1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
|
/*
** 2004 May 26
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains code use to manipulate "Mem" structure. A "Mem"
** stores a single value in the VDBE. Mem is an opaque structure visible
** only within the VDBE. Interface routines refer to a Mem using the
** name sqlite_value
*/
#include "sqliteInt.h"
#include "vdbeInt.h"
/* True if X is a power of two. 0 is considered a power of two here.
** In other words, return true if X has at most one bit set.
*/
#define ISPOWEROF2(X) (((X)&((X)-1))==0)
#ifdef SQLITE_DEBUG
/*
** Check invariants on a Mem object.
**
** This routine is intended for use inside of assert() statements, like
** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
*/
int sqlite3VdbeCheckMemInvariants(Mem *p){
/* If MEM_Dyn is set then Mem.xDel!=0.
** Mem.xDel might not be initialized if MEM_Dyn is clear.
*/
assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
/* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
** ensure that if Mem.szMalloc>0 then it is safe to do
** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
** That saves a few cycles in inner loops. */
assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
/* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
if( p->flags & MEM_Null ){
/* Cannot be both MEM_Null and some other type */
assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
/* If MEM_Null is set, then either the value is a pure NULL (the usual
** case) or it is a pointer set using sqlite3_bind_pointer() or
** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
** set.
*/
if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
/* This is a pointer type. There may be a flag to indicate what to
** do with the pointer. */
assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
/* No other bits set */
assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
|MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
}else{
/* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
}
}else{
/* The MEM_Cleared bit is only allowed on NULLs */
assert( (p->flags & MEM_Cleared)==0 );
}
/* The szMalloc field holds the correct memory allocation size */
assert( p->szMalloc==0
|| (p->flags==MEM_Undefined
&& p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
|| p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
/* If p holds a string or blob, the Mem.z must point to exactly
** one of the following:
**
** (1) Memory in Mem.zMalloc and managed by the Mem object
** (2) Memory to be freed using Mem.xDel
** (3) An ephemeral string or blob
** (4) A static string or blob
*/
if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
assert(
((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
);
}
return 1;
}
#endif
/*
** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
** into a buffer.
*/
static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
StrAccum acc;
assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
assert( sz>22 );
if( p->flags & MEM_Int ){
#if GCC_VERSION>=7000000
/* Work-around for GCC bug
** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
i64 x;
assert( (p->flags&MEM_Int)*2==sizeof(x) );
memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
p->n = sqlite3Int64ToText(x, zBuf);
#else
p->n = sqlite3Int64ToText(p->u.i, zBuf);
#endif
}else{
sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
sqlite3_str_appendf(&acc, "%!.15g",
(p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
assert( acc.zText==zBuf && acc.mxAlloc<=0 );
zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
p->n = acc.nChar;
}
}
#ifdef SQLITE_DEBUG
/*
** Validity checks on pMem. pMem holds a string.
**
** (1) Check that string value of pMem agrees with its integer or real value.
** (2) Check that the string is correctly zero terminated
**
** A single int or real value always converts to the same strings. But
** many different strings can be converted into the same int or real.
** If a table contains a numeric value and an index is based on the
** corresponding string value, then it is important that the string be
** derived from the numeric value, not the other way around, to ensure
** that the index and table are consistent. See ticket
** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
** an example.
**
** This routine looks at pMem to verify that if it has both a numeric
** representation and a string representation then the string rep has
** been derived from the numeric and not the other way around. It returns
** true if everything is ok and false if there is a problem.
**
** This routine is for use inside of assert() statements only.
*/
int sqlite3VdbeMemValidStrRep(Mem *p){
Mem tmp;
char zBuf[100];
char *z;
int i, j, incr;
if( (p->flags & MEM_Str)==0 ) return 1;
if( p->db && p->db->mallocFailed ) return 1;
if( p->flags & MEM_Term ){
/* Insure that the string is properly zero-terminated. Pay particular
** attention to the case where p->n is odd */
if( p->szMalloc>0 && p->z==p->zMalloc ){
assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
}
assert( p->z[p->n]==0 );
assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
}
if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
memcpy(&tmp, p, sizeof(tmp));
vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp);
z = p->z;
i = j = 0;
incr = 1;
if( p->enc!=SQLITE_UTF8 ){
incr = 2;
if( p->enc==SQLITE_UTF16BE ) z++;
}
while( zBuf[j] ){
if( zBuf[j++]!=z[i] ) return 0;
i += incr;
}
return 1;
}
#endif /* SQLITE_DEBUG */
/*
** If pMem is an object with a valid string representation, this routine
** ensures the internal encoding for the string representation is
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
**
** If pMem is not a string object, or the encoding of the string
** representation is already stored using the requested encoding, then this
** routine is a no-op.
**
** SQLITE_OK is returned if the conversion is successful (or not required).
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
** between formats.
*/
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
#ifndef SQLITE_OMIT_UTF16
int rc;
#endif
assert( pMem!=0 );
assert( !sqlite3VdbeMemIsRowSet(pMem) );
assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
|| desiredEnc==SQLITE_UTF16BE );
if( !(pMem->flags&MEM_Str) ){
pMem->enc = desiredEnc;
return SQLITE_OK;
}
if( pMem->enc==desiredEnc ){
return SQLITE_OK;
}
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
#ifdef SQLITE_OMIT_UTF16
return SQLITE_ERROR;
#else
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
** then the encoding of the value may not have changed.
*/
rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
return rc;
#endif
}
/*
** Make sure pMem->z points to a writable allocation of at least n bytes.
**
** If the bPreserve argument is true, then copy of the content of
** pMem->z into the new allocation. pMem must be either a string or
** blob if bPreserve is true. If bPreserve is false, any prior content
** in pMem->z is discarded.
*/
SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
assert( sqlite3VdbeCheckMemInvariants(pMem) );
assert( !sqlite3VdbeMemIsRowSet(pMem) );
testcase( pMem->db==0 );
/* If the bPreserve flag is set to true, then the memory cell must already
** contain a valid string or blob value. */
assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
testcase( bPreserve && pMem->z==0 );
assert( pMem->szMalloc==0
|| (pMem->flags==MEM_Undefined
&& pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
|| pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
if( pMem->db ){
pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
}else{
pMem->zMalloc = sqlite3Realloc(pMem->z, n);
if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
pMem->z = pMem->zMalloc;
}
bPreserve = 0;
}else{
if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
}
if( pMem->zMalloc==0 ){
sqlite3VdbeMemSetNull(pMem);
pMem->z = 0;
pMem->szMalloc = 0;
return SQLITE_NOMEM_BKPT;
}else{
pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
}
if( bPreserve && pMem->z ){
assert( pMem->z!=pMem->zMalloc );
memcpy(pMem->zMalloc, pMem->z, pMem->n);
}
if( (pMem->flags&MEM_Dyn)!=0 ){
assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
pMem->xDel((void *)(pMem->z));
}
pMem->z = pMem->zMalloc;
pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
return SQLITE_OK;
