sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase))
   && IsOrdinaryTable(pStat1)
  ){
    zSql = sqlite3MPrintf(db, 
        "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
    if( zSql==0 ){
      rc = SQLITE_NOMEM_BKPT;
    }else{
      rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
      sqlite3DbFree(db, zSql);
    }
  }

  /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
  assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
  for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    if( !pIdx->hasStat1 ) sqlite3DefaultRowEst(pIdx);
  }

  /* Load the statistics from the sqlite_stat4 table. */
#ifdef SQLITE_ENABLE_STAT4
  if( rc==SQLITE_OK ){
    DisableLookaside;
    rc = loadStat4(db, sInfo.zDatabase);
    EnableLookaside;
  }
  for(i=sqliteHashFirst(&pSchema->idxHash); i; i=sqliteHashNext(i)){
    Index *pIdx = sqliteHashData(i);
    sqlite3_free(pIdx->aiRowEst);
    pIdx->aiRowEst = 0;
  }
#endif

  if( rc==SQLITE_NOMEM ){
    sqlite3OomFault(db);
  }
  return rc;
}


#endif /* SQLITE_OMIT_ANALYZE */