}
/*
** Change the pMem->zMalloc allocation to be at least szNew bytes.
** If pMem->zMalloc already meets or exceeds the requested size, this
** routine is a no-op.
**
** Any prior string or blob content in the pMem object may be discarded.
** The pMem->xDel destructor is called, if it exists. Though MEM_Str
** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
** and MEM_Null values are preserved.
**
** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
** if unable to complete the resizing.
*/
int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
assert( CORRUPT_DB || szNew>0 );
assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
if( pMem->szMalloc<szNew ){
return sqlite3VdbeMemGrow(pMem, szNew, 0);
}
assert( (pMem->flags & MEM_Dyn)==0 );
pMem->z = pMem->zMalloc;
pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
return SQLITE_OK;
}
/*
** If pMem is already a string, detect if it is a zero-terminated
** string, or make it into one if possible, and mark it as such.
**
** This is an optimization. Correct operation continues even if
** this routine is a no-op.
*/
void sqlite3VdbeMemZeroTerminateIfAble(Mem *pMem){
if( (pMem->flags & (MEM_Str|MEM_Term|MEM_Ephem|MEM_Static))!=MEM_Str ){
/* pMem must be a string, and it cannot be an ephemeral or static string */
return;
}
if( pMem->enc!=SQLITE_UTF8 ) return;
if( NEVER(pMem->z==0) ) return;
if( pMem->flags & MEM_Dyn ){
if( pMem->xDel==sqlite3_free
&& sqlite3_msize(pMem->z) >= (u64)(pMem->n+1)
){
pMem->z[pMem->n] = 0;
pMem->flags |= MEM_Term;
return;
}
if( pMem->xDel==sqlite3RCStrUnref ){
/* Blindly assume that all RCStr objects are zero-terminated */
pMem->flags |= MEM_Term;
return;
}
}else if( pMem->szMalloc >= pMem->n+1 ){
pMem->z[pMem->n] = 0;
pMem->flags |= MEM_Term;
return;
}
}
/*
** It is already known that pMem contains an unterminated string.
** Add the zero terminator.
**
** Three bytes of zero are added. In this way, there is guaranteed
** to be a double-zero byte at an even byte boundary in order to
** terminate a UTF16 string, even if the initial size of the buffer
** is an odd number of bytes.
*/
static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
return SQLITE_NOMEM_BKPT;
}
pMem->z[pMem->n] = 0;
pMem->z[pMem->n+1] = 0;
pMem->z[pMem->n+2] = 0;
pMem->flags |= MEM_Term;
return SQLITE_OK;
}
/*
** Change pMem so that its MEM_Str or MEM_Blob value is stored in
** MEM.zMalloc, where it can be safely written.
**
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
*/
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
assert( pMem!=0 );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
assert( !sqlite3VdbeMemIsRowSet(pMem) );
if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
int rc = vdbeMemAddTerminator(pMem);
if( rc ) return rc;
}
}
pMem->flags &= ~MEM_Ephem;
#ifdef SQLITE_DEBUG
pMem->pScopyFrom = 0;
#endif
return SQLITE_OK;
}
/*
** If the given Mem* has a zero-filled tail, turn it into an ordinary
** blob stored in dynamically allocated space.
*/
#ifndef SQLITE_OMIT_INCRBLOB
int sqlite3VdbeMemExpandBlob(Mem *pMem){
int nByte;
assert( pMem!=0 );
assert( pMem->flags & MEM_Zero );
assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
testcase( sqlite3_value_nochange(pMem) );
assert( !sqlite3VdbeMemIsRowSet(pMem) );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
/* Set nByte to the number of bytes required to store the expanded blob. */
nByte = pMem->n + pMem->u.nZero;
if( nByte<=0 ){
if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
nByte = 1;
}
if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
return SQLITE_NOMEM_BKPT;
}
assert( pMem->z!=0 );
assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
pMem->n += pMem->u.nZero;
pMem->flags &= ~(MEM_Zero|MEM_Term);
return SQLITE_OK;
}
#endif
/*
** Make sure the given Mem is \u0000 terminated.
*/
int sqlite3VdbeMemNulTerminate(Mem *pMem){
assert( pMem!=0 );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
return SQLITE_OK; /* Nothing to do */
}else{
return vdbeMemAddTerminator(pMem);
}
}
/*
** Add MEM_Str to the set of representations for the given Mem. This
** routine is only called if pMem is a number of some kind, not a NULL
** or a BLOB.
**
** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
** if bForce is true but are retained if bForce is false.
**
** A MEM_Null value will never be passed to this function. This function is
** used for converting values to text for returning to the user (i.e. via
** sqlite3_value_text()), or for ensuring that values to be used as btree
** keys are strings. In the former case a NULL pointer is returned the
** user and the latter is an internal programming error.
*/
int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
const int nByte = 32;
assert( pMem!=0 );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
assert( !(pMem->flags&MEM_Zero) );
assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
assert( !sqlite3VdbeMemIsRowSet(pMem) );
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
pMem->enc = 0;
return SQLITE_NOMEM_BKPT;
}
vdbeMemRenderNum(nByte, pMem->z, pMem);
assert( pMem->z!=0 );
assert( pMem->n==(int)sqlite3Strlen30NN(pMem->z) );
pMem->enc = SQLITE_UTF8;
pMem->flags |= MEM_Str|MEM_Term;
if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
sqlite3VdbeChangeEncoding(pMem, enc);
return SQLITE_OK;
}
/*
** Memory cell pMem contains the context of an aggregate function.
** This routine calls the finalize method for that function. The
** result of the aggregate is stored back into pMem.
**
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
** otherwise.
*/
int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
sqlite3_context ctx;
Mem t;
assert( pFunc!=0 );
assert( pMem!=0 );
assert( pMem->db!=0 );
assert( pFunc->xFinalize!=0 );
assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
assert( sqlite3_mutex_held(pMem->db->mutex) );
memset(&ctx, 0, sizeof(ctx));
memset(&t, 0, sizeof(t));
t.flags = MEM_Null;
t.db = pMem->db;
ctx.pOut = &t;
ctx.pMem = pMem;
ctx.pFunc = pFunc;
ctx.enc = ENC(t.db);
pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
assert( (pMem->flags & MEM_Dyn)==0 );
if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
memcpy(pMem, &t, sizeof(t));
return ctx.isError;
}
/*
** Memory cell pAccum contains the context of an aggregate function.
** This routine calls the xValue method for that function and stores
** the results in memory cell pMem.
**
** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
** otherwise.
*/
#ifndef SQLITE_OMIT_WINDOWFUNC
int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
sqlite3_context ctx;
assert( pFunc!=0 );
assert( pFunc->xValue!=0 );
assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
assert( pAccum->db!=0 );
assert( sqlite3_mutex_held(pAccum->db->mutex) );
memset(&ctx, 0, sizeof(ctx));
sqlite3VdbeMemSetNull(pOut);
ctx.pOut = pOut;
ctx.pMem = pAccum;
ctx.pFunc = pFunc;
ctx.enc = ENC(pAccum->db);
pFunc->xValue(&ctx);
return ctx.isError;
}
#endif /* SQLITE_OMIT_WINDOWFUNC */
/*
** If the memory cell contains a value that must be freed by
** invoking the external callback in Mem.xDel, then this routine
** will free that value. It also sets Mem.flags to MEM_Null.
**
** This is a helper routine for sqlite3VdbeMemSetNull() and
** for sqlite3VdbeMemRelease(). Use those other routines as the
** entry point for releasing Mem resources.
*/
static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
assert( VdbeMemDynamic(p) );
if( p->flags&MEM_Agg ){
sqlite3VdbeMemFinalize(p, p->u.pDef);
assert( (p->flags & MEM_Agg)==0 );
testcase( p->flags & MEM_Dyn );
}
if( p->flags&MEM_Dyn ){
assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
p->xDel((void *)p->z);
}
p->flags = MEM_Null;
}
/*
** Release memory held by the Mem p, both external memory cleared
** by p->xDel and memory in p->zMalloc.
**
** This is a helper routine invoked by sqlite3VdbeMemRelease() in
** the unusual case where there really is memory in p that needs
** to be freed.
*/
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
if( VdbeMemDynamic(p) ){
vdbeMemClearExternAndSetNull(p);
}
if( p->szMalloc ){
sqlite3DbFreeNN(p->db, p->zMalloc);
p->szMalloc = 0;
}
p->z = 0;
}
/*
** Release any memory resources held by the Mem. Both the memory that is
** free by Mem.xDel and the Mem.zMalloc allocation are freed.
**
** Use this routine prior to clean up prior to abandoning a Mem, or to
** reset a Mem back to its minimum memory utilization.
**
** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
** prior to inserting new content into the Mem.
*/
void sqlite3VdbeMemRelease(Mem *p){
assert( sqlite3VdbeCheckMemInvariants(p) );
if( VdbeMemDynamic(p) || p->szMalloc ){
vdbeMemClear(p);
}
}
/* Like sqlite3VdbeMemRelease() but faster for cases where we
** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
*/
void sqlite3VdbeMemReleaseMalloc(Mem *p){
assert( !VdbeMemDynamic(p) );
if( p->szMalloc ) vdbeMemClear(p);
}
/*
** Return some kind of integer value which is the best we can do
** at representing the value that *pMem describes as an integer.
** If pMem is an integer, then the value is exact. If pMem is
** a floating-point then the value returned is the integer part.
** If pMem is a string or blob, then we make an attempt to convert
** it into an integer and return that. If pMem represents an
** an SQL-NULL value, return 0.
**
** If pMem represents a string value, its encoding might be changed.
*/
static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){
i64 value = 0;
sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
return value;
}
i64 sqlite3VdbeIntValue(const Mem *pMem){
int flags;
assert( pMem!=0 );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
flags = pMem->flags;
if( flags & (MEM_Int|MEM_IntReal) ){
testcase( flags & MEM_IntReal );
return pMem->u.i;
}else if( flags & MEM_Real ){
return sqlite3RealToI64(pMem->u.r);
}else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
return memIntValue(pMem);
}else{
return 0;
}
}
/*
** Return the best representation of pMem that we can get into a
** double. If pMem is already a double or an integer, return its
** value. If it is a string or blob, try to convert it to a double.
** If it is a NULL, return 0.0.
*/
static SQLITE_NOINLINE double memRealValue(Mem *pMem){
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
double val = (double)0;
sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
return val;
}
double sqlite3VdbeRealValue(Mem *pMem){
assert( pMem!=0 );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
if( pMem->flags & MEM_Real ){
return pMem->u.r;
}else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
testcase( pMem->flags & MEM_IntReal );
return (double)pMem->u.i;
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){
return memRealValue(pMem);
}else{
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
return (double)0;
}
}
/*
** Return 1 if pMem represents true, and return 0 if pMem represents false.
** Return the value ifNull if pMem is NULL.
*/
int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
testcase( pMem->flags & MEM_IntReal );
if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
if( pMem->flags & MEM_Null ) return ifNull;
return sqlite3VdbeRealValue(pMem)!=0.0;
}
/*
** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
** make it a MEM_Int if we can.
*/
void sqlite3VdbeIntegerAffinity(Mem *pMem){
assert( pMem!=0 );
assert( pMem->flags & (MEM_Real|MEM_IntReal) );
assert( !sqlite3VdbeMemIsRowSet(pMem) );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
if( pMem->flags & MEM_IntReal ){
MemSetTypeFlag(pMem, MEM_Int);
}else{
i64 ix = sqlite3RealToI64(pMem->u.r);
/* Only mark the value as an integer if
**
** (1) the round-trip conversion real->int->real is a no-op, and
** (2) The integer is neither the largest nor the smallest
** possible integer (ticket #3922)
**
** The second and third terms in the following conditional enforces
** the second condition under the assumption that addition overflow causes
** values to wrap around.
*/
if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
pMem->u.i = ix;
MemSetTypeFlag(pMem, MEM_Int);
}
}
}
/*
** Convert pMem to type integer. Invalidate any prior representations.
*/
int sqlite3VdbeMemIntegerify(Mem *pMem){
assert( pMem!=0 );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
assert( !sqlite3VdbeMemIsRowSet(pMem) );
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
pMem->u.i = sqlite3VdbeIntValue(pMem);
MemSetTypeFlag(pMem, MEM_Int);
return SQLITE_OK;
}
/*
** Convert pMem so that it is of type MEM_Real.
** Invalidate any prior representations.
*/
int sqlite3VdbeMemRealify(Mem *pMem){
assert( pMem!=0 );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
pMem->u.r = sqlite3VdbeRealValue(pMem);
MemSetTypeFlag(pMem, MEM_Real);
return SQLITE_OK;
}
/* Compare a floating point value to an integer. Return true if the two
** values are the same within the precision of the floating point value.
**
** This function assumes that i was obtained by assignment from r1.
**
** For some versions of GCC on 32-bit machines, if you do the more obvious
** comparison of "r1==(double)i" you sometimes get an answer of false even
** though the r1 and (double)i values are bit-for-bit the same.
*/
int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
double r2 = (double)i;
return r1==0.0
|| (memcmp(&r1, &r2, sizeof(r1))==0
&& i >= -2251799813685248LL && i < 2251799813685248LL);
}
/* Convert a floating point value to its closest integer. Do so in
** a way that avoids 'outside the range of representable values' warnings
** from UBSAN.
*/
i64 sqlite3RealToI64(double r){
if( r<-9223372036854774784.0 ) return SMALLEST_INT64;
if( r>+9223372036854774784.0 ) return LARGEST_INT64;
return (i64)r;
}
/*
** Convert pMem so that it has type MEM_Real or MEM_Int.
** Invalidate any prior representations.
**
** Every effort is made to force the conversion, even if the input
** is a string that does not look completely like a number. Convert
** as much of the string as we can and ignore the rest.
*/
int sqlite3VdbeMemNumerify(Mem *pMem){
assert( pMem!=0 );
testcase( pMem->flags & MEM_Int );
testcase( pMem->flags & MEM_Real );
testcase( pMem->flags & MEM_IntReal );
testcase( pMem->flags & MEM_Null );
if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
int rc;
sqlite3_int64 ix;
assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
|| sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r)))
){
pMem->u.i = ix;
MemSetTypeFlag(pMem, MEM_Int);
}else{
MemSetTypeFlag(pMem, MEM_Real);
}
}
assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
return SQLITE_OK;
}
/*
** Cast the datatype of the value in pMem according to the affinity
** "aff". Casting is different from applying affinity in that a cast
** is forced. In other words, the value is converted into the desired
** affinity even if that results in loss of data. This routine is
** used (for example) to implement the SQL "cast()" operator.
*/
int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
if( pMem->flags & MEM_Null ) return SQLITE_OK;
switch( aff ){
case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
if( (pMem->flags & MEM_Blob)==0 ){
sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
}else{
pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
}
break;
}
case SQLITE_AFF_NUMERIC: {
sqlite3VdbeMemNumerify(pMem);
break;
}
case SQLITE_AFF_INTEGER: {
sqlite3VdbeMemIntegerify(pMem);
break;
}
case SQLITE_AFF_REAL: {
sqlite3VdbeMemRealify(pMem);
break;
}
default: {
int rc;
assert( aff==SQLITE_AFF_TEXT );
assert( MEM_Str==(MEM_Blob>>3) );
pMem->flags |= (pMem->flags&MEM_Blob)>>3;
sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1;
rc = sqlite3VdbeChangeEncoding(pMem, encoding);
if( rc ) return rc;
sqlite3VdbeMemZeroTerminateIfAble(pMem);
}
}
return SQLITE_OK;
}
/*
** Initialize bulk memory to be a consistent Mem object.
**
** The minimum amount of initialization feasible is performed.
*/
void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
assert( (flags & ~MEM_TypeMask)==0 );
pMem->flags = flags;
pMem->db = db;
pMem->szMalloc = 0;
}
/*
** Delete any previous value and set the value stored in *pMem to NULL.
**
** This routine calls the Mem.xDel destructor to dispose of values that
** require the destructor. But it preserves the Mem.zMalloc memory allocation.
** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
** routine to invoke the destructor and deallocates Mem.zMalloc.
**
** Use this routine to reset the Mem prior to insert a new value.
**
** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
*/
void sqlite3VdbeMemSetNull(Mem *pMem){
if( VdbeMemDynamic(pMem) ){
vdbeMemClearExternAndSetNull(pMem);
}else{
pMem->flags = MEM_Null;
}
}
void sqlite3ValueSetNull(sqlite3_value *p){
sqlite3VdbeMemSetNull((Mem*)p);
}
/*
** Delete any previous value and set the value to be a BLOB of length
** n containing all zeros.
*/
#ifndef SQLITE_OMIT_INCRBLOB
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
sqlite3VdbeMemRelease(pMem);
pMem->flags = MEM_Blob|MEM_Zero;
pMem->n = 0;
if( n<0 ) n = 0;
pMem->u.nZero = n;
pMem->enc = SQLITE_UTF8;
pMem->z = 0;
}
#else
int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
int nByte = n>0?n:1;
if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
return SQLITE_NOMEM_BKPT;
}
assert( pMem->z!=0 );
assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
memset(pMem->z, 0, nByte);
pMem->n = n>0?n:0;
pMem->flags = MEM_Blob;
pMem->enc = SQLITE_UTF8;
return SQLITE_OK;
}
#endif
/*
** The pMem is known to contain content that needs to be destroyed prior
** to a value change. So invoke the destructor, then set the value to
** a 64-bit integer.
*/
static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
sqlite3VdbeMemSetNull(pMem);
pMem->u.i = val;
pMem->flags = MEM_Int;
}
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type INTEGER.
*/
void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
if( VdbeMemDynamic(pMem) ){
vdbeReleaseAndSetInt64(pMem, val);
}else{
pMem->u.i = val;
pMem->flags = MEM_Int;
}
}
/*
** Set the iIdx'th entry of array aMem[] to contain integer value val.
*/
void sqlite3MemSetArrayInt64(sqlite3_value *aMem, int iIdx, i64 val){
sqlite3VdbeMemSetInt64(&aMem[iIdx], val);
}
/* A no-op destructor */
void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
/*
** Set the value stored in *pMem should already be a NULL.
** Also store a pointer to go with it.
*/
void sqlite3VdbeMemSetPointer(
Mem *pMem,
void *pPtr,
const char *zPType,
void (*xDestructor)(void*)
){
assert( pMem->flags==MEM_Null );
vdbeMemClear(pMem);
pMem->u.zPType = zPType ? zPType : "";
pMem->z = pPtr;
pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
pMem->eSubtype = 'p';
pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
}
#ifndef SQLITE_OMIT_FLOATING_POINT
/*
** Delete any previous value and set the value stored in *pMem to val,
** manifest type REAL.
*/
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
sqlite3VdbeMemSetNull(pMem);
if( !sqlite3IsNaN(val) ){
pMem->u.r = val;
pMem->flags = MEM_Real;
}
}
#endif
#ifdef SQLITE_DEBUG
/*
** Return true if the Mem holds a RowSet object. This routine is intended
** for use inside of assert() statements.
*/
int sqlite3VdbeMemIsRowSet(const Mem *pMem){
return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
&& pMem->xDel==sqlite3RowSetDelete;
}
#endif
/*
** Delete any previous value and set the value of pMem to be an
** empty boolean index.
**
** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
** error occurs.
*/
int sqlite3VdbeMemSetRowSet(Mem *pMem){
sqlite3 *db = pMem->db;
RowSet *p;
assert( db!=0 );
assert( !sqlite3VdbeMemIsRowSet(pMem) );
sqlite3VdbeMemRelease(pMem);
p = sqlite3RowSetInit(db);
if( p==0 ) return SQLITE_NOMEM;
pMem->z = (char*)p;
pMem->flags = MEM_Blob|MEM_Dyn;
pMem->xDel = sqlite3RowSetDelete;
return SQLITE_OK;
}
/*
** Return true if the Mem object contains a TEXT or BLOB that is
** too large - whose size exceeds SQLITE_MAX_LENGTH.
*/
int sqlite3VdbeMemTooBig(Mem *p){
assert( p->db!=0 );
if( p->flags & (MEM_Str|MEM_Blob) ){
int n = p->n;
if( p->flags & MEM_Zero ){
n += p->u.nZero;
}
return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
}
return 0;
}
#ifdef SQLITE_DEBUG
/*
** This routine prepares a memory cell for modification by breaking
** its link to a shallow copy and by marking any current shallow
** copies of this cell as invalid.
**
** This is used for testing and debugging only - to help ensure that shallow
** copies (created by OP_SCopy) are not misused.
*/
void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
int i;
Mem *pX;
for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
if( pX->pScopyFrom==pMem ){
u16 mFlags;
if( pVdbe->db->flags & SQLITE_VdbeTrace ){
sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
(int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
}
/* If pX is marked as a shallow copy of pMem, then try to verify that
** no significant changes have been made to pX since the OP_SCopy.
** A significant change would indicated a missed call to this
** function for pX. Minor changes, such as adding or removing a
** dual type, are allowed, as long as the underlying value is the
** same. */
mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
/* pMem is the register that is changing. But also mark pX as
** undefined so that we can quickly detect the shallow-copy error */
pX->flags = MEM_Undefined;
pX->pScopyFrom = 0;
}
}
pMem->pScopyFrom = 0;
}
#endif /* SQLITE_DEBUG */
/*
** Make an shallow copy of pFrom into pTo. Prior contents of
** pTo are freed. The pFrom->z field is not duplicated. If
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
** and flags gets srcType (either MEM_Ephem or MEM_Static).
*/
static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
vdbeMemClearExternAndSetNull(pTo);
assert( !VdbeMemDynamic(pTo) );
sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
}
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
assert( !sqlite3VdbeMemIsRowSet(pFrom) );
assert( pTo->db==pFrom->db );
if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
memcpy(pTo, pFrom, MEMCELLSIZE);
if( (pFrom->flags&MEM_Static)==0 ){
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
assert( srcType==MEM_Ephem || srcType==MEM_Static );
pTo->flags |= srcType;
}
}
/*
** Make a full copy of pFrom into pTo. Prior contents of pTo are
** freed before the copy is made.
*/
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
int rc = SQLITE_OK;
assert( !sqlite3VdbeMemIsRowSet(pFrom) );
if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
memcpy(pTo, pFrom, MEMCELLSIZE);
pTo->flags &= ~MEM_Dyn;
if( pTo->flags&(MEM_Str|MEM_Blob) ){
if( 0==(pFrom->flags&MEM_Static) ){
pTo->flags |= MEM_Ephem;
rc = sqlite3VdbeMemMakeWriteable(pTo);
}
}
return rc;
}
/*
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
** freed. If pFrom contains ephemeral data, a copy is made.
**
** pFrom contains an SQL NULL when this routine returns.
*/
void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
sqlite3VdbeMemRelease(pTo);
memcpy(pTo, pFrom, sizeof(Mem));
pFrom->flags = MEM_Null;
pFrom->szMalloc = 0;
}
/*
** Change the value of a Mem to be a string or a BLOB.
**
** The memory management strategy depends on the value of the xDel
** parameter. If the value passed is SQLITE_TRANSIENT, then the
** string is copied into a (possibly existing) buffer managed by the
** Mem structure. Otherwise, any existing buffer is freed and the
** pointer copied.
**
** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
** size limit) then no memory allocation occurs. If the string can be
** stored without allocating memory, then it is. If a memory allocation
** is required to store the string, then value of pMem is unchanged. In
** either case, SQLITE_TOOBIG is returned.
**
** The "enc" parameter is the text encoding for the string, or zero
** to store a blob.
**
** If n is negative, then the string consists of all bytes up to but
** excluding the first zero character. The n parameter must be
** non-negative for blobs.
*/
int sqlite3VdbeMemSetStr(
Mem *pMem, /* Memory cell to set to string value */
const char *z, /* String pointer */
i64 n, /* Bytes in string, or negative */
u8 enc, /* Encoding of z. 0 for BLOBs */
void (*xDel)(void*) /* Destructor function */
){
i64 nByte = n; /* New value for pMem->n */
int iLimit; /* Maximum allowed string or blob size */
u16 flags; /* New value for pMem->flags */
assert( pMem!=0 );
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
assert( !sqlite3VdbeMemIsRowSet(pMem) );
assert( enc!=0 || n>=0 );
/* If z is a NULL pointer, set pMem to contain an SQL NULL. */
if( !z ){
sqlite3VdbeMemSetNull(pMem);
return SQLITE_OK;
}
if( pMem->db ){
iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
}else{
iLimit = SQLITE_MAX_LENGTH;
}
if( nByte<0 ){
assert( enc!=0 );
if( enc==SQLITE_UTF8 ){
nByte = strlen(z);
}else{
for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
}
flags= MEM_Str|MEM_Term;
}else if( enc==0 ){
flags = MEM_Blob;
enc = SQLITE_UTF8;
}else{
flags = MEM_Str;
}
if( nByte>iLimit ){
if( xDel && xDel!=SQLITE_TRANSIENT ){
if( xDel==SQLITE_DYNAMIC ){
sqlite3DbFree(pMem->db, (void*)z);
}else{
xDel((void*)z);
}
}
sqlite3VdbeMemSetNull(pMem);
return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
}
/* The following block sets the new values of Mem.z and Mem.xDel. It
** also sets a flag in local variable "flags" to indicate the memory
** management (one of MEM_Dyn or MEM_Static).
*/
if( xDel==SQLITE_TRANSIENT ){
i64 nAlloc = nByte;
if( flags&MEM_Term ){
nAlloc += (enc==SQLITE_UTF8?1:2);
}
testcase( nAlloc==0 );
testcase( nAlloc==31 );
testcase( nAlloc==32 );
if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
return SQLITE_NOMEM_BKPT;
}
memcpy(pMem->z, z, nAlloc);
}else{
sqlite3VdbeMemRelease(pMem);
pMem->z = (char *)z;
if( xDel==SQLITE_DYNAMIC ){
pMem->zMalloc = pMem->z;
pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
}else{
pMem->xDel = xDel;
flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
}
}
pMem->n = (int)(nByte & 0x7fffffff);
pMem->flags = flags;
pMem->enc = enc;
#ifndef SQLITE_OMIT_UTF16
if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
return SQLITE_NOMEM_BKPT;
}
#endif
return SQLITE_OK;
}
/*
** Move data out of a btree key or data field and into a Mem structure.
** The data is payload from the entry that pCur is currently pointing
** to. offset and amt determine what portion of the data or key to retrieve.
** The result is written into the pMem element.
**
** The pMem object must have been initialized. This routine will use
** pMem->zMalloc to hold the content from the btree, if possible. New
** pMem->zMalloc space will be allocated if necessary. The calling routine
** is responsible for making sure that the pMem object is eventually
** destroyed.
**
** If this routine fails for any reason (malloc returns NULL or unable
** to read from the disk) then the pMem is left in an inconsistent state.
*/
int sqlite3VdbeMemFromBtree(
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
u32 offset, /* Offset from the start of data to return bytes from. */
u32 amt, /* Number of bytes to return. */
Mem *pMem /* OUT: Return data in this Mem structure. */
){
int rc;
pMem->flags = MEM_Null;
if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
return SQLITE_CORRUPT_BKPT;
}
if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
if( rc==SQLITE_OK ){
pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
pMem->flags = MEM_Blob;
pMem->n = (int)amt;
}else{
sqlite3VdbeMemRelease(pMem);
}
}
return rc;
}
int sqlite3VdbeMemFromBtreeZeroOffset(
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
u32 amt, /* Number of bytes to return. */
Mem *pMem /* OUT: Return data in this Mem structure. */
){
u32 available = 0; /* Number of bytes available on the local btree page */
int rc = SQLITE_OK; /* Return code */
assert( sqlite3BtreeCursorIsValid(pCur) );
assert( !VdbeMemDynamic(pMem) );
/* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
** that both the BtShared and database handle mutexes are held. */
assert( !sqlite3VdbeMemIsRowSet(pMem) );
pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
assert( pMem->z!=0 );
if( amt<=available ){
pMem->flags = MEM_Blob|MEM_Ephem;
pMem->n = (int)amt;
}else{
rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
}
return rc;
}
/*
** The pVal argument is known to be a value other than NULL.
** Convert it into a string with encoding enc and return a pointer
** to a zero-terminated version of that string.
*/
static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
assert( pVal!=0 );
assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
assert( !sqlite3VdbeMemIsRowSet(pVal) );
assert( (pVal->flags & (MEM_Null))==0 );
if( pVal->flags & (MEM_Blob|MEM_Str) ){
if( ExpandBlob(pVal) ) return 0;
pVal->flags |= MEM_Str;
if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
}
if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
return 0;
}
}
sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
}else{
sqlite3VdbeMemStringify(pVal, enc, 0);
assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
}
assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
|| pVal->db->mallocFailed );
if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
assert( sqlite3VdbeMemValidStrRep(pVal) );
return pVal->z;
}else{
return 0;
}
}
/* This function is only available internally, it is not part of the
** external API. It works in a similar way to sqlite3_value_text(),
** except the data returned is in the encoding specified by the second
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
** SQLITE_UTF8.
**
** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
** If that is the case, then the result must be aligned on an even byte
** boundary.
*/
const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
if( !pVal ) return 0;
assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
assert( !sqlite3VdbeMemIsRowSet(pVal) );
if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
assert( sqlite3VdbeMemValidStrRep(pVal) );
return pVal->z;
}
if( pVal->flags&MEM_Null ){
return 0;
}
return valueToText(pVal, enc);
}
/* Return true if sqlit3_value object pVal is a string or blob value
** that uses the destructor specified in the second argument.
**
** TODO: Maybe someday promote this interface into a published API so
** that third-party extensions can get access to it?
*/
int sqlite3ValueIsOfClass(const sqlite3_value *pVal, void(*xFree)(void*)){
if( ALWAYS(pVal!=0)
&& ALWAYS((pVal->flags & (MEM_Str|MEM_Blob))!=0)
&& (pVal->flags & MEM_Dyn)!=0
&& pVal->xDel==xFree
){
return 1;
}else{
return 0;
}
}
/*
** Create a new sqlite3_value object.
*/
sqlite3_value *sqlite3ValueNew(sqlite3 *db){
Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
if( p ){
p->flags = MEM_Null;
p->db = db;
}
return p;
}
/*
** Context object passed by sqlite3Stat4ProbeSetValue() through to
** valueNew(). See comments above valueNew() for details.
*/
struct ValueNewStat4Ctx {
Parse *pParse;
Index *pIdx;
UnpackedRecord **ppRec;
int iVal;
};
/*
** Allocate and return a pointer to a new sqlite3_value object. If
** the second argument to this function is NULL, the object is allocated
** by calling sqlite3ValueNew().
**
** Otherwise, if the second argument is non-zero, then this function is
** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
** already been allocated, allocate the UnpackedRecord structure that
** that function will return to its caller here. Then return a pointer to
** an sqlite3_value within the UnpackedRecord.a[] array.
*/
static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
#ifdef SQLITE_ENABLE_STAT4
if( p ){
UnpackedRecord *pRec = p->ppRec[0];
if( pRec==0 ){
Index *pIdx = p->pIdx; /* Index being probed */
int nByte; /* Bytes of space to allocate */
int i; /* Counter variable */
int nCol = pIdx->nColumn; /* Number of index columns including rowid */
nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
if( pRec ){
pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
if( pRec->pKeyInfo ){
assert( pRec->pKeyInfo->nAllField==nCol );
assert( pRec->pKeyInfo->enc==ENC(db) );
pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
for(i=0; i<nCol; i++){
pRec->aMem[i].flags = MEM_Null;
pRec->aMem[i].db = db;
}
}else{
sqlite3DbFreeNN(db, pRec);
pRec = 0;
}
}
if( pRec==0 ) return 0;
p->ppRec[0] = pRec;
}
pRec->nField = p->iVal+1;
sqlite3VdbeMemSetNull(&pRec->aMem[p->iVal]);
return &pRec->aMem[p->iVal];
}
#else
UNUSED_PARAMETER(p);
#endif /* defined(SQLITE_ENABLE_STAT4) */
return sqlite3ValueNew(db);
}
/*
** The expression object indicated by the second argument is guaranteed
** to be a scalar SQL function. If
**
** * all function arguments are SQL literals,
** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
**
** then this routine attempts to invoke the SQL function. Assuming no
** error occurs, output parameter (*ppVal) is set to point to a value
** object containing the result before returning SQLITE_OK.
**
** Affinity aff is applied to the result of the function before returning.
** If the result is a text value, the sqlite3_value object uses encoding
** enc.
**
** If the conditions above are not met, this function returns SQLITE_OK
** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
** NULL and an SQLite error code returned.
*/
#ifdef SQLITE_ENABLE_STAT4
static int valueFromFunction(
sqlite3 *db, /* The database connection */
const Expr *p, /* The expression to evaluate */
u8 enc, /* Encoding to use */
u8 aff, /* Affinity to use */
sqlite3_value **ppVal, /* Write the new value here */
struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
){
sqlite3_context ctx; /* Context object for function invocation */
sqlite3_value **apVal = 0; /* Function arguments */
int nVal = 0; /* Size of apVal[] array */
FuncDef *pFunc = 0; /* Function definition */
sqlite3_value *pVal = 0; /* New value */
int rc = SQLITE_OK; /* Return code */
ExprList *pList = 0; /* Function arguments */
int i; /* Iterator variable */
assert( pCtx!=0 );
assert( (p->flags & EP_TokenOnly)==0 );
assert( ExprUseXList(p) );
pList = p->x.pList;
if( pList ) nVal = pList->nExpr;
assert( !ExprHasProperty(p, EP_IntValue) );
pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
if( pFunc==0 ) return SQLITE_OK;
#endif
assert( pFunc );
if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
|| (pFunc->funcFlags & (SQLITE_FUNC_NEEDCOLL|SQLITE_FUNC_RUNONLY))!=0
){
return SQLITE_OK;
}
if( pList ){
apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
if( apVal==0 ){
rc = SQLITE_NOMEM_BKPT;
goto value_from_function_out;
}
for(i=0; i<nVal; i++){
rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
}
}
pVal = valueNew(db, pCtx);
if( pVal==0 ){
rc = SQLITE_NOMEM_BKPT;
goto value_from_function_out;
}
memset(&ctx, 0, sizeof(ctx));
ctx.pOut = pVal;
ctx.pFunc = pFunc;
ctx.enc = ENC(db);
pFunc->xSFunc(&ctx, nVal, apVal);
if( ctx.isError ){
rc = ctx.isError;
sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
}else{
sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
assert( rc==SQLITE_OK );
rc = sqlite3VdbeChangeEncoding(pVal, enc);
if( NEVER(rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal)) ){
rc = SQLITE_TOOBIG;
pCtx->pParse->nErr++;
}
}
value_from_function_out:
if( rc!=SQLITE_OK ){
pVal = 0;
pCtx->pParse->rc = rc;
}
if( apVal ){
for(i=0; i<nVal; i++){
sqlite3ValueFree(apVal[i]);
}
sqlite3DbFreeNN(db, apVal);
}
*ppVal = pVal;
return rc;
}
#else
# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
#endif /* defined(SQLITE_ENABLE_STAT4) */
/*
** Extract a value from the supplied expression in the manner described
** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
** using valueNew().
**
** If pCtx is NULL and an error occurs after the sqlite3_value object
** has been allocated, it is freed before returning. Or, if pCtx is not
** NULL, it is assumed that the caller will free any allocated object
** in all cases.
*/
static int valueFromExpr(
sqlite3 *db, /* The database connection */
const Expr *pExpr, /* The expression to evaluate */
u8 enc, /* Encoding to use */
u8 affinity, /* Affinity to use */
sqlite3_value **ppVal, /* Write the new value here */
struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
){
int op;
char *zVal = 0;
sqlite3_value *pVal = 0;
int negInt = 1;
const char *zNeg = "";
int rc = SQLITE_OK;
assert( pExpr!=0 );
while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
if( op==TK_REGISTER ) op = pExpr->op2;
/* Compressed expressions only appear when parsing the DEFAULT clause
** on a table column definition, and hence only when pCtx==0. This
** check ensures that an EP_TokenOnly expression is never passed down
** into valueFromFunction(). */
assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
if( op==TK_CAST ){
u8 aff;
assert( !ExprHasProperty(pExpr, EP_IntValue) );
aff = sqlite3AffinityType(pExpr->u.zToken,0);
rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
testcase( rc!=SQLITE_OK );
if( *ppVal ){
#ifdef SQLITE_ENABLE_STAT4
rc = ExpandBlob(*ppVal);
#else
/* zero-blobs only come from functions, not literal values. And
** functions are only processed under STAT4 */
assert( (ppVal[0][0].flags & MEM_Zero)==0 );
#endif
sqlite3VdbeMemCast(*ppVal, aff, enc);
sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
}
return rc;
}
/* Handle negative integers in a single step. This is needed in the
** case when the value is -9223372036854775808. Except - do not do this
** for hexadecimal literals. */
if( op==TK_UMINUS ){
Expr *pLeft = pExpr->pLeft;
if( (pLeft->op==TK_INTEGER || pLeft->op==TK_FLOAT) ){
if( ExprHasProperty(pLeft, EP_IntValue)
|| pLeft->u.zToken[0]!='0' || (pLeft->u.zToken[1] & ~0x20)!='X'
){
pExpr = pLeft;
op = pExpr->op;
negInt = -1;
zNeg = "-";
}
}
}
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
pVal = valueNew(db, pCtx);
if( pVal==0 ) goto no_mem;
if( ExprHasProperty(pExpr, EP_IntValue) ){
sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
}else{
i64 iVal;
if( op==TK_INTEGER && 0==sqlite3DecOrHexToI64(pExpr->u.zToken, &iVal) ){
sqlite3VdbeMemSetInt64(pVal, iVal*negInt);
}else{
zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
if( zVal==0 ) goto no_mem;
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
}
}
if( affinity==SQLITE_AFF_BLOB ){
if( op==TK_FLOAT ){
assert( pVal && pVal->z && pVal->flags==(MEM_Str|MEM_Term) );
sqlite3AtoF(pVal->z, &pVal->u.r, pVal->n, SQLITE_UTF8);
pVal->flags = MEM_Real;
}else if( op==TK_INTEGER ){
/* This case is required by -9223372036854775808 and other strings
** that look like integers but cannot be handled by the
** sqlite3DecOrHexToI64() call above. */
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
}
}else{
sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
}
assert( (pVal->flags & MEM_IntReal)==0 );
if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
testcase( pVal->flags & MEM_Int );
testcase( pVal->flags & MEM_Real );
pVal->flags &= ~MEM_Str;
}
if( enc!=SQLITE_UTF8 ){
rc = sqlite3VdbeChangeEncoding(pVal, enc);
}
}else if( op==TK_UMINUS ) {
/* This branch happens for multiple negative signs. Ex: -(-5) */
if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
&& pVal!=0
){
sqlite3VdbeMemNumerify(pVal);
if( pVal->flags & MEM_Real ){
pVal->u.r = -pVal->u.r;
}else if( pVal->u.i==SMALLEST_INT64 ){
#ifndef SQLITE_OMIT_FLOATING_POINT
pVal->u.r = -(double)SMALLEST_INT64;
#else
pVal->u.r = LARGEST_INT64;
#endif
MemSetTypeFlag(pVal, MEM_Real);
}else{
pVal->u.i = -pVal->u.i;
}
sqlite3ValueApplyAffinity(pVal, affinity, enc);
}
}else if( op==TK_NULL ){
pVal = valueNew(db, pCtx);
if( pVal==0 ) goto no_mem;
sqlite3VdbeMemSetNull(pVal);
}
#ifndef SQLITE_OMIT_BLOB_LITERAL
else if( op==TK_BLOB ){
int nVal;
assert( !ExprHasProperty(pExpr, EP_IntValue) );
assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
assert( pExpr->u.zToken[1]=='\'' );
pVal = valueNew(db, pCtx);
if( !pVal ) goto no_mem;
zVal = &pExpr->u.zToken[2];
nVal = sqlite3Strlen30(zVal)-1;
assert( zVal[nVal]=='\'' );
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
0, SQLITE_DYNAMIC);
}
#endif
#ifdef SQLITE_ENABLE_STAT4
else if( op==TK_FUNCTION && pCtx!=0 ){
rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
}
#endif
else if( op==TK_TRUEFALSE ){
assert( !ExprHasProperty(pExpr, EP_IntValue) );
pVal = valueNew(db, pCtx);
if( pVal ){
pVal->flags = MEM_Int;
pVal->u.i = pExpr->u.zToken[4]==0;
sqlite3ValueApplyAffinity(pVal, affinity, enc);
}
}
*ppVal = pVal;
return rc;
no_mem:
#ifdef SQLITE_ENABLE_STAT4
if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) )
#endif
sqlite3OomFault(db);
sqlite3DbFree(db, zVal);
assert( *ppVal==0 );
#ifdef SQLITE_ENABLE_STAT4
if( pCtx==0 ) sqlite3ValueFree(pVal);
#else
assert( pCtx==0 ); sqlite3ValueFree(pVal);
#endif
return SQLITE_NOMEM_BKPT;
}
/*
** Create a new sqlite3_value object, containing the value of pExpr.
**
** This only works for very simple expressions that consist of one constant
** token (i.e. "5", "5.1", "'a string'"). If the expression can
** be converted directly into a value, then the value is allocated and
** a pointer written to *ppVal. The caller is responsible for deallocating
** the value by passing it to sqlite3ValueFree() later on. If the expression
** cannot be converted to a value, then *ppVal is set to NULL.
*/
int sqlite3ValueFromExpr(
sqlite3 *db, /* The database connection */
const Expr *pExpr, /* The expression to evaluate */
u8 enc, /* Encoding to use */
u8 affinity, /* Affinity to use */
sqlite3_value **ppVal /* Write the new value here */
){
return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
}
#ifdef SQLITE_ENABLE_STAT4
/*
** Attempt to extract a value from pExpr and use it to construct *ppVal.
**
** If pAlloc is not NULL, then an UnpackedRecord object is created for
** pAlloc if one does not exist and the new value is added to the
** UnpackedRecord object.
**
** A value is extracted in the following cases:
**
** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
**
** * The expression is a bound variable, and this is a reprepare, or
**
** * The expression is a literal value.
**
** On success, *ppVal is made to point to the extracted value. The caller
** is responsible for ensuring that the value is eventually freed.
*/
static int stat4ValueFromExpr(
Parse *pParse, /* Parse context */
Expr *pExpr, /* The expression to extract a value from */
u8 affinity, /* Affinity to use */
struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
sqlite3_value **ppVal /* OUT: New value object (or NULL) */
){
int rc = SQLITE_OK;
sqlite3_value *pVal = 0;
sqlite3 *db = pParse->db;
/* Skip over any TK_COLLATE nodes */
pExpr = sqlite3ExprSkipCollate(pExpr);
assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
if( !pExpr ){
pVal = valueNew(db, pAlloc);
if( pVal ){
sqlite3VdbeMemSetNull((Mem*)pVal);
}
}else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
Vdbe *v;
int iBindVar = pExpr->iColumn;
sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
if( (v = pParse->pReprepare)!=0 ){
pVal = valueNew(db, pAlloc);
if( pVal ){
rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
pVal->db = pParse->db;
}
}
}else{
rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
}
assert( pVal==0 || pVal->db==db );
*ppVal = pVal;
return rc;
}
/*
** This function is used to allocate and populate UnpackedRecord
** structures intended to be compared against sample index keys stored
** in the sqlite_stat4 table.
**
** A single call to this function populates zero or more fields of the
** record starting with field iVal (fields are numbered from left to
** right starting with 0). A single field is populated if:
**
** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
**
** * The expression is a bound variable, and this is a reprepare, or
**
** * The sqlite3ValueFromExpr() function is able to extract a value
** from the expression (i.e. the expression is a literal value).
**
** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
** vector components that match either of the two latter criteria listed
** above.
**
** Before any value is appended to the record, the affinity of the
** corresponding column within index pIdx is applied to it. Before
** this function returns, output parameter *pnExtract is set to the
** number of values appended to the record.
**
** When this function is called, *ppRec must either point to an object
** allocated by an earlier call to this function, or must be NULL. If it
** is NULL and a value can be successfully extracted, a new UnpackedRecord
** is allocated (and *ppRec set to point to it) before returning.
**
** Unless an error is encountered, SQLITE_OK is returned. It is not an
** error if a value cannot be extracted from pExpr. If an error does
** occur, an SQLite error code is returned.
*/
int sqlite3Stat4ProbeSetValue(
Parse *pParse, /* Parse context */
Index *pIdx, /* Index being probed */
UnpackedRecord **ppRec, /* IN/OUT: Probe record */
Expr *pExpr, /* The expression to extract a value from */
int nElem, /* Maximum number of values to append */
int iVal, /* Array element to populate */
int *pnExtract /* OUT: Values appended to the record */
){
int rc = SQLITE_OK;
int nExtract = 0;
if( pExpr==0 || pExpr->op!=TK_SELECT ){
int i;
struct ValueNewStat4Ctx alloc;
alloc.pParse = pParse;
alloc.pIdx = pIdx;
alloc.ppRec = ppRec;
for(i=0; i<nElem; i++){
sqlite3_value *pVal = 0;
Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
alloc.iVal = iVal+i;
rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
if( !pVal ) break;
nExtract++;
}
}
*pnExtract = nExtract;
return rc;
}
/*
** Attempt to extract a value from expression pExpr using the methods
** as described for sqlite3Stat4ProbeSetValue() above.
**
** If successful, set *ppVal to point to a new value object and return
** SQLITE_OK. If no value can be extracted, but no other error occurs
** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
** does occur, return an SQLite error code. The final value of *ppVal
** is undefined in this case.
*/
int sqlite3Stat4ValueFromExpr(
Parse *pParse, /* Parse context */
Expr *pExpr, /* The expression to extract a value from */
u8 affinity, /* Affinity to use */
sqlite3_value **ppVal /* OUT: New value object (or NULL) */
){
return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
}
/*
** Extract the iCol-th column from the nRec-byte record in pRec. Write
** the column value into *ppVal. If *ppVal is initially NULL then a new
** sqlite3_value object is allocated.
**
** If *ppVal is initially NULL then the caller is responsible for
** ensuring that the value written into *ppVal is eventually freed.
*/
int sqlite3Stat4Column(
sqlite3 *db, /* Database handle */
const void *pRec, /* Pointer to buffer containing record */
int nRec, /* Size of buffer pRec in bytes */
int iCol, /* Column to extract */
sqlite3_value **ppVal /* OUT: Extracted value */
){
u32 t = 0; /* a column type code */
u32 nHdr; /* Size of the header in the record */
u32 iHdr; /* Next unread header byte */
i64 iField; /* Next unread data byte */
u32 szField = 0; /* Size of the current data field */
int i; /* Column index */
u8 *a = (u8*)pRec; /* Typecast byte array */
Mem *pMem = *ppVal; /* Write result into this Mem object */
assert( iCol>0 );
iHdr = getVarint32(a, nHdr);
if( nHdr>(u32)nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
iField = nHdr;
for(i=0; i<=iCol; i++){
iHdr += getVarint32(&a[iHdr], t);
testcase( iHdr==nHdr );
testcase( iHdr==nHdr+1 );
if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
szField = sqlite3VdbeSerialTypeLen(t);
iField += szField;
}
testcase( iField==nRec );
testcase( iField==nRec+1 );
if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
if( pMem==0 ){
pMem = *ppVal = sqlite3ValueNew(db);
if( pMem==0 ) return SQLITE_NOMEM_BKPT;
}
sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
pMem->enc = ENC(db);
return SQLITE_OK;
}
/*
** Unless it is NULL, the argument must be an UnpackedRecord object returned
** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
** the object.
*/
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
if( pRec ){
int i;
int nCol = pRec->pKeyInfo->nAllField;
Mem *aMem = pRec->aMem;
sqlite3 *db = aMem[0].db;
for(i=0; i<nCol; i++){
sqlite3VdbeMemRelease(&aMem[i]);
}
sqlite3KeyInfoUnref(pRec->pKeyInfo);
sqlite3DbFreeNN(db, pRec);
}
}
#endif /* ifdef SQLITE_ENABLE_STAT4 */
/*
** Change the string value of an sqlite3_value object
*/
void sqlite3ValueSetStr(
sqlite3_value *v, /* Value to be set */
int n, /* Length of string z */
const void *z, /* Text of the new string */
u8 enc, /* Encoding to use */
void (*xDel)(void*) /* Destructor for the string */
){
if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
}
/*
** Free an sqlite3_value object
*/
void sqlite3ValueFree(sqlite3_value *v){
if( !v ) return;
sqlite3VdbeMemRelease((Mem *)v);
sqlite3DbFreeNN(((Mem*)v)->db, v);
}
/*
** The sqlite3ValueBytes() routine returns the number of bytes in the
** sqlite3_value object assuming that it uses the encoding "enc".
** The valueBytes() routine is a helper function.
*/
static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
return valueToText(pVal, enc)!=0 ? pVal->n : 0;
}
int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
Mem *p = (Mem*)pVal;
assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
return p->n;
}
if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){
return p->n;
}
if( (p->flags & MEM_Blob)!=0 ){
if( p->flags & MEM_Zero ){
return p->n + p->u.nZero;
}else{
return p->n;
}
}
if( p->flags & MEM_Null ) return 0;
return valueBytes(pVal, enc);
}
|